Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,484)

Search Parameters:
Keywords = alkaline stability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1590 KB  
Article
Synthesis of NiCu–Polymeric Membranes for Electro-Oxidizing Ethylene Glycol Molecules in Alkaline Medium
by Ayman Yousef, R. M. Abdel Hameed, Ibrahim M. Maafa and Ahmed Abutaleb
Catalysts 2025, 15(10), 959; https://doi.org/10.3390/catal15100959 (registering DOI) - 6 Oct 2025
Abstract
Binary metallic nickel–copper nanocatalysts were anchored onto a polyvinylidene fluoride-co-hexafluoropropylene membrane [NiCu/PVdF–HFP] using the electrospinning technique, followed by the chemical reduction of the relevant precursor salts by introducing sodium borohydride to the synthesis mixture. A series of varied Ni:Cu weight % proportions was [...] Read more.
Binary metallic nickel–copper nanocatalysts were anchored onto a polyvinylidene fluoride-co-hexafluoropropylene membrane [NiCu/PVdF–HFP] using the electrospinning technique, followed by the chemical reduction of the relevant precursor salts by introducing sodium borohydride to the synthesis mixture. A series of varied Ni:Cu weight % proportions was developed in order to optimize the electroactivity of this binary nanocomposite towards the investigated oxidation process. A number of physicochemical tools were used to ascertain the morphology and chemical structure of the formed metallic species on polymeric films. Cyclic voltammetric studies revealed a satisfactory performance of altered NiCu/PVdF–HFP membranes in alkaline solution. Ethylene glycol molecules were successfully electro-oxidized at their surfaces, showing the highest current intensity [564.88 μA cm−2] at the one with Ni:Cu weight ratios of 5:5. The dependence of these metallic membranes’ behavior on the added alcohol concentration to the reaction electrolyte and the adjusted scan rate during the electrochemical measurement was carefully investigated. One hundred repeated scans did not significantly deteriorate the NiCu/PVdF–HFP nanostructures’ durability. Decay percentages of 76.90–87.95% were monitored at their surfaces, supporting the stabilized performance for prolonged periods. A much-decreased Rct value was estimated at Ni5Cu5/PVdF–HFP [392.6 Ohm cm2] as a consequence of the feasibility of the electron transfer step for the electro-catalyzing oxidation process of alcohol molecules. These enhanced study results will hopefully motivate the interested workers to explore the behavior of many binary and ternary combinations of metallic nanomaterials after their deposition onto convenient polymeric films for vital electrochemical reactions. Full article
Show Figures

Graphical abstract

20 pages, 3411 KB  
Article
Assessing the Impacts of Greenhouse Lifespan on the Evolution of Soil Quality in Highland Mountain Vegetable Farmland
by Keyu Yan, Xiaohan Mei, Jing Li, Xinmei Zhao, Qingsong Duan, Zhengfa Chen and Yanmei Hu
Agronomy 2025, 15(10), 2343; https://doi.org/10.3390/agronomy15102343 - 5 Oct 2025
Abstract
Long-term greenhouse operations face a critical challenge in the form of soil quality degradation, yet the key intervention periods and underlying mechanisms of this process remain unclear. This study aims to quantify the effects of greenhouse lifespan on the evolution of soil quality [...] Read more.
Long-term greenhouse operations face a critical challenge in the form of soil quality degradation, yet the key intervention periods and underlying mechanisms of this process remain unclear. This study aims to quantify the effects of greenhouse lifespan on the evolution of soil quality and to identify critical periods for intervention. We conducted a systematic survey of greenhouse operations in a representative area of Yunnan Province, Southwest China, and adopted a space-for-time substitution design. Using open-field cultivation (OF) as the control, we sampled and analyzed soils from vegetable greenhouses with greenhouse lifespans of 2 years (G2), 5 years (G5), and 10 years (G10). The results showed that early-stage greenhouse operation (G2) significantly increased soil temperature (ST) by 8.38–19.93% and soil porosity (SP) by 16.21–56.26%, promoted nutrient accumulation and enhanced aggregate stability compared to OF. However, as the greenhouse lifespan increased, the soil aggregates gradually disintegrated, particle-size distribution shifted toward finer clay fractions, and pH changed from neutral to slightly alkaline, exacerbating nutrient imbalances. Compared with G2, G10 exhibited reductions in mean weight diameter (MWD) and soil organic matter (SOM) of 2.41–5.93% and 24.78–30.93%, respectively. Among greenhouses with different lifespans, G2 had the highest soil quality index (SQI), which declined significantly with extended operation; at depths of 0–20 cm and 20–40 cm, the SQI of G10 was 32.59% and 38.97% lower than that of G2, respectively (p < 0.05). Structural equation modeling (SEM) and random forest analysis indicated that the improvement in SQI during the early stage of greenhouse use was primarily attributed to the optimization of soil hydrothermal characteristics and pore structure. Notably, the 2–5 years was the critical stage of rapid decline in SQI, during which intensive water and fertilizer inputs reduced the explanatory power of soil nutrients for SQI. Under long-term continuous cropping, the reduction in MWD and SOM was the main reason for the decline in SQI. This study contributes to targeted soil management during the critical period for sustainable production of protected vegetables in southern China. Full article
Show Figures

