Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = amoebae viruses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6620 KB  
Review
Encystment and Excystment Processes in Acanthamoeba castellanii: An Emphasis on Cellulose Involvement
by Mathew Choaji, Ascel Samba-Louaka, Zineb Fechtali-Moute, Willy Aucher and Sébastien Pomel
Pathogens 2025, 14(3), 268; https://doi.org/10.3390/pathogens14030268 - 10 Mar 2025
Cited by 1 | Viewed by 2608
Abstract
The free-living amoeba Acanthamoeba castellanii is a unicellular eukaryote distributed in a wide range of soil or aquatic environments, either natural or human-made, such as rivers, lakes, drinking water, or swimming pools. Besides its capacity to transport potential pathogens, such as bacteria or [...] Read more.
The free-living amoeba Acanthamoeba castellanii is a unicellular eukaryote distributed in a wide range of soil or aquatic environments, either natural or human-made, such as rivers, lakes, drinking water, or swimming pools. Besides its capacity to transport potential pathogens, such as bacteria or viruses, Acanthamoeba spp. can have intrinsic pathogenic properties by causing severe infections at the ocular and cerebral level, named granulomatous amoebic encephalitis and amoebic keratitis, respectively. During its life cycle, A. castellanii alternates between a vegetative and mobile form, named the trophozoite, and a resistant, latent, and non-mobile form, named the cyst. The cyst wall of Acanthamoeba is double-layered, with an inner endocyst and an outer ectocyst, and is mainly composed of cellulose and proteins. The resistance of cysts to many environmental stresses and disinfection treatments has been assigned to the presence of cellulose. The current review aims to present the importance of this glycopolymer in Acanthamoeba cysts and to further report the pathways involved in encystment and excystment. Full article
(This article belongs to the Special Issue Acanthamoeba Infections)
Show Figures

Figure 1

23 pages, 5107 KB  
Article
Investigations into the Diversity and Distribution of tRNA and Phylogenetics of Translation Factors in Amoebozoa-Infecting Nucleocytoviricota
by Thaís I. R. Moreira, João Victor R. P. Carvalho, Clécio A. C. Filho, Júlia W. Souza, Bruna L. de Azevedo, Jônatas S. Abrahão and Rodrigo A. L. Rodrigues
Viruses 2025, 17(3), 328; https://doi.org/10.3390/v17030328 - 27 Feb 2025
Viewed by 833
Abstract
Translation is a sine qua non process for life as we know it. Translation factors (TFs) and tRNAs are rare among viruses but are commonly found in giant viruses of the class Megaviricetes. In this study, we explored the diversity and distribution [...] Read more.
Translation is a sine qua non process for life as we know it. Translation factors (TFs) and tRNAs are rare among viruses but are commonly found in giant viruses of the class Megaviricetes. In this study, we explored the diversity and distribution of tRNAs in giant viruses that were isolated and replicated in amoebae (phylum Amoebozoa), and investigated the evolutionary history of TFs to gain insights into their origins in these viruses. We analyzed the genomes of 77 isolated giant viruses, 52 of which contained at least 1 tRNA. In most of these viruses, tRNA sequences are dispersed throughout the genome, except in Tupanviruses and Yasmineviruses, where most tRNAs are clustered in specific genomic islands. The tRNAs in giant viruses often contain introns, with 73.1% of the genomes exhibiting at least one intronic region in these genes. Codon usage bias (CUB) analysis of various giant viruses revealed at least two distinct patterns of codon preferences among closely related viruses. We did not observe a clear correlation between the presence of tRNAs and CUB in giant viruses. Due to the limited size of these genes, we could not confidently investigate their phylogenetic relationships. However, phylogenetic analysis of TFs found in giant viruses often position these viruses as sister groups or embedded between different eukaryotic taxa with high statistical support. Overall, our findings reinforce the complexity of key components of the translation apparatus in different members of Nucleocytoviricota isolated from different regions of Earth. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

