Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,816)

Search Parameters:
Keywords = alkaline oxidation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 963 KB  
Article
Role of Extractable and Non-Extractable Polyphenols in the Formation of Beech (Fagus sylvatica L.) Red Heartwood Chromophores
by Tamás Hofmann, Eszter Visi-Rajczi and Levente Albert
Forests 2025, 16(10), 1557; https://doi.org/10.3390/f16101557 - 9 Oct 2025
Abstract
Despite the long history of beech (Fagus sylvatica L.) red heartwood research, there has been no experimental proof on the structure of the chromophores yet. For the first time, using high-performance liquid chromatography/diode array detection/multistage electrospray ionization mass spectrometry, it was evidenced [...] Read more.
Despite the long history of beech (Fagus sylvatica L.) red heartwood research, there has been no experimental proof on the structure of the chromophores yet. For the first time, using high-performance liquid chromatography/diode array detection/multistage electrospray ionization mass spectrometry, it was evidenced that red heartwood chromophores are water/methanol solvent extractable high molecular weight (400–2200 Da) compounds, which are polymerized, transformed, and oxidized products of (epi)catechin and taxifolin. Acid soluble non-extractable polyphenols (flavonoids, tannins) were not evidenced in the cell wall structure, while alkaline soluble compounds (ferulic acid, dehydrodiferulic acid, p-coumaric acid) have been identified for the first time from the sapwood/red heartwood boundary tissues: these supposedly play a role in the structural reinforcement of the cell wall structure and in the antioxidant protection and have a lesser role in color formation. Results on the structure of chromophores and on cell wall composition may enhance color homogenization technologies and contribute to a better utilization of red-heartwooded timber in the future. Full article
(This article belongs to the Section Wood Science and Forest Products)
15 pages, 2459 KB  
Article
Conductometric Chemosensor for Saccharides Based on Thin Films of Poly(3-Thienylboronic) Acid: Measurements of Transversal Resistance
by Berfinsu Kaya, Yulia Efremenko and Vladimir M. Mirsky
Biosensors 2025, 15(10), 679; https://doi.org/10.3390/bios15100679 - 9 Oct 2025
Abstract
Poly(3-thienylboronic acid) (PThBA) has recently been suggested as a conducting polymer with affinity for saccharides. In this study, thin films of this compound were deposited onto gold electrodes. The system obtained was studied as a possible chemical sensor. The measurements were performed by [...] Read more.
Poly(3-thienylboronic acid) (PThBA) has recently been suggested as a conducting polymer with affinity for saccharides. In this study, thin films of this compound were deposited onto gold electrodes. The system obtained was studied as a possible chemical sensor. The measurements were performed by impedance spectroscopy using potassium ferro/ferricyanide as a redox mediator. The thickness of the polymer and the deposition of the adhesive sublayer were optimized to achieve a compromise between the blocking of defects in the polymer layer and the unnecessary increase in the internal resistance of this conductometric sensor. A comparative study of the influence of fructose, glucose, and sorbitol on transversal polymer resistance was conducted. The binding constants for these saccharides were extracted from the concentration dependencies of sensor conductance. Among them, sorbitol showed the highest affinity with a binding constant up to ~15,000 L·mol−1, followed by fructose (~8700 L·mol−1) and glucose (~4500 L·mol−1). In order to exclude the contribution of the analyte tautomers on the obtained binding constants, measurements of ethylene glycol were also performed. The effects of pH and the redox state of PThBA on its affinity properties were studied, revealing higher affinities at alkaline pH and in oxidized state of the chemosensitive polymer. The developed system has the capacity to be applied in chemical sensors and virtual sensor arrays with electrical affinity control. Full article
Show Figures

