Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (852)

Search Parameters:
Keywords = alkyne

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
959 KB  
Article
Brønstead Acid-Catalyzed Regiodivergent Hydroindolation of Indoles: Temperature-Controlled Markovnikov and Anti-Markovnikov Addition
by Asaithampi Ganesan and Yong-Uk Kwon
Int. J. Mol. Sci. 2025, 26(18), 8757; https://doi.org/10.3390/ijms26188757 (registering DOI) - 9 Sep 2025
Abstract
Brønsted acid-catalyzed, regiodivergent hydroindolation of indoles with terminal aryl alkynes was developed, affording bis(indolyl)alkanes in good to excellent yields. Systematic investigations revealed that temperature variation plays a key role in determining the regioselectivity of anti-Markovnikov and Markovnikov addition reactions. The reaction proceeds efficiently [...] Read more.
Brønsted acid-catalyzed, regiodivergent hydroindolation of indoles with terminal aryl alkynes was developed, affording bis(indolyl)alkanes in good to excellent yields. Systematic investigations revealed that temperature variation plays a key role in determining the regioselectivity of anti-Markovnikov and Markovnikov addition reactions. The reaction proceeds efficiently under transition metal-free conditions in an environmentally benign water/alcohol solvent system, using readily available and inexpensive p-toluenesulfonic acid (TsOH) as the catalyst. Control experiments and mechanistic studies support distinct reaction pathways for each regioisomer. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

14 pages, 1440 KB  
Article
Regioselective Pd-Catalyzed Hydroalkynylation of Allenyl-Containing α-Amino Acid Derivatives with Terminal Alkynes
by Alexandra S. Bubnova, Daria V. Vorobyeva, Ivan A. Godovikov, Anna N. Philippova, Pavel S. Gribanov, Evgenia P. Antoshkina and Sergey N. Osipov
Molecules 2025, 30(17), 3623; https://doi.org/10.3390/molecules30173623 - 4 Sep 2025
Viewed by 410
Abstract
An efficient access to the novel representatives of α,α-disubstituted α-amino acids with 1,3-enyne unit located at their side chain has been elaborated. The method is based on Pd(II)-catalyzed hydroalkynylation of α-allenyl-α-dimethylamino esters with terminal acetylenes. The developed strategy is the first example of [...] Read more.
An efficient access to the novel representatives of α,α-disubstituted α-amino acids with 1,3-enyne unit located at their side chain has been elaborated. The method is based on Pd(II)-catalyzed hydroalkynylation of α-allenyl-α-dimethylamino esters with terminal acetylenes. The developed strategy is the first example of the metal-catalyzed allene-alkyne coupling to provide a convenient route to new unsaturated α-amino acid derivatives in good yields and high selectivity. Full article
(This article belongs to the Special Issue Advances in Transition Metal Catalysis for Organic Synthesis)
Show Figures

Graphical abstract

21 pages, 2216 KB  
Article
Microfluidic Assembly of Poly(glutamic acid) Nanogels Through SPAAC Click Chemistry
by Pasquale Mastella and Stefano Luin
Pharmaceutics 2025, 17(9), 1150; https://doi.org/10.3390/pharmaceutics17091150 - 2 Sep 2025
Viewed by 368
Abstract
Background/Objectives: Nanogels (NGs) are promising carriers for drug delivery due to their tunable size, biocompatibility, and capability to encapsulate sensitive molecules. However, conventional batch synthesis often lacks control over key parameters, such as size distribution and encapsulation efficiency. This study aimed to develop [...] Read more.
Background/Objectives: Nanogels (NGs) are promising carriers for drug delivery due to their tunable size, biocompatibility, and capability to encapsulate sensitive molecules. However, conventional batch synthesis often lacks control over key parameters, such as size distribution and encapsulation efficiency. This study aimed to develop a microfluidic platform for the reproducible synthesis of poly(α-glutamic acid) (PGA)-based NGs using strain-promoted azide–alkyne cycloaddition (SPAAC) click chemistry and to investigate the effects of flow parameters on the physicochemical properties of nanogels. Methods: Functionalized PGAs (with azide and DBCO) were co-injected into a microfluidic system within a flux of acetone to form NGs via SPAAC. Flow rate ratios (FRR) and total flow rates were systematically screened at 25 °C, with tests at 50 °C. We evaluated the particle size, polydispersity index (PDI), zeta potential, and encapsulation efficiency (EE%) of doxorubicin-loaded NGs. Results: NGs with tunable sizes ranging from ~50 nm to >170 nm and low PDI (<0.1 in optimal conditions) were obtained. Higher FRR and total flow rates yielded smaller and more uniform NGs. Doxorubicin loading did not affect the nanogel size and uniformity, and in some cases, it improved them. The EE% reached up to ~65%, and ~40% for the best formulations. Elevated temperature improved the characteristics of drug-loaded nanogels at intermediate solvent ratios. Compared to batch synthesis, the microfluidic process offers enhanced reproducibility and size control. Conclusions: Microfluidic SPAAC synthesis enables precise and scalable fabrication of PGA NGs with controllable size and drug loading. This platform supports future integration of on-chip purification and monitoring for clinical nanomedicine applications. Full article
Show Figures