13 pages, 565 KB  
Article
A Virome and Proteomic Analysis of Placental Microbiota in Pregnancies with and without Fetal Growth Restriction
by Aleksandra Stupak, Maciej Kwiatek, Tomasz Gęca, Anna Kwaśniewska, Radosław Mlak, Robert Nawrot, Anna Goździcka-Józefiak and Wojciech Kwaśniewski
Cells 2024, 13(21), 1753; https://doi.org/10.3390/cells13211753 - 23 Oct 2024
Cited by 1 | Viewed by 2005
Abstract
Introduction: Metagenomic research has allowed the identification of numerous viruses present in the human body. Viruses may significantly increase the likelihood of developing intrauterine fetal growth restriction (FGR). The goal of this study was to examine and compare the virome of normal and [...] Read more.
Introduction: Metagenomic research has allowed the identification of numerous viruses present in the human body. Viruses may significantly increase the likelihood of developing intrauterine fetal growth restriction (FGR). The goal of this study was to examine and compare the virome of normal and FGR placentas using proteomic techniques. Methods: The study group of 18 women with late FGR was compared with 18 control patients with physiological pregnancy and eutrophic fetus. Proteins from the collected afterbirth placentas were isolated and examined using liquid chromatography linked to a mass spectrometer. Results: In this study, a group of 107 viral proteins were detected compared to 346 in the controls. In total, 41 proteins were common in both groups. In total, 64 proteins occurred only in the study group and indicated the presence of bacterial phages: E. coli, Bacillus, Mediterranenean, Edwardsiella, Propionibacterium, Salmonella, Paenibaciilus and amoebae Mimiviridae, Acanthamoeba polyphaga, Mimivivirus, Pandoravirdae, Miroviridae, Pepper plant virus golden mosaic virus, pol proteins of HIV-1 virus, and proteins of Pandoravirdae, Microviridae, and heat shock proteins of the virus Faustoviridae. Out of 297 proteins found only in the control group, only 2 viral proteins occurred statistically significantly more frequently: 1/hypothetical protein [uncultured Mediterranean phage uvMED] and VP4 [Gokushovirus WZ-2015a]. Discussion: The detection of certain viral proteins exclusively in the control group suggests that they may play a protective role. Likewise, the proteins identified only in the study group could indicate a potentially pathogenic function. A virome study may be used to identify an early infection, evaluate its progress, and possible association with fetal growth restriction. Utilizing this technology, an individualized patient therapy is forthcoming, e.g., vaccines. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms in Reproductive System Diseases)
Show Figures

Figure 1

44 pages, 1993 KB  
Review
Bacillus licheniformis: A Producer of Antimicrobial Substances, including Antimycobacterials, Which Are Feasible for Medical Applications
by Margarita O. Shleeva, Daria A. Kondratieva and Arseny S. Kaprelyants
Pharmaceutics 2023, 15(7), 1893; https://doi.org/10.3390/pharmaceutics15071893 - 5 Jul 2023
Cited by 43 | Viewed by 9044
Abstract
Bacillus licheniformis produces several classes of antimicrobial substances, including bacteriocins, which are peptides or proteins with different structural composition and molecular mass: ribosomally synthesized by bacteria (1.4–20 kDa), non-ribosomally synthesized peptides and cyclic lipopeptides (0.8–42 kDa) and exopolysaccharides (>1000 kDa). Different bacteriocins act [...] Read more.
Bacillus licheniformis produces several classes of antimicrobial substances, including bacteriocins, which are peptides or proteins with different structural composition and molecular mass: ribosomally synthesized by bacteria (1.4–20 kDa), non-ribosomally synthesized peptides and cyclic lipopeptides (0.8–42 kDa) and exopolysaccharides (>1000 kDa). Different bacteriocins act against Gram-positive or Gram-negative bacteria, fungal pathogens and amoeba cells. The main mechanisms of bacteriocin lytic activity include interaction of peptides with membranes of target cells resulting in structural alterations, pore-forming, and inhibition of cell wall biosynthesis. DNase and RNase activity for some bacteriocines are also postulated. Non-ribosomal peptides are synthesized by special non-ribosomal multimodular peptide synthetases and contain unnatural amino acids or fatty acids. Their harmful effect is due to their ability to form pores in biological membranes, destabilize lipid packaging, and disrupt the peptidoglycan layer. Lipopeptides, as biosurfactants, are able to destroy bacterial biofilms. Secreted polysaccharides are high molecular weight compounds, composed of repeated units of sugar moieties attached to a carrier lipid. Their antagonistic action was revealed in relation to bacteria, viruses, and fungi. Exopolysaccharides also inhibit the formation of biofilms by pathogenic bacteria and prevent their colonization on various surfaces. However, mechanism of the harmful effect for many secreted antibacterial substances remains unknown. The antimicrobial activity for most substances has been studied in vitro only, but some substances have been characterized in vivo and they have found practical applications in medicine and veterinary. The cyclic lipopeptides that have surfactant properties are used in some industries. In this review, special attention is paid to the antimycobacterials produced by B. licheniformis as a possible approach to combat multidrug-resistant and latent tuberculosis. In particular, licheniformins and bacitracins have shown strong antimycobacterial activity. However, the medical application of some antibacterials with promising in vitro antimycobacterial activity has been limited by their toxicity to animals and humans. As such, similar to the enhancement in the antimycobacterial activity of natural bacteriocins achieved using genetic engineering, the reduction in toxicity using the same approach appears feasible. The unique capability of B. licheniformis to synthesize and produce a range of different antibacterial compounds means that this organism can act as a natural universal vehicle for antibiotic substances in the form of probiotic cultures and strains to combat various types of pathogens, including mycobacteria. Full article
Show Figures