Graphical abstract

17 pages, 2361 KB  
Article
A Biofuel Cell for Electricity Generation from Biomass-Derived Cellobiose
by Piyanut Pinyou, Peeranat Jatooratthawichot, Luciranon Sribrahma, Salila Pengthaisong, Chamaipon Beagbandee, Kantapat Chansaenpak, Vincent Blay and James R. Ketudat Cairns
Biosensors 2025, 15(10), 674; https://doi.org/10.3390/bios15100674 - 7 Oct 2025
Abstract
We have developed a new bioanode based on a cascade of reactions catalyzed by two enzymes. A glassy carbon electrode is modified with β-glucosidase and glucose oxidase enzymes entrapped within an osmium redox polymer. Cellobiose, the fuel for the anode, is hydrolyzed by [...] Read more.
We have developed a new bioanode based on a cascade of reactions catalyzed by two enzymes. A glassy carbon electrode is modified with β-glucosidase and glucose oxidase enzymes entrapped within an osmium redox polymer. Cellobiose, the fuel for the anode, is hydrolyzed by β-glucosidase (TxGH116), yielding two molecules of D-glucose. Glucose is then oxidized by glucose oxidase (GOx) into δ-gluconolactone and produces electrons that are transferred to the electrode mediated by osmium redox polymer. We investigated the kinetic parameters of both enzymes at different temperatures. For GOx, the effect of enzyme loading and enzyme/polymer ratio were also optimized. The proposed bioanode is coupled to a biocathode based on horseradish peroxidase (HRP) in which H2O2, the oxidant, is reduced. We investigated the performance of the biofuel cell on cellobiose and sugarcane hydrolysates subjected to different pretreatments. Alkaline pretreatments of biomass were found to be more effective than phosphoric acid pretreatment. Adding TxGH116 β-glucosidase further enhanced current generation, even when commercial cellulase was used. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

18 pages, 1311 KB  
Article
Thermo-Energetic Analysis of Electrolytic Oxygen Valorization via Biomass Oxy-Fuel Combustion: A Case Study Applied to a Power-to-Liquid Route for Methanol Synthesis
by Flávio S. Pereira, Argimiro R. Secchi and Alexandre Szklo
Thermo 2025, 5(4), 41; https://doi.org/10.3390/thermo5040041 - 7 Oct 2025
Abstract
The decarbonization of hard-to-defossilize sectors, such as international maritime transport, requires innovative, and at times disruptive, energy solutions that combine efficiency, scalability, and climate benefits. Therefore, power-to-liquid (PtL) routes have stood out for their potential to use low-emission electricity for the production of [...] Read more.
The decarbonization of hard-to-defossilize sectors, such as international maritime transport, requires innovative, and at times disruptive, energy solutions that combine efficiency, scalability, and climate benefits. Therefore, power-to-liquid (PtL) routes have stood out for their potential to use low-emission electricity for the production of synthetic fuels, via electrolytic hydrogen and CO2 capture. However, the high energy demand inherent to these routes poses significant challenges to large-scale implementation. Moreover, PtL routes are usually at most neutral in terms of CO2 emissions. This study evaluates, from a thermo-energetic perspective, the optimization potential of an e-methanol synthesis route through integration with a biomass oxy-fuel combustion process, making use of electrolytic oxygen as the oxidizing agent and the captured CO2 as the carbon source. From the standpoint of a first-law thermodynamic analysis, mass and energy balances were developed considering the full oxygen supply for oxy-fuel combustion to be met through alkaline electrolysis, thus eliminating the energy penalty associated with conventional oxygen production via air separation units. The balance closure was based on a small-scale plant with a capacity of around 100 kta of methanol. In this integrated configuration, additional CO2 surpluses beyond methanol synthesis demand can be directed to geological storage, which, when combined with bioenergy with carbon capture and storage (BECCS) strategies, may lead to net negative CO2 emissions. The results demonstrate that electrolytic oxygen valorization is a promising pathway to enhance the efficiency and climate performance of PtL processes. Full article
Show Figures