Graphical abstract

15 pages, 9213 KB  
Article
Facile Engineering of Pt-Rh Nanoparticles over Carbon for Composition-Dependent Activity and Durability Toward Glycerol Electrooxidation
by Marta Venancia França Rodrigues, Wemerson Daniel Correia dos Santos, Fellipe dos Santos Pereira, Augusto César Azevedo Silva, Liying Liu, Mikele Candida Sant’Anna, Eliane D’Elia, Roberto Batista de Lima and Marco Aurélio Suller Garcia
Hydrogen 2025, 6(4), 78; https://doi.org/10.3390/hydrogen6040078 - 3 Oct 2025
Abstract
In this study, we report the synthesis, characterization, and performance evaluation of a series of bimetallic PtxRhy/C electrocatalysts with systematically varied Rh content for glycerol electrooxidation in acidic and alkaline media. The catalysts were prepared via a polyol reduction [...] Read more.
In this study, we report the synthesis, characterization, and performance evaluation of a series of bimetallic PtxRhy/C electrocatalysts with systematically varied Rh content for glycerol electrooxidation in acidic and alkaline media. The catalysts were prepared via a polyol reduction method using ethylene glycol as both a solvent and reducing agent, with prior functionalization of Vulcan XC-72 carbon to enhance nanoparticles (NPs) dispersion. High-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) analyses indicated the spatial co-location of Rh atoms alongside Pt atoms. Electrochemical studies revealed strong composition-dependent behavior, with Pt95Rh5/C exhibiting the highest activity toward glycerol oxidation. To elucidate the origin of raised results, density functional tight binding (DFTB) simulations were conducted to model atomic distributions and evaluate energetic parameters. The results showed that Rh atoms preferentially segregate to the surface at higher concentrations due to their lower surface energy, while at low concentrations, they remain confined within the Pt lattice. Among the series, Pt95Rh5/C exhibited a distinctively higher excess energy and less favorable binding energy, rationalizing its lower thermodynamic stability. These findings reveal a clear trade-off between catalytic activity and structural durability, highlighting the critical role of the composition and nanoscale architecture in optimizing Pt-based electrocatalysts for alcohol oxidation reactions. Full article
Show Figures