Graphical abstract

30 pages, 6753 KB  
Article
Regioselective Synthesis of 5-Substituted 3-(β-d-Glycopyranosyl)isoxazoles and -isoxazolines by 1,3-Dipolar Cycloaddition as Potential Anticancer Agents and Glycogen Phosphorylase Inhibitors
by Tímea Kaszás, Bence Szakács, Márta Bertalan, Tekla Blága, Faria Hameed, Ákos Lengyel, Samreen Saifi, Éva Juhász-Tóth, Luca A. Varga, Tibor Docsa, Adrienn Sipos, Péter Bai, Anita Ábrahám, Attila Kiss-Szikszai, Sándor Kun, György Attila Kiss, János József, László Juhász and Marietta Tóth
Int. J. Mol. Sci. 2025, 26(17), 8167; https://doi.org/10.3390/ijms26178167 - 22 Aug 2025
Viewed by 486
Abstract
Anhydro-aldose oximes were employed to generate in situ nitrile oxides via a halogenation/base-induced elimination sequence in the presence of NCS and Et3N, which were then used in 1,3-dipolar cycloadditions with alkenes and alkynes to afford 5-substituted 3-(β-d-glycopyranosyl)isoxazole and -isoxazoline [...] Read more.
Anhydro-aldose oximes were employed to generate in situ nitrile oxides via a halogenation/base-induced elimination sequence in the presence of NCS and Et3N, which were then used in 1,3-dipolar cycloadditions with alkenes and alkynes to afford 5-substituted 3-(β-d-glycopyranosyl)isoxazole and -isoxazoline derivatives exclusively. These newly synthesized glycomimetics were evaluated for their potential to act as antagonists of A2780 ovarian cancer cells and as inhibitors of glycogen phosphorylase; however, they exhibited no significant activity. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 5626 KB  
Review
Reactions of Surface-Confined Terminal Alkynes Mediated by Diverse Regulation Strategies
by Yun Wu, Lei Xu, Junxi Li and Chi Zhang
Nanomaterials 2025, 15(16), 1271; https://doi.org/10.3390/nano15161271 - 18 Aug 2025
Viewed by 569
Abstract
Terminal alkynes, characterized by sp-hybridized carbon atoms at the molecular termini, possess high electron density and exceptional chemical reactivity. These properties make them ideal candidates for the synthesis of one-dimensional molecular wires and two-dimensional networks. Advances in nanoscale characterization techniques, such as [...] Read more.
Terminal alkynes, characterized by sp-hybridized carbon atoms at the molecular termini, possess high electron density and exceptional chemical reactivity. These properties make them ideal candidates for the synthesis of one-dimensional molecular wires and two-dimensional networks. Advances in nanoscale characterization techniques, such as scanning tunneling microscopy and atomic force microscopy, have enabled the real-space visualization of molecular assembly and chemical reactions of terminal alkynes and in situ atomic-level manipulations under surface-confined conditions. In addition, through the combination of spectroscopic measurements, physicochemical properties of and information about resulting nanostructures have been achieved. Moreover, density functional theory calculations provide deeper insights into the underlying reaction pathways and mechanisms. From this perspective, this review summarizes recent progress in the assembly and chemical transformations of terminal alkynes on noble metal surfaces. It discusses strategies for structural modulation and reaction selectivity control, including direct incorporation of heteroatoms or functional groups into precursors, the selection of metal surfaces, the introduction of extrinsic components into molecular systems, and atomic-scale manipulations using scanning probes. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