Figure 1

15 pages, 7140 KB  
Article
Tuning the Carbonation Resistance of Metakaolin–Fly Ash-Based Geopolymers: The Dual Role of Reactive MgO in Microstructure and Degradation Mechanisms
by Shuai Li and Dongyu Ji
J. Compos. Sci. 2025, 9(10), 549; https://doi.org/10.3390/jcs9100549 - 7 Oct 2025
Viewed by 118
Abstract
Geopolymers, as a novel class of low-carbon and eco-friendly cementitious material, exhibit outstanding durability and promote the resource utilization of industrial solid wastes. However, as a promising alternative to ordinary Portland cement, its susceptibility to carbonation-induced degradation may limit its widespread application. To [...] Read more.
Geopolymers, as a novel class of low-carbon and eco-friendly cementitious material, exhibit outstanding durability and promote the resource utilization of industrial solid wastes. However, as a promising alternative to ordinary Portland cement, its susceptibility to carbonation-induced degradation may limit its widespread application. To address this challenge, this study systematically examined the effects of magnesium oxide (MgO) content and the metakaolin-to-fly ash ratio on the carbonation performance, mechanical properties, pH value, and microstructures of metakaolin–fly ash-based (MF-based) geopolymer pastes. The findings revealed that an increase in the fly ash ratio correlated with a decline in the compressive strength of MF-based geopolymer pastes. Conversely, the incorporation of MgO significantly enhanced the compressive strength, with higher fly ash ratios leading to more substantial improvements in strength. Furthermore, the addition of MgO and fly ash effectively mitigated the penetration of carbonation and the associated decrease in the pH value of the MF-based geopolymer pastes. Specifically, compared to the control group without MgO (M8F2-0%), MF-based geopolymer pastes with 4% and 8% MgO additions exhibited reductions in carbonation depth of 69.4% and 80.4%, respectively, after 28 days of carbonation, while pH values were observed to be 1.22 and 1.15 units higher, respectively. Additionally, microscopic structural analysis revealed that the inclusion of MgO resulted in a reduction in pore size, porosity, and mean pore diameter within the geopolymer pastes. This improvement was mainly attributed to the promotion of hydration processes by MgO, leading to the formation of fine Mg(OH)2 crystals within the high-alkalinity pore solution, which enhances microstructural densification. In conclusion, the incorporation of MgO significantly improves the carbonation resistance and mechanical performance of MF-based geopolymers. It is recommended that future studies explore the long-term performance under combined environmental actions and evaluate the economic and environmental benefits of MgO-modified geopolymers for large-scale applications. Full article
(This article belongs to the Special Issue Composite Materials for Civil Engineering Applications)
Show Figures

Figure 1

24 pages, 1590 KB  
Article
Synthesis of NiCu–Polymeric Membranes for Electro-Oxidizing Ethylene Glycol Molecules in Alkaline Medium
by Ayman Yousef, R. M. Abdel Hameed, Ibrahim M. Maafa and Ahmed Abutaleb
Catalysts 2025, 15(10), 959; https://doi.org/10.3390/catal15100959 - 6 Oct 2025
Viewed by 263
Abstract
Binary metallic nickel–copper nanocatalysts were anchored onto a polyvinylidene fluoride-co-hexafluoropropylene membrane [NiCu/PVdF–HFP] using the electrospinning technique, followed by the chemical reduction of the relevant precursor salts by introducing sodium borohydride to the synthesis mixture. A series of varied Ni:Cu weight % proportions was [...] Read more.
Binary metallic nickel–copper nanocatalysts were anchored onto a polyvinylidene fluoride-co-hexafluoropropylene membrane [NiCu/PVdF–HFP] using the electrospinning technique, followed by the chemical reduction of the relevant precursor salts by introducing sodium borohydride to the synthesis mixture. A series of varied Ni:Cu weight % proportions was developed in order to optimize the electroactivity of this binary nanocomposite towards the investigated oxidation process. A number of physicochemical tools were used to ascertain the morphology and chemical structure of the formed metallic species on polymeric films. Cyclic voltammetric studies revealed a satisfactory performance of altered NiCu/PVdF–HFP membranes in alkaline solution. Ethylene glycol molecules were successfully electro-oxidized at their surfaces, showing the highest current intensity [564.88 μA cm−2] at the one with Ni:Cu weight ratios of 5:5. The dependence of these metallic membranes’ behavior on the added alcohol concentration to the reaction electrolyte and the adjusted scan rate during the electrochemical measurement was carefully investigated. One hundred repeated scans did not significantly deteriorate the NiCu/PVdF–HFP nanostructures’ durability. Decay percentages of 76.90–87.95% were monitored at their surfaces, supporting the stabilized performance for prolonged periods. A much-decreased Rct value was estimated at Ni5Cu5/PVdF–HFP [392.6 Ohm cm2] as a consequence of the feasibility of the electron transfer step for the electro-catalyzing oxidation process of alcohol molecules. These enhanced study results will hopefully motivate the interested workers to explore the behavior of many binary and ternary combinations of metallic nanomaterials after their deposition onto convenient polymeric films for vital electrochemical reactions. Full article
Show Figures