Figure 1

15 pages, 2371 KB  
Article
Zn/Fe-MOF-Derived Carbon Nanofibers via Electrospinning for Efficient Plasma-Catalytic Antibiotic Removal
by Ying Xia, Shaoqun Tao, Yu Liu, Chenyu Zhao, Weichuan Qiao, Sen Chen, Jingqi Ruan, Ming Zhang and Cheng Gu
Catalysts 2025, 15(10), 944; https://doi.org/10.3390/catal15100944 - 1 Oct 2025
Abstract
Plasma has become an up-and-coming advanced oxidation technology for wastewater treatment. However, its efficiency is often limited due to the lack of high-performance catalytic materials. In this study, one-dimensional carbon nanofiber precursors were first fabricated via electrospinning, followed by the in situ growth [...] Read more.
Plasma has become an up-and-coming advanced oxidation technology for wastewater treatment. However, its efficiency is often limited due to the lack of high-performance catalytic materials. In this study, one-dimensional carbon nanofiber precursors were first fabricated via electrospinning, followed by the in situ growth of the Zn/Fe-MOF on their surfaces. After pyrolysis at different temperatures, a series of carbon-based catalysts (FeNFC) were obtained. This new type of catalyst possesses advantages such as high porosity, a large specific surface area, and mechanical stability. Using tetracycline (TTCH) as the target pollutant, the performance of the catalyst was evaluated in the dielectric barrier discharge (DBD) system. The study showed that the addition of FeNFC significantly increased the degradation rate of TTCH in the system. Comparing different pyrolysis temperatures, at 900 °C, the comprehensive performance of the catalyst (FeNFC-900) was the best (the kinetic constant was kobs = 0.126 min−1, and the removal rate of TTCH was 91.8% within 30 min). The catalytic performance was influenced by factors such as the dosage of the catalyst, the concentration of TTCH, the power of DBD, and the initial pH. The catalytic effect of the material increased within a certain range with the increase in the catalyst dosage. The increase in TTCH concentration led to a decrease in the catalytic performance. The higher the power of the DBD, the higher the removal rate of TTCH. Moreover, when the initial pH was strongly alkaline, the catalytic effect of the catalyst was the best (kobs = 0.275 min−1, and the removal rate of TTCH was 98.7% within 30 min). Ionic interference tests demonstrated the strong resistance of FeNFC to common water matrix components, while radical quenching experiments revealed that multiple reactive species contributed to TTCH degradation. This work has broad application prospects for enhancing the efficiency of DBD systems in the removal of TTCH. Full article
Show Figures

Figure 1

19 pages, 1064 KB  
Article
Effect of Plastein Reaction on Physical and Chemical Characteristics of Corn Glutelin Peptides and Quality of Chiffon Cake
by Yang Sun, Wan-Ying Zhang, Chun-Li Song, Zhi-Qin Pan, Guo-Jun Du, Zhi-Qiang Song, Jian Ren, Li-Ying Bo, Jing-Jing An and Meng Wang
Foods 2025, 14(19), 3392; https://doi.org/10.3390/foods14193392 - 30 Sep 2025
Abstract
Corn glutelin hydrolysate (CGH) was prepared by alkaline protease hydrolysis of corn glutelin and further modified by histidine (His) and tryptophan (Trp) through the Plastein reaction, obtaining His-fortified CGH (His-CGH) and Trp-fortified CGH (Trp-CGH). The functional properties (solubility, foaming capacity, and emulsifying activity) [...] Read more.
Corn glutelin hydrolysate (CGH) was prepared by alkaline protease hydrolysis of corn glutelin and further modified by histidine (His) and tryptophan (Trp) through the Plastein reaction, obtaining His-fortified CGH (His-CGH) and Trp-fortified CGH (Trp-CGH). The functional properties (solubility, foaming capacity, and emulsifying activity) of the modified peptides were analyzed. The corresponding modifiers were added to baked products to evaluate potential application in the baking field. The effects of the modifiers on batter density, specific volume, and textural properties of chiffon cake were investigated. This study aimed to enhance the functional characteristics of corn glutelin and provide a theoretical basis for the development of functional products or green food additives. Corn glutelin hydrolysate supplemented with His-CGH and Trp-CGH exhibited improved solubility, foaming stability, and emulsifying capacity. Compared with CGH, the foamability (FC) of Trp-CGH increased by 9%, the foaming stability (FS10) at 10 min elevated by 8.41%, the foaming stability (FS20) at 20 min improved by 14.79%, and the foaming stability at 30 min (FS30) raised by 14.14%. The emulsifying activity of Trp-CGH improved by 10.65 m2/g, and the emulsifying stability increased by 10.57 min. Furthermore, the batter density of the cake sample with Trp-CGH decreased by 0.028 g/cm3, the specific volume increased by 0.29 cm3/g, the baking loss rate lowered by 0.99%, and the hardness reduced by 0.36 N. The improvement of these quality indexes remarkably enhanced the sensory acceptance and texture of the cake sample. Overall, it also reveals that the addition of the Plastein reaction modifiers before baking also highlights their potential as green food additives in baking products. Full article
Show Figures