Figure 1

17 pages, 4930 KB  
Article
Omics of an Enigmatic Marine Amoeba Uncovers Unprecedented Gene Trafficking from Giant Viruses and Provides Insights into Its Complex Life Cycle
by Yonas I. Tekle, Hanh Tran, Fang Wang, Mandakini Singla and Isimeme Udu
Microbiol. Res. 2023, 14(2), 656-672; https://doi.org/10.3390/microbiolres14020047 - 18 May 2023
Cited by 2 | Viewed by 3216
Abstract
Amoebozoa include lineages of diverse ecology, behavior, and morphology. They are assumed to encompass members with the largest genome sizes of all living things, yet genomic studies in the group are limited. Trichosphaerium, a polymorphic, multinucleate, marine amoeba with a complicated life [...] Read more.
Amoebozoa include lineages of diverse ecology, behavior, and morphology. They are assumed to encompass members with the largest genome sizes of all living things, yet genomic studies in the group are limited. Trichosphaerium, a polymorphic, multinucleate, marine amoeba with a complicated life cycle, has puzzled experts for over a century. In an effort to explore the genomic diversity and investigate extraordinary behavior observed among the Amoebozoa, we used integrated omics approaches to study this enigmatic marine amoeba. Omics data, including single-cell transcriptomics and cytological data, demonstrate that Trichosphaerium sp. possesses the complete meiosis toolkit genes. These genes are expressed in life stages of the amoeba including medium and large cells. The life cycle of Trichosphaerium sp. involves asexual processes via binary fission and multiple fragmentation of giant cells, as well as sexual-like processes involving genes implicated in sexual reproduction and polyploidization. These findings are in stark contrast to a life cycle previously reported for this amoeba. Despite the extreme morphological plasticity observed in Trichosphaerium, our genomic data showed that populations maintain a species-level intragenomic variation. A draft genome of Trichosphaerium indicates elevated lateral gene transfer (LGT) from bacteria and giant viruses. Gene trafficking in Trichosphaerium is the highest within Amoebozoa and among the highest in microbial eukaryotes. Full article
Show Figures