Graphical abstract

13 pages, 1811 KB  
Article
Ochronotic Deposition in Alkaptonuria: Semiquinone-Mediated Oxidative Coupling and Metabolic Drivers of Homogentisic Acid Accumulation
by Daniela Grasso, Valentina Balloni, Maria Camilla Baratto, Adele Mucci, Annalisa Santucci and Andrea Bernini
Int. J. Mol. Sci. 2025, 26(19), 9674; https://doi.org/10.3390/ijms26199674 - 3 Oct 2025
Viewed by 224
Abstract
Alkaptonuria (AKU) is a rare metabolic disorder caused by homogentisate 1,2-dioxygenase (HGD) deficiency, leading to homogentisic acid (HGA) accumulation and ochronotic pigment deposition, which drug therapy cannot reverse. The process of pigment formation and deposition is still unclear. This study offers molecular insights [...] Read more.
Alkaptonuria (AKU) is a rare metabolic disorder caused by homogentisate 1,2-dioxygenase (HGD) deficiency, leading to homogentisic acid (HGA) accumulation and ochronotic pigment deposition, which drug therapy cannot reverse. The process of pigment formation and deposition is still unclear. This study offers molecular insights into the polymeric structure, with the goal of developing future adjuvant strategies that can inhibit or reverse pigment formation, thereby complementing drug therapy in AKU. HGA polymerisation was examined under physiological, acidic, and alkaline conditions using liquid and solid phase nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and polyacrylamide gel electrophoresis. At physiological pH, HGA polymerised slowly, while alkaline catalysis accelerated pigment formation while retaining the HGA aromatic scaffold. During the process, EPR detected a semiquinone radical intermediate, consistent with an oxidative coupling mechanism. Reactivity profiling showed the diphenol ring was essential for polymerisation, while –CH2COOH modifications did not impair reactivity. Pigments displayed a polydisperse molecular weight range (11–50 kDa) and a strong negative charge. Solid-state NMR has revealed the presence of phenolic ether and biphenyl linkages. Collectively, these identified structural motifs can serve as a foundation for future molecular targeting related to pigment formation. Full article
(This article belongs to the Special Issue Advances in Rare Diseases Biomarkers: 2nd Edition)
Show Figures