12 pages, 383 KB  
Article
Synthesis and Biological Activity of Novel Polyazaheterocyclic Derivatives of Quinine
by Gulim K. Mukusheva, Nurizat N. Toigambekova, Roza B. Seidakhmetova, Roza I. Jalmakhanbetova, Mukhlissa N. Babakhanova, Oralgazy A. Nurkenov, Ekaterina A. Akishina, Evgenij A. Dikusar, Irina A. Kolesnik, Hongwei Zhou and Vladimir I. Potkin
Molecules 2025, 30(15), 3301; https://doi.org/10.3390/molecules30153301 - 7 Aug 2025
Viewed by 473
Abstract
A synthetic methodology of the CuAAC “click” approach was exploited for the construction of 1,2-azolyltriazole quinine derivatives by the reaction of O-propargylquinine with azidomethyl-1,2-azoles in methanol. Quinine–piperidine and quinine–anabasine conjugates were obtained using a chloroacetate linker by reacting quinine chloroacetate with piperidine or [...] Read more.
A synthetic methodology of the CuAAC “click” approach was exploited for the construction of 1,2-azolyltriazole quinine derivatives by the reaction of O-propargylquinine with azidomethyl-1,2-azoles in methanol. Quinine–piperidine and quinine–anabasine conjugates were obtained using a chloroacetate linker by reacting quinine chloroacetate with piperidine or anabasine in a diethyl ether medium. Cinchophene ester was obtained by the acylation of quinine with cinchophen acid chloride in methylene chloride. The antibacterial, fungicidal, analgesic and cytotoxic properties of the obtained compounds were examined. Full article
Show Figures

Graphical abstract

14 pages, 3747 KB  
Article
Biocontrol Activity of Volatile Organic Compounds Emitted from Bacillus paralicheniformis 2-12 Against Fusarium oxysporum Associated with Astragalus membranaceus Root Rot
by Yan Wang, Jiaqi Yuan, Rui Zhao, Shengnan Yuan, Yaxin Su, Wenhui Jiao, Xinyu Huo, Meiqin Wang, Weixin Fan and Chunwei Wang
Microorganisms 2025, 13(8), 1782; https://doi.org/10.3390/microorganisms13081782 - 31 Jul 2025
Viewed by 484
Abstract
Root rot, mainly caused by Fusarium oxysporum, is one of the most destructive diseases and leads to significant economic loss of Astragalus membranaceus. To develop an effective strategy for the management of this serious disease, a bacterial strain 2-12 was screened [...] Read more.
Root rot, mainly caused by Fusarium oxysporum, is one of the most destructive diseases and leads to significant economic loss of Astragalus membranaceus. To develop an effective strategy for the management of this serious disease, a bacterial strain 2-12 was screened from A. membranaceus rhizosphere soil and identified as Bacillus paralicheniformis based on the phylogenetic analyses of gyrase subunit B gene (gyrB) and RNA polymerase gene (rpoB) sequences. Interestingly, the volatile organic compounds (VOCs) produced by B. paralicheniformis 2-12 exhibited potent antifungal activities against F. oxysporum, as well as fifteen other plant pathogens. Under scanning electron microscopy observation, hyphae treated with the VOCs exhibited abnormal variation such as distortion, twist, and vesiculation, leading to distinctive protoplasm shrinkage. After treatment with B. paralicheniformis 2-12 VOCs, the lesion diameter and disease incidence both reduced significantly compared to control (p < 0.05), thus demonstrating prominent biological efficiency. Moreover, B. paralicheniformis 2-12 VOCs were composed of 17 VOCs, including 9 alkanes, 3 alcohols, 3 acids and esters, 1 aromatic compound, and 1 alkyne compound. A total of 1945 DEGs, including 1001 up-regulated and 944 down-regulated genes, were screened via transcriptome analysis. These DEGs were mainly associated with membranes and membrane parts, amino acid metabolism, and lipid metabolism. The findings in this work strongly suggested that B. paralicheniformis 2-12 VOCs could be applied as a new candidate for the control of A. membranaceus root rot. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