Figure 1

14 pages, 4682 KB  
Review
Asfarviruses and Closely Related Giant Viruses
by Sihem Hannat, Bernard La Scola, Julien Andreani and Sarah Aherfi
Viruses 2023, 15(4), 1015; https://doi.org/10.3390/v15041015 - 20 Apr 2023
Cited by 4 | Viewed by 3393
Abstract
Acanthamoeba polyphaga mimivirus, so called because of its “mimicking microbe”, was discovered in 2003 and was the founding member of the first family of giant viruses isolated from amoeba. These giant viruses, present in various environments, have opened up a previously unexplored [...] Read more.
Acanthamoeba polyphaga mimivirus, so called because of its “mimicking microbe”, was discovered in 2003 and was the founding member of the first family of giant viruses isolated from amoeba. These giant viruses, present in various environments, have opened up a previously unexplored field of virology. Since 2003, many other giant viruses have been isolated, founding new families and taxonomical groups. These include a new giant virus which was isolated in 2015, the result of the first co-culture on Vermamoeba vermiformis. This new giant virus was named “Faustovirus”. Its closest known relative at that time was African Swine Fever Virus. Pacmanvirus and Kaumoebavirus were subsequently discovered, exhibiting phylogenetic clustering with the two previous viruses and forming a new group with a putative common ancestor. In this study, we aimed to summarise the main features of the members of this group of giant viruses, including Abalone Asfarvirus, African Swine Fever Virus, Faustovirus, Pacmanvirus, and Kaumoebavirus. Full article
Show Figures

Figure 1

11 pages, 599 KB  
Perspective
Can Acanthamoeba Harbor Monkeypox Virus?
by Ruqaiyyah Siddiqui, Jibran Sualeh Muhammad, Ahmad M. Alharbi, Hasan Alfahemi and Naveed Ahmed Khan
Microorganisms 2023, 11(4), 855; https://doi.org/10.3390/microorganisms11040855 - 27 Mar 2023
Cited by 1 | Viewed by 2877
Abstract
Acanthamoeba is well known to host a variety of microorganisms such as viruses, bacteria, protozoa, and yeast. Given the recent number of cases of monkeypox infection, we speculate that amoebae may be aiding viral transmission to the susceptible hosts. Although there is no [...] Read more.
Acanthamoeba is well known to host a variety of microorganisms such as viruses, bacteria, protozoa, and yeast. Given the recent number of cases of monkeypox infection, we speculate that amoebae may be aiding viral transmission to the susceptible hosts. Although there is no confirmatory evidence to suggest that Acanthamoeba is a host to monkeypox (a double-stranded DNA virus), the recent discovery of mimivirus (another double-stranded DNA virus) from Acanthamoeba, suggests that amoebae may shelter monkeypox virus. Furthermore, given the possible spread of monkeypox virus from animals to humans during an earlier outbreak, which came about after patients came in contact with prairie dogs, it is likely that animals may also act as mixing vessel between ubiquitously distributed Acanthamoeba and monkeypox virus, in addition to the environmental habitat that acts as an interface in complex interactions between diverse microorganisms and the host. Full article
(This article belongs to the Special Issue Monkeypox—Current Knowledge and Future Perspectives)
Show Figures

Figure 1

21 pages, 2131 KB  
Review
Giant Viruses as a Source of Novel Enzymes for Biotechnological Application
by Ellen Gonçalves de Oliveira, João Victor Rodrigues Pessoa Carvalho, Bruna Barbosa Botelho, Clécio Alonso da Costa Filho, Lethícia Ribeiro Henriques, Bruna Luiza de Azevedo and Rodrigo Araújo Lima Rodrigues
Pathogens 2022, 11(12), 1453; https://doi.org/10.3390/pathogens11121453 - 1 Dec 2022
Cited by 6 | Viewed by 3891
Abstract
The global demand for industrial enzymes has been increasing in recent years, and the search for new sources of these biological products is intense, especially in microorganisms. Most known viruses have limited genetic machinery and, thus, have been overlooked by the enzyme industry [...] Read more.
The global demand for industrial enzymes has been increasing in recent years, and the search for new sources of these biological products is intense, especially in microorganisms. Most known viruses have limited genetic machinery and, thus, have been overlooked by the enzyme industry for years. However, a peculiar group of viruses breaks this paradigm. Giant viruses of the phylum Nucleocytoviricota infect protists (i.e., algae and amoebae) and have complex genomes, reaching up to 2.7 Mb in length and encoding hundreds of genes. Different giant viruses have robust metabolic machinery, especially those in the Phycodnaviridae and Mimiviridae families. In this review, we present some peculiarities of giant viruses that infect protists and discuss why they should be seen as an outstanding source of new enzymes. We revisited the genomes of representatives of different groups of giant viruses and put together information about their enzymatic machinery, highlighting several genes to be explored in biotechnology involved in carbohydrate metabolism, DNA replication, and RNA processing, among others. Finally, we present additional evidence based on structural biology using chitinase as a model to reinforce the role of giant viruses as a source of novel enzymes for biotechnological application. Full article
(This article belongs to the Special Issue Viruses of Microbes: From Basics to Biotechnological Application)
Show Figures