Figure 1

20 pages, 3712 KB  
Article
Analysis of Control Factors for Sensitivity of Coalbed Methane Reservoirs
by Peng Li, Cong Zhang, Bin Fan, Jie Zhang and Zhongxiang Zhao
Processes 2025, 13(10), 3133; https://doi.org/10.3390/pr13103133 - 29 Sep 2025
Abstract
Formation damage sensitivity is a primary constraint on productivity in coalbed methane (CBM) reservoirs. Conventional experimental methods, which often employ crushed or plug coal samples, disrupt the natural fracture network, thereby overestimating matrix damage and underestimating fracture-related damage. In this study, synchronous comparative [...] Read more.
Formation damage sensitivity is a primary constraint on productivity in coalbed methane (CBM) reservoirs. Conventional experimental methods, which often employ crushed or plug coal samples, disrupt the natural fracture network, thereby overestimating matrix damage and underestimating fracture-related damage. In this study, synchronous comparative experiments were conducted using raw coal and briquette coal cores, integrated with scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) analyses to characterize coal composition and pore structure. This approach elucidates the underlying mechanisms controlling reservoir sensitivity. The main findings are as follows: The dual-sample comparative system reveals substantial deviations in traditional experimental assessments. Due to post-dissolution compaction, briquette coal samples overestimate acid sensitivity while underestimating water sensitivity. Stress sensitivity is primarily attributed to the irreversible compression of natural fractures. Differences in acid sensitivity are governed by structural integrity: mineral dissolution leads to collapse in briquette coal, whereas fractures help maintain stability in raw coal. Raw coal exhibits a lower critical flow rate for velocity sensitivity and undergoes significant water sensitivity damage below 1 MPa. Both sample types show weak alkaline sensitivity, with damage acceleration observed within the pH range of 7 to 10. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 6307 KB  
Article
A Highly Active Keratinase from Bacillus sp. FJ-3-16 for Sustainable Feather Waste Valorization and Eco-Friendly Industrial Applications
by Fei Bian, Hailun He, Gao Chen, Shousong Yue, Yaoxia Zhu, Xiaowei Zhang and Bin-Bin Xie
Biomolecules 2025, 15(10), 1389; https://doi.org/10.3390/biom15101389 - 29 Sep 2025
Abstract
Keratinous biomass, such as feathers, wool, and hair, poses environmental challenges due to its insoluble and recalcitrant nature. In this study, we identified, purified and comprehensively characterized a previously uncharacterized extracellular alkaline keratinase, KerFJ, secreted by Bacillus sp. FJ-3-16, with broad industrial application [...] Read more.
Keratinous biomass, such as feathers, wool, and hair, poses environmental challenges due to its insoluble and recalcitrant nature. In this study, we identified, purified and comprehensively characterized a previously uncharacterized extracellular alkaline keratinase, KerFJ, secreted by Bacillus sp. FJ-3-16, with broad industrial application potential. KerFJ was produced at high yield (1800 U/mL) in an optimized cost-effective medium and purified to homogeneity using ion-exchange chromatography. The enzyme exhibited optimal activity at pH 9.5 and 55 °C, with remarkable alkaline and thermal stability, and high tolerance to surfactants, oxidants, and metal ions. Sequence analysis revealed that KerFJ is a member of the serine peptidase S8 family, with a molecular weight of ~27.5 kDa. It efficiently degraded native keratin substrates, achieving 70.3 ± 2.1% feather, 39.7 ± 1.8% wool, and 15.4 ± 1.2% hair degradation, and the resulting feather hydrolysates exhibited strong antioxidant activities. KerFJ also demonstrated excellent compatibility with commercial detergents and enabled effective stain removal from fabrics without damage. Moreover, both laboratory- and pilot-scale trials showed that KerFJ facilitated non-destructive dehairing of sheep, donkey, and pig skins while preserving collagen integrity. These results highlight KerFJ as a robust and multifunctional biocatalyst suitable for keratin waste valorization, eco-friendly leather processing, and detergent formulations. Full article
(This article belongs to the Special Issue Industrial Microorganisms and Enzyme Technologies)
Show Figures