18 pages, 6300 KB  
Article
Clove as a Versatile Resource: CuO Nanoparticles and Their Catalytic Role in Eugenol-Based Triazole Synthesis
by Sarra Zouaoui, Brahim Djemoui, Miloud Mohamed Mazari, Margherita Miele, Vittorio Pace, Haroun Houicha, Sérine Madji, Choukry Kamel Bendeddouche, Mehdi Adjdir and Seif El Islam Lebouachera
Processes 2025, 13(8), 2378; https://doi.org/10.3390/pr13082378 - 26 Jul 2025
Viewed by 621
Abstract
As eco-friendly processes become central to modern organic synthesis, plant-based materials are emerging as attractive alternatives for both nanoparticle fabrication and catalysis. In this study, we explore the use of clove extract, a natural and renewable resource, for the green synthesis of copper [...] Read more.
As eco-friendly processes become central to modern organic synthesis, plant-based materials are emerging as attractive alternatives for both nanoparticle fabrication and catalysis. In this study, we explore the use of clove extract, a natural and renewable resource, for the green synthesis of copper oxide (CuO) nanoparticles and their subsequent application in organic transformations. Clove extract was employed to reduce copper chloride via a simple co-precipitation method under mild conditions, yielding CuO nanoparticles characterized by XRD, FTIR, and SEM-EDX techniques. These nanoparticles were then used as catalysts in the copper-catalyzed azide–alkyne cycloaddition (CuAAC) to afford eugenol-based 1,2,3-triazoles in excellent yields. This dual use of clove extract exemplifies a sustainable approach that merges natural product valorization with efficient catalysis for triazole synthesis. Full article
Show Figures

Figure 1

18 pages, 1829 KB  
Article
The Red Shift in Estrogen Research: An Estrogen-Receptor Targeted aza-BODIPY–Estradiol Fluorescent Conjugate
by Tamás Hlogyik, Noémi Bózsity, Rita Börzsei, Benjámin Kovács, Péter Labos, Csaba Hetényi, Mónika Kiricsi, Ildikó Huliák, Zoltán Kele, Miklós Poór, János Erostyák, Attila Hunyadi, István Zupkó and Erzsébet Mernyák
Int. J. Mol. Sci. 2025, 26(15), 7075; https://doi.org/10.3390/ijms26157075 - 23 Jul 2025
Viewed by 548
Abstract
Estradiol (E2) plays an important role in cell proliferation and certain brain functions. To reveal its mechanism of action, its detectability is essential. Only a few fluorescent-labeled hormonally active E2s exist in the literature, and their mechanism of action usually remains unclear. It [...] Read more.
Estradiol (E2) plays an important role in cell proliferation and certain brain functions. To reveal its mechanism of action, its detectability is essential. Only a few fluorescent-labeled hormonally active E2s exist in the literature, and their mechanism of action usually remains unclear. It would be of particular interest to develop novel labeled estradiol derivatives with retained biological activity and improved optical properties. Due to their superior optical characteristics, aza-BODIPY dyes are frequently used labeling agents in biomedical applications. E2 was labeled with the aza-BODIPY dye at its phenolic hydroxy function via an alkyl linker and a triazole coupling moiety. The estrogenic activity of the newly synthesized fluorescent conjugate was evaluated via transcriptional luciferase assay. Docking calculations were performed for the classical and alternative binding sites (CBS and ABS) of human estrogen receptor α. The terminal alkyne function was introduced into the tetraphenyl aza-BODIPY core via selective formylation, oxidation, and subsequent amidation with propargyl amine. The conjugation was achieved via Cu(I)-catalyzed azide–alkyne click reaction of the aza-BODIPY-alkyne with the 3-O-(4-azidobut-1-yl) derivative of E2. The labeled estrogen induced a dose-dependent transcriptional activity of human estrogen receptor α with a submicromolar EC50 value. Docking calculations revealed that the steroid part has a perfect overlap with E2 in ABS. In CBS, however, a head-tail binding deviation was observed. A facile, fluorescent labeling methodology has been elaborated for the development of a novel red-emitting E2 conjugate with substantial estrogenic activity. Docking experiments uncovered the binding mode of the conjugate in both ABS and CBS. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

