Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (98)

Search Parameters:
Keywords = anchor bar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3187 KB  
Article
An Experimental and FE Modeling Investigation of the Pull-Out Behavior of Anchoring Solutions in Concrete: A Comparative Study
by Alexandru-Nicolae Bizu, Dorina Nicolina Isopescu, Gabriela Draghici and Igor Blanari
Materials 2025, 18(19), 4596; https://doi.org/10.3390/ma18194596 - 3 Oct 2025
Viewed by 350
Abstract
This article presents an original experimental and numerical approach to examining the pull-out behavior of fastening systems made of steel bars simultaneously embedded in both ends of concrete samples. This double-embedded configuration simulates a connection between the existing concrete structure and a new [...] Read more.
This article presents an original experimental and numerical approach to examining the pull-out behavior of fastening systems made of steel bars simultaneously embedded in both ends of concrete samples. This double-embedded configuration simulates a connection between the existing concrete structure and a new external exoskeleton, promoting seismic strengthening. Pull-out tests were performed across six specimen configurations combining different concrete strength classes in order to compare the adhesive solution against traditional monolithic cast-in rebar embedments. The adhesive-anchored bars achieved a peak pull-out force of ~28.6 kN, which is about 18% higher than with mixed anchorage (one end adhesive, one end cast-in). All specimens failed in concrete cracking and pull-out cone formation, with no steel bar yielding, indicating that failure was governed by concrete strength. Finite element simulations in ANSYS Explicit Dynamics were validated against these experiments, confirming the observed behavior and enabling the extension of our analysis to broader concrete strength ranges. Overall, the results demonstrate that double-ended adhesive anchorage significantly increases the connection’s load-bearing capacity and ductility compared to mixed configurations. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

15 pages, 11864 KB  
Article
Rope-Riding Mobile Anchor for Robots Operating on Convex Facades
by Chaewon Kim, KangYup Lee, Jeongmo Yang and TaeWon Seo
Sensors 2025, 25(15), 4674; https://doi.org/10.3390/s25154674 - 29 Jul 2025
Viewed by 577
Abstract
The increasing presence of high-rise buildings with curved and convex facades poses significant challenges for facade-cleaning robots, particularly in terms of mobility and anchoring. To address this, we propose a rope-riding mobile anchor (RMA) system capable of repositioning the anchor point of a [...] Read more.
The increasing presence of high-rise buildings with curved and convex facades poses significant challenges for facade-cleaning robots, particularly in terms of mobility and anchoring. To address this, we propose a rope-riding mobile anchor (RMA) system capable of repositioning the anchor point of a cleaning robot on convex building surfaces. The RMA travels horizontally along a roof-mounted nylon rope using caterpillar tracks with U-shaped grooves, and employs a four-bar linkage mechanism to fix its position securely by increasing rope contact friction. This structural principle was selected for its simplicity, stability under heavy loads, and efficient actuation. Experimental results show that the RMA can support a payload of 50.5 kg without slippage under tensions up to 495.24 N, and contributes to reducing the power consumption of the cleaning robot during operation. These findings demonstrate the RMA’s effectiveness in extending the robot’s working range and enhancing safety and stability in facade-cleaning tasks on complex curved surfaces. Full article
Show Figures

Figure 1

15 pages, 2854 KB  
Review
A Review on the Applications of Basalt Fibers and Their Composites in Infrastructures
by Wenlong Yan, Jianzhe Shi, Xuyang Cao, Meng Zhang, Lei Li and Jingyi Jiang
Buildings 2025, 15(14), 2525; https://doi.org/10.3390/buildings15142525 - 18 Jul 2025
Cited by 3 | Viewed by 1163
Abstract
This article presents a review on the applications of basalt fibers and their composites in infrastructures. The characteristics and advantages of high-performance basalt fibers and their composites are firstly introduced. Then, the article discusses strengthening using basalt fiber sheets and BFRP bars or [...] Read more.
This article presents a review on the applications of basalt fibers and their composites in infrastructures. The characteristics and advantages of high-performance basalt fibers and their composites are firstly introduced. Then, the article discusses strengthening using basalt fiber sheets and BFRP bars or grids, followed by concrete structures reinforced with BFRP bars, asphalt pavements, and cementitious composites reinforced with chopped basalt fibers in terms of mechanical behaviors and application examples. The load-bearing capacity of the strengthened structures can be increased by up to 60%, compared with those without strengthening. The lifespan of the concrete structures reinforced with BFRP can be extended by up to 50 years at least in harsh environments, which is much longer than that of ordinary reinforced concrete structures. In addition, the fatigue cracking resistance of asphalt can be increased by up to 600% with basalt fiber. The newly developed technologies including anchor bolts using BFRPs, self-sensing BFRPs, and BFRP–concrete composite structures are introduced in detail. Furthermore, suggestions are proposed for the forward-looking technologies, such as long-span bridges with BFRP cables, BFRP truss structures, BFRP with thermoplastic resin matrix, and BFRP composite piles. Full article
Show Figures