Figure 1

22 pages, 2411 KB  
Article
Implication of S-d-Lactoylglutathione in the Spontaneous Cysteine S-Glutathionylation and Lysine N-Lactoylation of Arabidopsis thaliana NAD-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase
by Camille Clément, Sonia Dorion, Natalia V. Bykova, Vincent Fetterley, Elvis Branchini, Charlie Boutin, Laurent Cappadocia and Jean Rivoal
Int. J. Mol. Sci. 2025, 26(19), 9673; https://doi.org/10.3390/ijms26199673 - 3 Oct 2025
Viewed by 266
Abstract
The glyoxalase pathway intermediate S-d-lactoylglutathione was recently implicated in protein post-translational modifications in animal systems. Here, we examined the spontaneous modification of the Arabidopsis thaliana cytosolic glyceraldehyde-3-phosphate dehydrogenase C1 (GAPC1) by this compound. Incubation of GAPC1 with S-d [...] Read more.
The glyoxalase pathway intermediate S-d-lactoylglutathione was recently implicated in protein post-translational modifications in animal systems. Here, we examined the spontaneous modification of the Arabidopsis thaliana cytosolic glyceraldehyde-3-phosphate dehydrogenase C1 (GAPC1) by this compound. Incubation of GAPC1 with S-d-lactoylglutathione resulted in the inhibition of enzyme activity. The inhibitory effect was concentration dependent and increased at alkaline pHs. Furthermore, the inhibition of GAPC1 by S-d-lactoylglutathione was favored by oxidative conditions and reversed by reduction with dithiothreitol. Analyses of the S-d-lactoylglutathione-treated protein by nanoLC-MS/MS revealed S-glutathionylation of its two Cys residues and N-lactoylation of six Lys residues. Protein structure predictions showed that the double S-glutathionylation is accommodated by the GAPC1 catalytic pocket, which likely explains enzyme inhibition. N-lactoylated sites overlap partially with previously reported N-acetylated sites at the surface of the GAPC1 tetramer. The efficiency of cytosolic glutaredoxin and thioredoxin isoforms was tested for reversing the S-d-lactoylglutathione-induced modification. In these assays, recovery of GAPC1 activity after inhibition by S-d-lactoylglutathione treatment was used as indicator of efficiency. The results show that both types of redoxins were able to reverse inhibition. We propose a model describing the mechanisms involved in the two types of post-translational modifications found on GAPC1 following exposure to S-d-lactoylglutathione. The possible involvement of these findings for the control over glycolytic metabolism is discussed. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 9213 KB  
Article
Facile Engineering of Pt-Rh Nanoparticles over Carbon for Composition-Dependent Activity and Durability Toward Glycerol Electrooxidation
by Marta Venancia França Rodrigues, Wemerson Daniel Correia dos Santos, Fellipe dos Santos Pereira, Augusto César Azevedo Silva, Liying Liu, Mikele Candida Sant’Anna, Eliane D’Elia, Roberto Batista de Lima and Marco Aurélio Suller Garcia
Hydrogen 2025, 6(4), 78; https://doi.org/10.3390/hydrogen6040078 - 3 Oct 2025
Viewed by 188
Abstract
In this study, we report the synthesis, characterization, and performance evaluation of a series of bimetallic PtxRhy/C electrocatalysts with systematically varied Rh content for glycerol electrooxidation in acidic and alkaline media. The catalysts were prepared via a polyol reduction [...] Read more.
In this study, we report the synthesis, characterization, and performance evaluation of a series of bimetallic PtxRhy/C electrocatalysts with systematically varied Rh content for glycerol electrooxidation in acidic and alkaline media. The catalysts were prepared via a polyol reduction method using ethylene glycol as both a solvent and reducing agent, with prior functionalization of Vulcan XC-72 carbon to enhance nanoparticles (NPs) dispersion. High-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) analyses indicated the spatial co-location of Rh atoms alongside Pt atoms. Electrochemical studies revealed strong composition-dependent behavior, with Pt95Rh5/C exhibiting the highest activity toward glycerol oxidation. To elucidate the origin of raised results, density functional tight binding (DFTB) simulations were conducted to model atomic distributions and evaluate energetic parameters. The results showed that Rh atoms preferentially segregate to the surface at higher concentrations due to their lower surface energy, while at low concentrations, they remain confined within the Pt lattice. Among the series, Pt95Rh5/C exhibited a distinctively higher excess energy and less favorable binding energy, rationalizing its lower thermodynamic stability. These findings reveal a clear trade-off between catalytic activity and structural durability, highlighting the critical role of the composition and nanoscale architecture in optimizing Pt-based electrocatalysts for alcohol oxidation reactions. Full article
Show Figures

Figure 1

15 pages, 2371 KB  
Article
Zn/Fe-MOF-Derived Carbon Nanofibers via Electrospinning for Efficient Plasma-Catalytic Antibiotic Removal
by Ying Xia, Shaoqun Tao, Yu Liu, Chenyu Zhao, Weichuan Qiao, Sen Chen, Jingqi Ruan, Ming Zhang and Cheng Gu
Catalysts 2025, 15(10), 944; https://doi.org/10.3390/catal15100944 - 1 Oct 2025
Viewed by 313
Abstract
Plasma has become an up-and-coming advanced oxidation technology for wastewater treatment. However, its efficiency is often limited due to the lack of high-performance catalytic materials. In this study, one-dimensional carbon nanofiber precursors were first fabricated via electrospinning, followed by the in situ growth [...] Read more.
Plasma has become an up-and-coming advanced oxidation technology for wastewater treatment. However, its efficiency is often limited due to the lack of high-performance catalytic materials. In this study, one-dimensional carbon nanofiber precursors were first fabricated via electrospinning, followed by the in situ growth of the Zn/Fe-MOF on their surfaces. After pyrolysis at different temperatures, a series of carbon-based catalysts (FeNFC) were obtained. This new type of catalyst possesses advantages such as high porosity, a large specific surface area, and mechanical stability. Using tetracycline (TTCH) as the target pollutant, the performance of the catalyst was evaluated in the dielectric barrier discharge (DBD) system. The study showed that the addition of FeNFC significantly increased the degradation rate of TTCH in the system. Comparing different pyrolysis temperatures, at 900 °C, the comprehensive performance of the catalyst (FeNFC-900) was the best (the kinetic constant was kobs = 0.126 min−1, and the removal rate of TTCH was 91.8% within 30 min). The catalytic performance was influenced by factors such as the dosage of the catalyst, the concentration of TTCH, the power of DBD, and the initial pH. The catalytic effect of the material increased within a certain range with the increase in the catalyst dosage. The increase in TTCH concentration led to a decrease in the catalytic performance. The higher the power of the DBD, the higher the removal rate of TTCH. Moreover, when the initial pH was strongly alkaline, the catalytic effect of the catalyst was the best (kobs = 0.275 min−1, and the removal rate of TTCH was 98.7% within 30 min). Ionic interference tests demonstrated the strong resistance of FeNFC to common water matrix components, while radical quenching experiments revealed that multiple reactive species contributed to TTCH degradation. This work has broad application prospects for enhancing the efficiency of DBD systems in the removal of TTCH. Full article
Show Figures