Figure 1

22 pages, 1557 KB  
Article
Capacity Configuration and Benefit Assessment of Deep-Sea Wind–Hydrogen System Considering Dynamic Hydrogen Price
by Chen Fu, Li Lan, Yanyuan Qian, Peng Chen, Zhonghao Shi, Xinghao Zhang, Chuanbo Xu and Ruoyi Dong
Energies 2025, 18(19), 5175; https://doi.org/10.3390/en18195175 - 29 Sep 2025
Abstract
Against the backdrop of the global transition towards clean energy, deep-sea wind-power hydrogen production integrates offshore wind with green hydrogen technology. Addressing the technical coupling complexity and the impact of uncertain hydrogen prices, this paper develops a capacity optimization model. The model incorporates [...] Read more.
Against the backdrop of the global transition towards clean energy, deep-sea wind-power hydrogen production integrates offshore wind with green hydrogen technology. Addressing the technical coupling complexity and the impact of uncertain hydrogen prices, this paper develops a capacity optimization model. The model incorporates floating wind turbine output, the technical distinctions between alkaline (ALK) electrolyzers and proton exchange membrane (PEM) electrolyzers, and the synergy with energy storage. Under three hydrogen price scenarios, the results demonstrate that as the price increases from 26 CNY/kg to 30 CNY/kg, the optimal ALK capacity decreases from 2.92 MW to 0.29 MW, while the PEM capacity increases from 3.51 MW to 5.51 MW. Correspondingly, the system’s Net Present Value (NPV) exhibits an upward trend. To address the limitations of traditional methods in handling multi-dimensional benefit correlations and information ambiguity, a comprehensive benefit evaluation framework encompassing economic, technical, environmental, and social synergies was constructed. Sensitivity analysis indicates that the comprehensive benefit level falls within a relatively high-efficiency interval. The numerical characteristics, an entropy value of 3.29 and a hyper-entropy of 0.85, demonstrate compact result distribution and robust stability, validating the applicability and stability of the proposed offshore wind–hydrogen benefit assessment model. Full article
Show Figures

Figure 1

16 pages, 4233 KB  
Article
Theoretical Calculation Modeling of Thermal Conductivity of Geopolymer Foam Concrete in Building Structures Based on Image Recognition
by Yanqing Xu, Wenwen Chen, Jie Li, Qun Xie, Mingqiang Lin, Haibo Fang, Zhihao Du and Liqiang Jiang
Buildings 2025, 15(19), 3494; https://doi.org/10.3390/buildings15193494 - 28 Sep 2025
Abstract
A novel thermal conductivity prediction model was developed to address the complex influence of pore structure in porous materials. This model incorporates pore size (d) and a pore distribution parameter (t) to calculate the material’s thermal conductivity. To validate the model’s accuracy, geopolymer [...] Read more.
A novel thermal conductivity prediction model was developed to address the complex influence of pore structure in porous materials. This model incorporates pore size (d) and a pore distribution parameter (t) to calculate the material’s thermal conductivity. To validate the model’s accuracy, geopolymer foamed concrete (GFC) samples with varying pore structures were fabricated. These utilized ground granulated blast furnace slag (GGBS) as the precursor, a mixed solution of sodium hydroxide (NaOH) and sodium silicate as the alkaline activator, and sodium stearate (NaSt), hydroxypropyl methylcellulose (HPMC), and sodium carboxymethyl cellulose (CMC-Na) as foam stabilizers. Conventional pore size characterization techniques exhibit limitations; consequently, this research implements a high-fidelity machine vision-driven image analysis methodology. Pore size measurement is achieved through a combined technical approach involving equivalent diameter modeling and morphological optimization. The feasibility of the proposed theory is validated by our experimental data and data from previous literature, with the error between experimental and theoretical values maintained within 5%. The value of t increases with increasing porosity and increasing disorder in pore distribution. Based on the experimental data obtained in this study and the research data from previous scholars’ studies, the t value for porous materials can be categorized according to porosity: when porosity is approximately 30%, t ≈ 0.9; when porosity is 55~65%, t ranges from 1.2 to 1.3; and when porosity is approximately 80%, t ranges from 1.9 to 2.2. Full article
Show Figures