14 pages, 1069 KB  
Article
Pd/Ligand-Free Synthesis of 2-Alkynylated Pyrano[4,3-d]imidazol-4-ones via One-Pot Cu-Mediated Tandem Sonogashira Coupling/Regioselective 6-endo-dig Oxacyclization Reaction
by Abir Ayachi, Abdellatif Tikad, Vincent Lazeran, Hassan Allouchi, Marc Bletry, Rafâa Besbes, Mohamed Abarbri and Badr Jismy
Molecules 2025, 30(14), 3045; https://doi.org/10.3390/molecules30143045 - 21 Jul 2025
Viewed by 518
Abstract
Herein, we report a one-pot palladium- and ligand-free tandem Sonogashira coupling/regioselective 6-endo-dig oxacyclization reaction of 2,4-diiodo-1-methyl-imidazole-5-carboxylic acid with terminal alkynes mediated by Copper(I). This impressive approach offers a straightforward, practical, and efficient tandem procedure for accessing 2-alkynylated pyrano[4,3-d]imidazol-4-one [...] Read more.
Herein, we report a one-pot palladium- and ligand-free tandem Sonogashira coupling/regioselective 6-endo-dig oxacyclization reaction of 2,4-diiodo-1-methyl-imidazole-5-carboxylic acid with terminal alkynes mediated by Copper(I). This impressive approach offers a straightforward, practical, and efficient tandem procedure for accessing 2-alkynylated pyrano[4,3-d]imidazol-4-one in moderate to good yields with an exclusive 6-endo-dig oxacyclization. Notably, this cost-effective methodology demonstrates broad substrate compatibility with various commercially available aliphatic and (hetero)aromatic terminal alkynes. Furthermore, DFT studies were performed to elucidate the origin of this regioselective 6-endo-dig oxacyclization reaction. Full article
Show Figures

Graphical abstract

18 pages, 2171 KB  
Review
Mechanochemical and Transition-Metal-Catalyzed Reactions of Alkynes
by Lifen Peng, Zhiling Zou, Ting Wang, Xirong Liu, Hui Li, Zhiwen Yuan, Chunling Zeng, Xinhua Xu, Zilong Tang and Guofang Jiang
Catalysts 2025, 15(7), 690; https://doi.org/10.3390/catal15070690 - 17 Jul 2025
Viewed by 1133
Abstract
Mechanochemical and transition-metal-catalyzed reactions of alkynes, exhibiting significant advantages like short reaction time, solvent-free, high yield and good selectivity, were considered to be green and sustainable pathways to access functionalized molecules and obtained increasing attention due to the superiorities of mechanochemical processes and [...] Read more.
Mechanochemical and transition-metal-catalyzed reactions of alkynes, exhibiting significant advantages like short reaction time, solvent-free, high yield and good selectivity, were considered to be green and sustainable pathways to access functionalized molecules and obtained increasing attention due to the superiorities of mechanochemical processes and the reactivities of alkynes. The ball milling and CuI-catalyzed Sonogashira coupling of alkyne and aryl iodide avoided the use of common palladium catalysts. The mechanochemical Rh(III)- and Au(I)-catalyzed C–H alkynylations of indoles formed the 2-alkynylated and 3-alkynylated indoles selectively. The mechanochemical and copper-catalyzed azide-alkyne cycloaddition (CuAAC) between alkynes and azides were developed to synthesize 1,2,3-triazoles. Isoxazole could be formed through ball-milling-enabled and Ru-promoted cycloaddition of alkyne and hydroxyimidel chloride. In this review, the generation of mechanochemical and transition-metal-catalyzed reactions of alkynes was highlighted. Firstly, the superiority and application of transition-metal-catalyzed reactions of alkynes were briefly introduced. After presenting the usefulness of green chemistry and mechanochemical reactions, mechanochemical and transition-metal-catalyzed reactions of alkynes were classified and demonstrated in detail. Based on different kinds of reactions of alkynes, mechanochemical and transition-metal-catalyzed coupling, cycloaddition and alkenylation reactions were summarized and the proposed reaction mechanisms were disclosed if available. Full article
(This article belongs to the Special Issue Advances in Transition Metal Catalysis, 2nd Edition)
Show Figures