Figure 1

16 pages, 2868 KB  
Review
Nucleosome Structures Built from Highly Divergent Histones: Parasites and Giant DNA Viruses
by Shoko Sato, Mariko Dacher and Hitoshi Kurumizaka
Epigenomes 2022, 6(3), 22; https://doi.org/10.3390/epigenomes6030022 - 2 Aug 2022
Cited by 10 | Viewed by 5420
Abstract
In eukaryotes, genomic DNA is bound with histone proteins and packaged into chromatin. The nucleosome, a fundamental unit of chromatin, regulates the accessibility of DNA to enzymes involved in gene regulation. During the past few years, structural analyses of chromatin architectures have been [...] Read more.
In eukaryotes, genomic DNA is bound with histone proteins and packaged into chromatin. The nucleosome, a fundamental unit of chromatin, regulates the accessibility of DNA to enzymes involved in gene regulation. During the past few years, structural analyses of chromatin architectures have been limited to evolutionarily related organisms. The amino acid sequences of histone proteins are highly conserved from humans to yeasts, but are divergent in the deeply branching protozoan groups, including human parasites that are directly related to human health. Certain large DNA viruses, as well as archaeal organisms, contain distant homologs of eukaryotic histone proteins. The divergent sequences give rise to unique and distinct nucleosome architectures, although the fundamental principles of histone folding and DNA contact are highly conserved. In this article, we review the structures and biophysical properties of nucleosomes containing histones from the human parasites Giardia lamblia and Leishmania major, and histone-like proteins from the Marseilleviridae amoeba virus family. The presented data confirm the sharing of the overall DNA compaction system among evolutionally distant species and clarify the deviations from the species-specific nature of the nucleosome. Full article
(This article belongs to the Special Issue Chromatin Unlimited)
Show Figures

Figure 1

16 pages, 2253 KB  
Article
Comparative Evaluation of Antimicrobial, Antiamoebic, and Antiviral Efficacy of Ophthalmic Formulations
by Ciro Caruso, Daniela Eletto, Alessandra Tosco, Martina Pannetta, Fabio Scarinci, Mario Troisi and Amalia Porta
Microorganisms 2022, 10(6), 1156; https://doi.org/10.3390/microorganisms10061156 - 4 Jun 2022
Cited by 12 | Viewed by 3336
Abstract
The extensive use of ophthalmic antibiotics is contributing to the appearance of resistant bacterial strains, which require prolonged and massive treatments with consequent detrimental outcomes and adverse effects. In addition to these issues, antibiotics are not effective against parasites and viruses. In this [...] Read more.
The extensive use of ophthalmic antibiotics is contributing to the appearance of resistant bacterial strains, which require prolonged and massive treatments with consequent detrimental outcomes and adverse effects. In addition to these issues, antibiotics are not effective against parasites and viruses. In this context, antiseptics could be valuable alternatives. They have nonselective mechanisms of action preventing bacterial resistance and a broad spectrum of action and are also effective against parasites and viruses. Here, we compare the in vitro antibacterial, antiameobic, and antiviral activities of six ophthalmic formulations containing antiseptics such as povidone-iodine, chlorhexidine, and thymol against Gram-positive and Gram-negative bacteria, the amoeba Acanthamoeba castellanii, and two respiratory viruses, HAdV-2 and HCoV-OC43. The results suggest that, among all the tested formulations, Dropsept, consisting of Vitamin E TPGS-based (tocopheryl polyethylene glycol succinate) in combination with the antiseptic chlorhexidine, is the one with the highest range of activities, as it works efficiently against bacteria, amoeba, and viruses. On the other hand, the solution containing PVA (polyvinyl alcohol) and thymol showed a promising inhibitory effect on Pseudomonas aeruginosa, which causes severe keratitis. Given its high efficiency, Dropsept might represent a valuable alternative to the widely used antibiotics for the treatment of ocular infections. In addition to this commercial eye drop solution, thymol-based solutions might be enrolled for their natural antimicrobial and antiamoebic effect. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