Figure 1

25 pages, 6307 KB  
Article
A Highly Active Keratinase from Bacillus sp. FJ-3-16 for Sustainable Feather Waste Valorization and Eco-Friendly Industrial Applications
by Fei Bian, Hailun He, Gao Chen, Shousong Yue, Yaoxia Zhu, Xiaowei Zhang and Bin-Bin Xie
Biomolecules 2025, 15(10), 1389; https://doi.org/10.3390/biom15101389 - 29 Sep 2025
Viewed by 230
Abstract
Keratinous biomass, such as feathers, wool, and hair, poses environmental challenges due to its insoluble and recalcitrant nature. In this study, we identified, purified and comprehensively characterized a previously uncharacterized extracellular alkaline keratinase, KerFJ, secreted by Bacillus sp. FJ-3-16, with broad industrial application [...] Read more.
Keratinous biomass, such as feathers, wool, and hair, poses environmental challenges due to its insoluble and recalcitrant nature. In this study, we identified, purified and comprehensively characterized a previously uncharacterized extracellular alkaline keratinase, KerFJ, secreted by Bacillus sp. FJ-3-16, with broad industrial application potential. KerFJ was produced at high yield (1800 U/mL) in an optimized cost-effective medium and purified to homogeneity using ion-exchange chromatography. The enzyme exhibited optimal activity at pH 9.5 and 55 °C, with remarkable alkaline and thermal stability, and high tolerance to surfactants, oxidants, and metal ions. Sequence analysis revealed that KerFJ is a member of the serine peptidase S8 family, with a molecular weight of ~27.5 kDa. It efficiently degraded native keratin substrates, achieving 70.3 ± 2.1% feather, 39.7 ± 1.8% wool, and 15.4 ± 1.2% hair degradation, and the resulting feather hydrolysates exhibited strong antioxidant activities. KerFJ also demonstrated excellent compatibility with commercial detergents and enabled effective stain removal from fabrics without damage. Moreover, both laboratory- and pilot-scale trials showed that KerFJ facilitated non-destructive dehairing of sheep, donkey, and pig skins while preserving collagen integrity. These results highlight KerFJ as a robust and multifunctional biocatalyst suitable for keratin waste valorization, eco-friendly leather processing, and detergent formulations. Full article
(This article belongs to the Special Issue Industrial Microorganisms and Enzyme Technologies)
Show Figures

Figure 1

24 pages, 4152 KB  
Article
Feasibility Study of Strontium-Containing Calcium Phosphate Coatings on Micro-Arc Oxidized AZ31
by Satish S. Singh, John Ohodnicki, Abhijit Roy, Mitali Patil, Boeun Lee and Prashant N. Kumta
Materials 2025, 18(19), 4509; https://doi.org/10.3390/ma18194509 - 28 Sep 2025
Viewed by 275
Abstract
Calcium phosphate coatings are known for their osteoconductive prowess. In this work, calcium phosphate coatings were studied on a model biodegradable magnesium alloy of AZ31, primarily to provide improved corrosion protection and, more importantly, to confer in vitro cytocompatibility to the AZ31 alloy. [...] Read more.
Calcium phosphate coatings are known for their osteoconductive prowess. In this work, calcium phosphate coatings were studied on a model biodegradable magnesium alloy of AZ31, primarily to provide improved corrosion protection and, more importantly, to confer in vitro cytocompatibility to the AZ31 alloy. Correspondingly, an aqueous-based approach was developed to deposit Sr2+-substituted calcium phosphates on micro-arc oxidized AZ31. Micro-arc oxidation was used mainly as a pretreatment technique due to improved homogeneity and adhesion strength in comparison to the coatings formed by the traditionally used alkaline and acidic pretreatment. Calcium phosphate coatings with up to 11.5 mol. % Sr were formed on micro-arc oxidized AZ31 substrates. Despite observation of greater than the intended 10 mol. % Sr to the calcium phosphate coatings as measured within the measurement error, biphasic mixtures of dicalcium phosphate dihydrate and poorly crystalline hydroxyapatite were formed. Micro-arc oxidation treatment, nevertheless, provided a slight improvement in corrosion protection compared to uncoated AZ31. However, much-improved corrosion protection was provided by the calcium phosphate coatings prepared either with or without Sr2+. The calcium phosphate coatings prepared with Sr2+ were also observed to support improved MC3T3-E1 murine pre-osteoblast cell proliferation compared to the calcium phosphate coated substrates prepared without Sr2+. Full article
(This article belongs to the Special Issue Surface Technology and Coatings Materials)
Show Figures