Scheme 1

17 pages, 1827 KB  
Article
Synthesis of Substituted 1,4-Benzodiazepines by Palladium-Catalyzed Cyclization of N-Tosyl-Disubstituted 2-Aminobenzylamines with Propargylic Carbonates
by Masahiro Yoshida, Saya Okubo, Akira Kurosaka, Shunya Mori, Touya Kariya and Kenji Matsumoto
Molecules 2025, 30(14), 3004; https://doi.org/10.3390/molecules30143004 - 17 Jul 2025
Viewed by 947
Abstract
A synthesis of substituted 1,4-benzodiazepines has been developed via palladium-catalyzed cyclization of N-tosyl-disubstituted 2-aminobenzylamines with propargylic carbonates. The reaction proceeds through the formation of π-allylpalladium intermediates, which undergo intramolecular nucleophilic attack by the amide nitrogen to afford seven-membered benzodiazepine cores. In reactions [...] Read more.
A synthesis of substituted 1,4-benzodiazepines has been developed via palladium-catalyzed cyclization of N-tosyl-disubstituted 2-aminobenzylamines with propargylic carbonates. The reaction proceeds through the formation of π-allylpalladium intermediates, which undergo intramolecular nucleophilic attack by the amide nitrogen to afford seven-membered benzodiazepine cores. In reactions involving unsymmetrical diaryl-substituted carbonates, regioselectivity was observed to favor nucleophilic attack at the alkyne terminus substituted with the more electron-rich aryl group, suggesting that electronic effects play a key role in determining product distribution. The versatility of this reaction was further demonstrated by constructing a benzodiazepine framework found in bioactive molecules, indicating its potential utility in medicinal chemistry. Mechanistic insights supported by stereochemical outcomes and X-ray crystallographic analysis of key intermediates reinforce the proposed reaction pathway. This palladium-catalyzed protocol thus offers an efficient and practical approach to access structurally diverse benzodiazepine derivatives. Full article
(This article belongs to the Special Issue Advances in Heterocyclic Synthesis, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 1414 KB  
Article
Metal-Free A2/B2-Type Azide–Alkyne Polyaddition: Effect of Azides Structure on Their Reactivity and Properties of Polymerization Products
by Andrey Galukhin, Roman Aleshin, Alexander Gerasimov, Alexander Klimovitskii, Roman Nosov, Liana Zubaidullina and Sergey Vyazovkin
Polymers 2025, 17(14), 1909; https://doi.org/10.3390/polym17141909 - 10 Jul 2025
Viewed by 431
Abstract
Non-isothermal calorimetry is performed to study the kinetics of metal-free A2/B2-type azide–alkyne polyaddition between the dipropargyl ether of bisphenol A with different organic diazides. The diazide structure is varied to probe the effect of the nature of a hydrocarbon [...] Read more.
Non-isothermal calorimetry is performed to study the kinetics of metal-free A2/B2-type azide–alkyne polyaddition between the dipropargyl ether of bisphenol A with different organic diazides. The diazide structure is varied to probe the effect of the nature of a hydrocarbon spacer between the azide groups on their reactivity. Isoconversional analysis demonstrates that the polymerization processes are characterized by the same activation energy of 84 kJ mol−1 for all studied diazides. It is found that diazides with aromatic spacers demonstrate ~1.6 times higher reactivity than that of diazides with the alkyl spacer. The difference in the reactivity is explained by the difference in the electronic effects of the hydrocarbon spacers on the azide groups as well as by the difference in their steric availability. The veracity of the obtained kinetic parameters is validated by a polymerization test at the time–temperature conditions predicted from the obtained kinetic data followed by independent assessment of the monomer conversion using FTIR. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