16 pages, 4287 KB  
Article
The Discovery of a New Mimivirus Isolate in Association with Virophage-Transpoviron Elements in Brazil Highlights the Main Genomic and Evolutionary Features of This Tripartite System
by Bruna Luiza de Azevedo, João Pessoa Araújo Júnior, Leila Sabrina Ullmann, Rodrigo Araújo Lima Rodrigues and Jônatas Santos Abrahão
Viruses 2022, 14(2), 206; https://doi.org/10.3390/v14020206 - 21 Jan 2022
Cited by 7 | Viewed by 5756
Abstract
Mimiviruses are giant viruses of amoeba that can be found in association with virophages. These satellite-like viruses are dependent on the mimivirus viral factory to replicate. Mimiviruses can also be associated with linear DNA molecules called transpovirons. Transpovirons and virophages are important drivers [...] Read more.
Mimiviruses are giant viruses of amoeba that can be found in association with virophages. These satellite-like viruses are dependent on the mimivirus viral factory to replicate. Mimiviruses can also be associated with linear DNA molecules called transpovirons. Transpovirons and virophages are important drivers of giant virus evolution although they are still poorly studied elements. Here, we describe the isolation and genomic characterization of a mimivirus/virophage/transpoviron tripartite system from Brazil. We analyzed transmission electron microscopy images and performed genome sequencing and assembly, gene annotation, and phylogenetic analysis. Our data confirm the isolation of a lineage A mimivirus (1.2 Mb/1012 ORFs), called mimivirus argentum, and a sputnik virophage (18,880 bp/20 ORFs). We also detected a third sequence corresponding to a transpoviron from clade A (6365 bp/6 ORFs) that presents small terminal inverted repeats (77 nt). The main genomic features of mimivirus argentum and of its virophage/transpoviron elements corroborates with what is described for other known elements. This highlights that this triple genomic and biological interaction may be ancient and well-conserved. The results expand the basic knowledge about unique and little-known elements and pave the way to future studies that might contribute to a better understanding of this tripartite relationship. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

21 pages, 3203 KB  
Review
A Brief History of Giant Viruses’ Studies in Brazilian Biomes
by Paulo Victor M. Boratto, Mateus Sá M. Serafim, Amanda Stéphanie A. Witt, Ana Paula C. Crispim, Bruna Luiza de Azevedo, Gabriel Augusto P. de Souza, Isabella Luiza M. de Aquino, Talita B. Machado, Victória F. Queiroz, Rodrigo A. L. Rodrigues, Ivan Bergier, Juliana Reis Cortines, Savio Torres de Farias, Raíssa Nunes dos Santos, Fabrício Souza Campos, Ana Cláudia Franco and Jônatas S. Abrahão
Viruses 2022, 14(2), 191; https://doi.org/10.3390/v14020191 - 19 Jan 2022
Cited by 5 | Viewed by 4644
Abstract
Almost two decades after the isolation of the first amoebal giant viruses, indubitably the discovery of these entities has deeply affected the current scientific knowledge on the virosphere. Much has been uncovered since then: viruses can now acknowledge complex genomes and huge particle [...] Read more.
Almost two decades after the isolation of the first amoebal giant viruses, indubitably the discovery of these entities has deeply affected the current scientific knowledge on the virosphere. Much has been uncovered since then: viruses can now acknowledge complex genomes and huge particle sizes, integrating remarkable evolutionary relationships that date as early as the emergence of life on the planet. This year, a decade has passed since the first studies on giant viruses in the Brazilian territory, and since then biomes of rare beauty and biodiversity (Amazon, Atlantic forest, Pantanal wetlands, Cerrado savannas) have been explored in the search for giant viruses. From those unique biomes, novel viral entities were found, revealing never before seen genomes and virion structures. To celebrate this, here we bring together the context, inspirations, and the major contributions of independent Brazilian research groups to summarize the accumulated knowledge about the diversity and the exceptionality of some of the giant viruses found in Brazil. Full article
(This article belongs to the Special Issue Genomics of Giant Viruses)
Show Figures