Graphical abstract

21 pages, 17706 KB  
Article
Composite Anion Exchange Membranes Based on Functionalized Graphene Oxide and Poly(Terphenylene Piperidinium) for Application in Water Electrolysis and Fuel Cells
by Tamilazhagan Palanivel, Hosni Ahmed Elwan, Mohamed Mamlouk, Simon Doherty and Bruno G. Pollet
Processes 2025, 13(10), 3047; https://doi.org/10.3390/pr13103047 - 24 Sep 2025
Viewed by 391
Abstract
Composite anion exchange membranes (AEMs) based on poly(terphenylene piperidinium) (PTPiQA) and impregnated with varying loadings of quaternized graphene oxide (QGO) as filler were developed, and their properties as anion exchange membranes for use in water electrolysis (AEMWEs) and fuel cells (AEMFCs) were explored. [...] Read more.
Composite anion exchange membranes (AEMs) based on poly(terphenylene piperidinium) (PTPiQA) and impregnated with varying loadings of quaternized graphene oxide (QGO) as filler were developed, and their properties as anion exchange membranes for use in water electrolysis (AEMWEs) and fuel cells (AEMFCs) were explored. This study investigates the trade-off between mechanical robustness, ionic conductivity, and alkaline stability in QGO-reinforced twisted polymer backbones. QGO synthesized by functionalization with ethylenediamine (EDA), followed by quaternization with glycidyl trimethylammonium chloride (GTMAC), was used as a filler for PTPiQA, and the properties of the resulting composites PTPiQA-QGO-X investigated as a function of QGO loading for X between 0.1 and 0.7 wt%. Among all compositions, PTPiQA-QGO-0.3% exhibited the highest OH conductivity of 71.56 mS cm−1 at room temperature, attributed to enhanced ionic connectivity and water uptake. However, this increase in conductivity was accompanied by a slight decrease in ion exchange capacity (IEC) retention (91.8%) during an alkaline stability test in 1 M KOH at 60 °C for 336 h due to localized cation degradation. Mechanical testing revealed that PTPiQA-QGO-0.3% offered optimal dry and wet tensile strength (dry TS of 42.77 MPa and wet TS of 30.20 MPa), whereas higher QGO loadings yielded low mechanical strength. These findings highlight that 0.3 wt% QGO balances ion transport efficiency and mechanical strength, while higher loadings improve alkaline durability, compromising mechanical durability and guiding the rational design of AEMs for AEMWEs and AEMFCs. Full article
(This article belongs to the Special Issue Development and Characterization of Advanced Polymer Nanocomposites)
Show Figures