Figure 1

27 pages, 1365 KB  
Systematic Review
Enhancing Osseointegration of Zirconia Implants Using Calcium Phosphate Coatings: A Systematic Review
by Jacek Matys, Ryszard Rygus, Julia Kensy, Krystyna Okoniewska, Wojciech Zakrzewski, Agnieszka Kotela, Natalia Struzik, Hanna Gerber, Magdalena Fast and Maciej Dobrzyński
Materials 2025, 18(19), 4501; https://doi.org/10.3390/ma18194501 - 27 Sep 2025
Abstract
Objective: Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), a variant of zirconia (ZrO2), has attracted interest as a substitute for titanium in dental and orthopedic implants, valued for its biocompatibility and aesthetics that resemble natural teeth. However, its bioinert surface limits osseointegration, making [...] Read more.
Objective: Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), a variant of zirconia (ZrO2), has attracted interest as a substitute for titanium in dental and orthopedic implants, valued for its biocompatibility and aesthetics that resemble natural teeth. However, its bioinert surface limits osseointegration, making surface modifications such as calcium phosphate (CaP) coatings highly relevant. Materials and methods: The review process adhered to the PRISMA guidelines. Electronic searches of PubMed, Scopus, Web of Science, Embase, and Cochrane Library (July 2025) identified studies evaluating CaP-coated zirconia implants. Eligible studies included in vitro, in vivo, and preclinical investigations with a control group. Data on coating type, deposition method, and biological outcomes were extracted and analyzed. Results: A total of 27 studies were analyzed, featuring different calcium phosphate (CaP) coatings including β-tricalcium phosphate (β-TCP), hydroxyapatite (HA), octacalcium phosphate (OCP), and various composites. These coatings were applied using diverse techniques such as RF magnetron sputtering, sol–gel processing, biomimetic methods, and laser-based approaches. In multiple investigations, calcium phosphate coatings enhanced osteoblast attachment, proliferation, alkaline phosphatase (ALP) expression, and bone-to-implant contact (BIC) relative to unmodified zirconia surfaces. Multifunctional coatings incorporating growth factors, antibiotics, or nanoparticles showed additional benefits. Conclusion: CaP coatings enhance the bioactivity of zirconia implants and represent a promising strategy to overcome their inertness. Further standardized approaches and long-term studies are essential to verify their translational relevance. Full article
(This article belongs to the Special Issue Calcium Phosphate Biomaterials with Medical Applications)
Show Figures

Graphical abstract

21 pages, 17706 KB  
Article
Composite Anion Exchange Membranes Based on Functionalized Graphene Oxide and Poly(Terphenylene Piperidinium) for Application in Water Electrolysis and Fuel Cells
by Tamilazhagan Palanivel, Hosni Ahmed Elwan, Mohamed Mamlouk, Simon Doherty and Bruno G. Pollet
Processes 2025, 13(10), 3047; https://doi.org/10.3390/pr13103047 - 24 Sep 2025
Viewed by 42
Abstract
Composite anion exchange membranes (AEMs) based on poly(terphenylene piperidinium) (PTPiQA) and impregnated with varying loadings of quaternized graphene oxide (QGO) as filler were developed, and their properties as anion exchange membranes for use in water electrolysis (AEMWEs) and fuel cells (AEMFCs) were explored. [...] Read more.
Composite anion exchange membranes (AEMs) based on poly(terphenylene piperidinium) (PTPiQA) and impregnated with varying loadings of quaternized graphene oxide (QGO) as filler were developed, and their properties as anion exchange membranes for use in water electrolysis (AEMWEs) and fuel cells (AEMFCs) were explored. This study investigates the trade-off between mechanical robustness, ionic conductivity, and alkaline stability in QGO-reinforced twisted polymer backbones. QGO synthesized by functionalization with ethylenediamine (EDA), followed by quaternization with glycidyl trimethylammonium chloride (GTMAC), was used as a filler for PTPiQA, and the properties of the resulting composites PTPiQA-QGO-X investigated as a function of QGO loading for X between 0.1 and 0.7 wt%. Among all compositions, PTPiQA-QGO-0.3% exhibited the highest OH conductivity of 71.56 mS cm−1 at room temperature, attributed to enhanced ionic connectivity and water uptake. However, this increase in conductivity was accompanied by a slight decrease in ion exchange capacity (IEC) retention (91.8%) during an alkaline stability test in 1 M KOH at 60 °C for 336 h due to localized cation degradation. Mechanical testing revealed that PTPiQA-QGO-0.3% offered optimal dry and wet tensile strength (dry TS of 42.77 MPa and wet TS of 30.20 MPa), whereas higher QGO loadings yielded low mechanical strength. These findings highlight that 0.3 wt% QGO balances ion transport efficiency and mechanical strength, while higher loadings improve alkaline durability, compromising mechanical durability and guiding the rational design of AEMs for AEMWEs and AEMFCs. Full article
(This article belongs to the Special Issue Development and Characterization of Advanced Polymer Nanocomposites)
Show Figures