Graphical abstract

29 pages, 3348 KB  
Article
The Influence of Habitat on Viral Diversity in Neotropical Rodent Hosts
by Sourakhata Tirera, Benoit de Thoisy, Damien Donato, Christiane Bouchier, Vincent Lacoste, Alain Franc and Anne Lavergne
Viruses 2021, 13(9), 1690; https://doi.org/10.3390/v13091690 - 26 Aug 2021
Cited by 19 | Viewed by 4614
Abstract
Rodents are important reservoirs of numerous viruses, some of which have significant impacts on public health. Ecosystem disturbances and decreased host species richness have been associated with the emergence of zoonotic diseases. In this study, we aimed at (a) characterizing the viral diversity [...] Read more.
Rodents are important reservoirs of numerous viruses, some of which have significant impacts on public health. Ecosystem disturbances and decreased host species richness have been associated with the emergence of zoonotic diseases. In this study, we aimed at (a) characterizing the viral diversity in seven neotropical rodent species living in four types of habitats and (b) exploring how the extent of environmental disturbance influences this diversity. Through a metagenomic approach, we identified 77,767 viral sequences from spleen, kidney, and serum samples. These viral sequences were attributed to 27 viral families known to infect vertebrates, invertebrates, plants, and amoeba. Viral diversities were greater in pristine habitats compared with disturbed ones, and lowest in peri-urban areas. High viral richness was observed in savannah areas. Differences in these diversities were explained by rare viruses that were generally more frequent in pristine forest and savannah habitats. Moreover, changes in the ecology and behavior of rodent hosts, in a given habitat, such as modifications to the diet in disturbed vs. pristine forests, are major determinants of viral composition. Lastly, the phylogenetic relationships of four vertebrate-related viral families (Polyomaviridae, Flaviviridae, Togaviridae, and Phenuiviridae) highlighted the wide diversity of these viral families, and in some cases, a potential risk of transmission to humans. All these findings provide significant insights into the diversity of rodent viruses in Amazonia, and emphasize that habitats and the host’s dietary ecology may drive viral diversity. Linking viral richness and abundance to the ecology of their hosts and their responses to habitat disturbance could be the starting point for a better understanding of viral emergence and for future management of ecosystems. Full article
(This article belongs to the Special Issue Viral Genetic Diversity)
Show Figures

Figure 1

10 pages, 7364 KB  
Article
Diversity of Amoeba-Associated Giant Viruses Isolated in Algeria
by Hadjer Boudjemaa, Julien Andreani, Idir Bitam and Bernard La Scola
Diversity 2020, 12(6), 215; https://doi.org/10.3390/d12060215 - 29 May 2020
Cited by 6 | Viewed by 3999
Abstract
The discovery of several giant amoeba viruses has opened up a novel area in the field of virology. Despite this, knowledge about ecology of these viruses remains patchy. In this study, we aimed to characterize the diversity of giant viruses in Algeria by [...] Read more.
The discovery of several giant amoeba viruses has opened up a novel area in the field of virology. Despite this, knowledge about ecology of these viruses remains patchy. In this study, we aimed to characterize the diversity of giant viruses in Algeria by inoculating 64 environmental samples on various amoeba strains. After isolation by co-culture with nine amoeba supports, flow cytometry and electron microscopy were used to putatively identify viruses. Definitive identification was performed by PCR and sequencing. Mimiviruses, marseilleviruses, faustoviruses and cedratviruses were the main viruses isolated in this study. Moreover, a new virus, which we named fadolivirus, was also isolated and was found to belong to the recent metagenomic descriptions of Klosneuvirinae. Despite the use of 9 amoeba supports for co-culture, most of the isolates were obtained from two amoebas: Acanthamoeba castellanii Neff and Vermamoeba vermiformis CDC 19. Finally, the viruses most frequently isolated were marseilleviruses (55.5%) and Mimiviruses (22.2%). This work shows that the isolation of viruses previously detected by metagenomic analyses can be tedious, but possible. Full article
(This article belongs to the Special Issue Giant Virus Biology and Biodiversity)
Show Figures