Figure 1

21 pages, 1833 KB  
Review
A Review of Green Hydrogen Technologies and Their Role in Enabling Sustainable Energy Access in Remote and Off-Grid Areas Within Sub-Saharan Africa
by Nkanyiso Msweli, Gideon Ude Nnachi and Coneth Graham Richards
Energies 2025, 18(18), 5035; https://doi.org/10.3390/en18185035 - 22 Sep 2025
Viewed by 617
Abstract
Electricity access deficits remain acute in Sub-Saharan Africa (SSA), where more than 600 million people lack reliable supply. Green hydrogen, produced through renewable-powered electrolysis, is increasingly recognized as a transformative energy carrier for decentralized systems due to its capacity for long-duration storage, sector [...] Read more.
Electricity access deficits remain acute in Sub-Saharan Africa (SSA), where more than 600 million people lack reliable supply. Green hydrogen, produced through renewable-powered electrolysis, is increasingly recognized as a transformative energy carrier for decentralized systems due to its capacity for long-duration storage, sector coupling, and near-zero carbon emissions. This review adheres strictly to the PRISMA 2020 methodology, examining 190 records and synthesizing 80 peer-reviewed articles and industry reports released from 2010 to 2025. The review covers hydrogen production processes, hybrid renewable integration, techno-economic analysis, environmental compromises, global feasibility, and enabling policy incentives. The findings show that Alkaline (AEL) and PEM electrolyzers are immediately suitable for off-grid scenarios, whereas Solid Oxide (SOEC) and Anion Exchange Membrane (AEM) electrolyzers present high potential for future deployment. For Sub-Saharan Africa (SSA), the levelized costs of hydrogen (LCOH) are in the range of EUR5.0–7.7/kg. Nonetheless, estimates from the learning curve indicate that these costs could fall to between EUR1.0 and EUR1.5 per kg by 2050, assuming there is (i) continued public support for the technology innovation, (ii) appropriate, flexible, and predictable regulation, (iii) increased demand for hydrogen, and (iv) a stable and long-term policy framework. Environmental life-cycle assessments indicate that emissions are nearly zero, but they also highlight serious concerns regarding freshwater usage, land occupation, and dependence on platinum group metals. Namibia, South Africa, and Kenya exhibit considerable promise in the early stages of development, while Niger demonstrates the feasibility of deploying modular, community-scale systems in challenging conditions. The study concludes that green hydrogen cannot be treated as an integrated solution but needs to be regarded as part of blended off-grid systems. To improve its role, targeted material innovation, blended finance, and policies bridging export-oriented applications to community-scale access must be established. It will then be feasible to ensure that hydrogen contributes meaningfully to the attainment of Sustainable Development Goal 7 in SSA. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

16 pages, 12574 KB  
Article
Enhanced Performance of Gold Nanoparticle-Modified Nickel–Iron Coatings for Sodium Borohydride Electrooxidation
by Huma Amber, Aušrinė Zabielaitė, Aldona Balčiūnaitė, Antanas Nacys, Dmytro Shyshkin, Birutė Šimkūnaitė-Stanynienė, Zenius Mockus, Jūratė Vaičiūnienė, Loreta Tamašauskaitė-Tamašiūnaitė and Eugenijus Norkus
Crystals 2025, 15(9), 819; https://doi.org/10.3390/cryst15090819 - 19 Sep 2025
Viewed by 321
Abstract
The Ni-Fe coatings modified with AuNPs were deposited on the flexible copper-coated polyimide (Cu/PI) surface using electroless metal plating, while the galvanic displacement technique was applied to modify the surface of NiFe coatings by a small content of AuNPs in the range of [...] Read more.
The Ni-Fe coatings modified with AuNPs were deposited on the flexible copper-coated polyimide (Cu/PI) surface using electroless metal plating, while the galvanic displacement technique was applied to modify the surface of NiFe coatings by a small content of AuNPs in the range of 16.5 µgAu cm−2. AuNPs of a few nanometers in size were deposited on the NiFe/Cu/PI surface by immersing it in a solution containing AuCl4 ions. The electrooxidation of sodium borohydride was evaluated in a 1 M NaOH solution containing 0.05 M of sodium borohydride using cyclic voltammetry, chronoamperometry, and chronopotentiometry. In addition, the performance and stability of the NiFe/Cu/PI and AuNPs-NiFe/Cu/PI catalysts were evaluated for potential use in a direct NaBH4-H2O2 fuel cell. The NiFe coating modified with AuNPs demonstrated significantly higher electrocatalytic activity towards the oxidation of sodium borohydride as compared to bare Au or unmodified NiFe/Cu/PI. Furthermore, it exhibited a superior power density of 89.7 mW cm−2 at room temperature and operational stability under alkaline conditions, while the NiFe anode exhibited 73.1 mW cm−2. These results suggest that the AuNPs-modified NiFe coating has great potential as a material for use in direct borohydride fuel cells (DBFCs) applications involving the oxidation of sodium borohydride. Full article
(This article belongs to the Special Issue Advances and Perspectives in Noble Metal Nanoparticles)
Show Figures

Figure 1

Back to TopTop