Figure 1

21 pages, 1819 KB  
Review
Research Progress on the Utilization of Semi-Dry Calcium-Based Desulfurization Dross in China
by Min Pan, Ruiying Wang, Shejiao Yan, Xiangqian Du, Zhenxing Yin, Guangchao Wu, Jiamao Li and Canhua Li
Materials 2025, 18(19), 4455; https://doi.org/10.3390/ma18194455 - 24 Sep 2025
Viewed by 59
Abstract
As a solid waste generated during the desulfurization process of coal-fired power plants, the output of desulfurization dross is increasing year by year. If not properly treated, it may occupy land and potentially pollute the environment. This article reviews the physicochemical properties of [...] Read more.
As a solid waste generated during the desulfurization process of coal-fired power plants, the output of desulfurization dross is increasing year by year. If not properly treated, it may occupy land and potentially pollute the environment. This article reviews the physicochemical properties of desulfurization dross and the progress in its resource utilization. It specifically focuses on the application potential of semi-dry desulfurization dross, emphasizing how its comprehensive resource utilization can reduce environmental pollution and generate considerable economic benefits for related industries. It should be noted, however, that the leaching of heavy metals and the strong alkalinity of desulfurization dross may pose environmental risks such as soil and groundwater contamination. Current research still requires further improvement in the systematic assessment and management strategies of these risks. This review highlights the need to optimize pretreatment technologies for stabilizing desulfurization dross and enhance environmental risk management, to facilitate its large-scale and high-value utilization. This article also looks toward the research directions for semi-dry calcium-based desulfurization dross in the future, aiming to provide a reference for the sustainable development and environmental protection of semi-dry desulfurization dross. Full article
(This article belongs to the Topic Advances in Sustainable Materials and Products)
Show Figures

Figure 1

20 pages, 2165 KB  
Article
Influence of Fluctuating Food Waste Concentrations on Horizontal Anaerobic Reactor Performance and Biogas Output
by Jovale Vincent Tongco, Sang Hyeok Park, Su In Kim and Seokhwan Hwang
Energies 2025, 18(19), 5064; https://doi.org/10.3390/en18195064 - 23 Sep 2025
Viewed by 161
Abstract
Food waste (FW) sourced from treatment facilities is predominantly in solid form, with low water content and high variations in organic content. High organic content in FW is ideal in anaerobic digestion for bioenergy applications, but proper monitoring during start-up operations should be [...] Read more.
Food waste (FW) sourced from treatment facilities is predominantly in solid form, with low water content and high variations in organic content. High organic content in FW is ideal in anaerobic digestion for bioenergy applications, but proper monitoring during start-up operations should be employed to avoid imbalance in the acidogenic/methanogenic population due to volatile fatty acid (VFA) accumulation in the system. The seed inoculum (5 L) in each horizontal anaerobic reactor (HAR) was fed with food waste without effluent flow (filling-up phase) until it reached the final working volume of 10 L (continuous phase). The pH, alkalinity, chemical oxygen demand (COD), VFA, biogas production, methane concentration, and microbial community dynamics were set as stability indicators during reactor operation. The results revealed that introducing fluctuations in FW concentrations does not negatively affect the biogas production (1.7 ± 0.2 L/LR/d) and methane concentration (59.0 ± 2.5%). Acclimatization of the methanogenic and bacterial population was also observed. This study aimed to evaluate the influence of fluctuating FW concentrations on the process performance of horizontal anaerobic reactors, focusing on process stability, microbial dynamics, and biogas output during filling-up and continuous phases. Full article
(This article belongs to the Special Issue Biomass and Bio-Energy—3rd Edition)
Show Figures