23 pages, 1189 KB  
Article
Hyaluronic Acid-Graft-Poly(L-Lysine): Synthesis and Evaluation as a Gene Delivery System
by Viktor Korzhikov-Vlakh, Polina Teterina, Nina Gubina, Apollinariia Dzhuzha, Tatiana Tennikova and Evgenia Korzhikova-Vlakh
Polysaccharides 2025, 6(3), 60; https://doi.org/10.3390/polysaccharides6030060 - 5 Jul 2025
Viewed by 889
Abstract
The synthesis of novel biodegradable polymers as non-viral vectors remains one of the challenging tasks in the field of gene delivery. In this study, the synthesis of the polysaccharide-g-polypeptide copolymers, namely, hyaluronic acid-g-polylysine (HA-g-PLys), using a copper-free [...] Read more.
The synthesis of novel biodegradable polymers as non-viral vectors remains one of the challenging tasks in the field of gene delivery. In this study, the synthesis of the polysaccharide-g-polypeptide copolymers, namely, hyaluronic acid-g-polylysine (HA-g-PLys), using a copper-free strain-promoted azide-alkyne cycloaddition reaction was proposed. For this purpose, hyaluronic acid was modified with dibenzocyclooctyne moieties, and poly-L-lysine with a terminal azido group was obtained using ring-opening polymerization of N-carboxyanhydride of the corresponding protected amino acid, initiated with the amino group azido-PEG3-amine. Two HA-g-PLys samples with different degrees of grafting were synthesized, and the structures of all modified and synthesized polymers were confirmed using 1H NMR and FTIR spectroscopy. The HA-g-PLys samples obtained were able to form nanoparticles in aqueous media due to self-assembly driven by electrostatic interactions. The binding of DNA and model siRNA by copolymers to form polyplexes was analyzed using ethidium bromide, agarose gel electrophoresis, and SybrGreen I assays. The hydrodynamic diameter of polyplexes was ˂300 nm (polydispersity index, PDI ˂ 0.3). The release of a model fluorescently-labeled oligonucleotide in the complex biological medium was significantly higher in the case of HA-g-PLys as compared to that in the case of PLys-based polyplexes. In addition, the cytotoxicity in normal and cancer cells, as well as the ability of HA-g-PLys to facilitate intracellular delivery of anti-GFP siRNA to NIH-3T3/GFP+ cells, were evaluated. Full article
Show Figures

Figure 1

20 pages, 2332 KB  
Article
Photophysical Properties and Protein Binding Studies of Piperazine-Substituted Anthracene-BODIPY Dyads for Antimicrobial Photodynamic Therapy
by Stephen O’Sullivan, Leila Tabrizi, Kaja Turzańska, Ian P. Clark, Deirdre Fitzgerald-Hughes and Mary T. Pryce
Molecules 2025, 30(13), 2727; https://doi.org/10.3390/molecules30132727 - 25 Jun 2025
Viewed by 951
Abstract
This work presents the synthesis, characterisation, photophysical properties, time-resolved spectroscopic behaviour, and biological evaluation of two structurally distinct heavy-atom-free BODIPY-anthracene dyads (BDP-1) and the newly designed 2,6-bis[1-(tert-butyl) 4-(prop-2-yn-1-yl) piperazine-1,4-dicarboxylate] BODIPY-anthracene (BDP-2), incorporating 2,6-alkynyl-piperazine substituents for potential application in antimicrobial [...] Read more.
This work presents the synthesis, characterisation, photophysical properties, time-resolved spectroscopic behaviour, and biological evaluation of two structurally distinct heavy-atom-free BODIPY-anthracene dyads (BDP-1) and the newly designed 2,6-bis[1-(tert-butyl) 4-(prop-2-yn-1-yl) piperazine-1,4-dicarboxylate] BODIPY-anthracene (BDP-2), incorporating 2,6-alkynyl-piperazine substituents for potential application in antimicrobial photodynamic therapy. BDP-1 exhibits absorption and emission maxima at 507 nm and 516 nm, respectively, with a Stokes shift of 344 cm−1 in dichloromethane (DCM), characteristic of unsubstituted BODIPYs. In contrast, BDP-2 undergoes a red-shift in the absorption maximum to 552 nm (Stokes shift of 633 cm−1), which is attributed to the extended conjugation from the introduction of the alkyne groups. Time-resolved infrared spectroscopy confirmed efficient spin-orbit charge transfer intersystem crossing, and nanosecond transient absorption studies confirmed the formation of a long-lived triplet state for BDP-2 (up to 138 µs in MeCN). A binding constant (Kb) of 9.6 × 104 M−1 was obtained for BDP-2 when titrated with bovine serum albumin (BSA), which is higher than comparable BODIPY derivatives. BDP-2 displayed improved hemocompatibility compared to BDP-1 (<5% haemolysis of human erythrocytes up to 200 μg·mL−1). Antimicrobial activity of BDP-1 and BDP-2 was most potent when irradiated at 370 nm compared to the other wavelengths employed. However, BDP-2 did not retain the potent (6 log) and rapid (within 15 min) eradication of Staphylococcus aureus achieved by BDP-1 under irradiation at 370 nm. These findings demonstrate the rational design of BDP-2 as a biocompatible, and heavy-atom-free BODIPY offering promise for targeted antimicrobial photodynamic therapeutic applications. Full article
(This article belongs to the Special Issue BODIPYs: State of the Art and Future Perspectives)
Show Figures

Graphical abstract

Back to TopTop