Figure 1

15 pages, 5349 KB  
Article
Silver Nanoparticles as a Novel Potential Preventive Agent against Acanthamoeba Keratitis
by Edyta B. Hendiger, Marcin Padzik, Ines Sifaoui, María Reyes-Batlle, Atteneri López-Arencibia, Aitor Rizo-Liendo, Carlos J. Bethencourt-Estrella, Desirée San Nicolás-Hernández, Olfa Chiboub, Rubén L. Rodríguez-Expósito, Marta Grodzik, Anna Pietruczuk-Padzik, Karolina Stępień, Gabriela Olędzka, Lidia Chomicz, José E. Piñero and Jacob Lorenzo-Morales
Pathogens 2020, 9(5), 350; https://doi.org/10.3390/pathogens9050350 - 5 May 2020
Cited by 29 | Viewed by 4781
Abstract
Free living, cosmopolitan amoebae from Acanthamoeba genus present a serious risk to human health. As facultative human parasites, these amoebae may cause Acanthamoeba keratitis (AK). Acanthamoeba keratitis is a severe, vision-threatening corneal infection with non-specific symptoms. The number of reported AK cases worldwide [...] Read more.
Free living, cosmopolitan amoebae from Acanthamoeba genus present a serious risk to human health. As facultative human parasites, these amoebae may cause Acanthamoeba keratitis (AK). Acanthamoeba keratitis is a severe, vision-threatening corneal infection with non-specific symptoms. The number of reported AK cases worldwide has been increasing every year. Moreover, 90% of Acanthamoeba keratitis cases are related to contact lens use. Wearing and storage contact lenses not in accordance with the physicians and manufacturers recommendations are the primary key risk factors of this disease. Amoebae can easily adhere to the contact lens surface and transmit to the corneal epithelium. Preventing amoebae adhesion to the contact lens surface could significantly decrease the number of AK infections. Until now, the effective therapy against AK is still under development. Currently proposed therapies are mainly limited to the chlorhexidine digluconate combined with propamidine isethionate or hexamidine applications, which are insufficient and very toxic to the eye. Due to lack of effective treatment, looking for new potential preventive agents is crucial to decrease the number of Acanthamoeba keratitis infections, especially among contact lens users. Nanoparticles have been already included in several novel therapies against bacteria, viruses, fungi, and protist. However, their anti-amoebic potential has not been fully tested yet. The aim of this study was to assess silver nanoparticles (AgNPs) and platinum nanoparticles (PtNPs) anti-amoebic activity and influence on the amoebae adhesion to the surface of four different groups of contact lenses—classified according to the Food and Drugs Administration (FDA) guidelines. The obtained results show that both tested nanoparticles were effective against Acanthamoeba trophozoites and decreased the amoebae adhesion to the contact lens surface. AgNPs showed better anti-amoebic activity to cytotoxicity dependence and reduced amoebae adhesion in a wider spectrum of the tested contact lenses. Our studies also confirmed that ionization next to hydration of the contact lens material is a crucial parameter influencing the Acanthamoeba adhesion to the contact lens surface. In conclusion, silver nanoparticles might be considered as a novel preventive agent against Acanthamoeba keratitis infection. Full article
Show Figures

Figure 1

Back to TopTop