Figure 1

15 pages, 3995 KB  
Article
Screening of Single-Domain Antibodies to Adeno-Associated Viruses with Cross-Serotype Specificity and a Wide pH Tolerance
by Hailing Guo, Shuo Wang, Lujin Feng, Weiwei Xu, Jiandong Zhang, Xiaoju Zhou and Ningning Ma
Viruses 2025, 17(10), 1289; https://doi.org/10.3390/v17101289 - 23 Sep 2025
Viewed by 163
Abstract
Adeno-associated virus (AAV) vectors are the preferred gene delivery tool in gene therapy owing to their safety, long-term gene expression, broad tissue tropism, and low immunogenicity. Affinity ligands that can bind multiple AAV serotypes endure harsh clean-in-place (CIP) conditions and are critical for [...] Read more.
Adeno-associated virus (AAV) vectors are the preferred gene delivery tool in gene therapy owing to their safety, long-term gene expression, broad tissue tropism, and low immunogenicity. Affinity ligands that can bind multiple AAV serotypes endure harsh clean-in-place (CIP) conditions and are critical for industrial-scale purification. However, current ligands lack broad serotype recognition and adequate alkaline stability, which limits their reusability in large-scale manufacturing. In this study, we employed a competitive biopanning strategy to isolate a single-domain antibody (VHH) that simultaneously binds AAV2, AAV8, and AAV9. The VHH retained structural integrity and binding activity after exposure to 0.1 M NaOH, demonstrating robust alkaline stability. Structural modeling revealed that the VHH primarily recognizes the DE loop region of the VP3 capsid protein across the three serotypes, explaining its cross-serotype reactivity. Affinity chromatography using the VHH yielded infectious AAV particles, confirming its potential for downstream processing. This strategy provides a versatile platform for developing high-performance AAV affinity ligands and may be extended to other viral vector systems. Full article
(This article belongs to the Section General Virology)
Show Figures

Graphical abstract

17 pages, 2008 KB  
Article
Biochar Surface Chemistry Modification by Blending Hardwood, Softwood, and Refuse-Derived Fuel: Insights from XPS, FTIR, and Zeta Potential Analysis
by Paul C. Ani, Hasan J. Al-Abedi, Joseph D. Smith and Zeyad Zeitoun
Fuels 2025, 6(3), 71; https://doi.org/10.3390/fuels6030071 - 22 Sep 2025
Viewed by 217
Abstract
This study investigates how the inclusion of refuse-derived fuel (RDF) alters the surface chemistry and electrostatic behavior of oak-based biochar. Biochars were produced using downdraft gasification at 850 °C from 100% oak (HW) and a ternary blend comprising 50% oak, 30% pine, and [...] Read more.
This study investigates how the inclusion of refuse-derived fuel (RDF) alters the surface chemistry and electrostatic behavior of oak-based biochar. Biochars were produced using downdraft gasification at 850 °C from 100% oak (HW) and a ternary blend comprising 50% oak, 30% pine, and 20% RDF (HW/SW/RDF). Characterization using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), zeta potential, pH, and electrophoretic mobility was conducted to assess surface functionality and colloidal behavior. The RDF-containing biochar exhibited a 43.3% increase in surface nitrogen content (from 0.24% to 0.90%) and a 6.6% rise in calcium content (from 2.07% to 2.27%) alongside the introduction of chlorine (0.20%) and elevated silicon levels (0.69%) compared to RDF-free counterparts. A concurrent reduction in oxygen-containing functional groups was observed, as O1s decreased from 15.75% in HW to 13.37% in HW/SW/RDF. Electrokinetic measurements revealed a notable decrease in zeta potential magnitude from −31.5 mV in HW to −24.2 mV in HW/SW/RDF, indicating diminished surface charge and colloidal stability. Moreover, the pH declined from 10.25 to 7.76, suggesting a loss of alkalinity and buffering capacity. These compositional and electrostatic shifts demonstrate that RDF inclusion significantly modifies the surface reactivity of biochar, influencing its performance in catalysis, ion exchange, and nutrient retention. The findings underscore the need for tailored post-treatment strategies to enhance the functionality of RDF-modified biochars in environmental applications. Full article
Show Figures

Figure 1

Back to TopTop