Figure 1

46 pages, 6649 KB  
Review
Matrix WaveTM System for Mandibulo-Maxillary Fixation—Just Another Variation on the MMF Theme?—Part II: In Context to Self-Made Hybrid Erich Arch Bars and Commercial Hybrid MMF Systems—Literature Review and Analysis of Design Features
by Carl-Peter Cornelius, Paris Georgios Liokatis, Timothy Doerr, Damir Matic, Stefano Fusetti, Michael Rasse, Nils Claudius Gellrich, Max Heiland, Warren Schubert and Daniel Buchbinder
Craniomaxillofac. Trauma Reconstr. 2025, 18(3), 33; https://doi.org/10.3390/cmtr18030033 - 15 Jul 2025
Viewed by 1076
Abstract
Study design: Trends in the utilization of Mandibulo-Maxillary Fixation (MMF) are shifting nowadays from tooth-borne devices over specialized screws to hybrid MMF devices. Hybrid MMF devices come in self-made Erich arch bar modifications and commercial hybrid MMF systems (CHMMFSs). Objective: We survey the [...] Read more.
Study design: Trends in the utilization of Mandibulo-Maxillary Fixation (MMF) are shifting nowadays from tooth-borne devices over specialized screws to hybrid MMF devices. Hybrid MMF devices come in self-made Erich arch bar modifications and commercial hybrid MMF systems (CHMMFSs). Objective: We survey the available technical/clinical data. Hypothetically, the risk of tooth root damage by transalveolar screws is diminished by a targeting function of the screw holes/slots. Methods: We utilize a literature review and graphic displays to disclose parallels and dissimilarities in design and functionality with an in-depth look at the targeting properties. Results: Self-made hybrid arch bars have limitations to meet low-risk interradicular screw insertion sites. Technical/clinical information on CHMMFSs is unevenly distributed in favor of the SMARTLock System: positive outcome variables are increased speed of application/removal, the possibility to eliminate wiring and stick injuries and screw fixation with standoff of the embodiment along the attached gingiva. Inferred from the SMARTLock System, all four CHMMFs possess potential to effectively prevent tooth root injuries but are subject to their design features and targeting with the screw-receiving holes. The height profile and geometry shape of a CHMMFS may restrict three-dimensional spatial orientation and reach during placement. To bridge between interradicular spaces and tooth equators, where hooks or tie-up-cleats for intermaxillary cerclages should be ideally positioned under biomechanical aspects, can be problematic. The movability of their screw-receiving holes according to all six degrees of freedom differs. Conclusion: CHMMFSs allow simple immobilization of facial fractures involving dental occlusion. The performance in avoiding tooth root damage is a matter of design subtleties. Full article
Show Figures

Figure 1

28 pages, 12965 KB  
Review
Matrix WaveTM System for Mandibulo-Maxillary Fixation—Just Another Variation on the MMF Theme? Part I: A Review on the Provenance, Evolution and Properties of the System
by Carl-Peter Cornelius, Paris Georgios Liokatis, Timothy Doerr, Damir Matic, Stefano Fusetti, Michael Rasse, Nils Claudius Gellrich, Max Heiland, Warren Schubert and Daniel Buchbinder
Craniomaxillofac. Trauma Reconstr. 2025, 18(3), 32; https://doi.org/10.3390/cmtr18030032 - 12 Jul 2025
Cited by 1 | Viewed by 1797
Abstract
Study design: The advent of the Matrix WaveTM System (Depuy-Synthes)—a bone-anchored Mandibulo-Maxillary Fixation (MMF) System—merits closer consideration because of its peculiarities. Objective: This study alludes to two preliminary stages in the evolution of the Matrix WaveTM MMF System and details its [...] Read more.
Study design: The advent of the Matrix WaveTM System (Depuy-Synthes)—a bone-anchored Mandibulo-Maxillary Fixation (MMF) System—merits closer consideration because of its peculiarities. Objective: This study alludes to two preliminary stages in the evolution of the Matrix WaveTM MMF System and details its technical and functional features. Results: The Matrix WaveTM System (MWS) is characterized by a smoothed square-shaped Titanium rod profile with a flexible undulating geometry distinct from the flat plate framework in Erich arch bars. Single MWS segments are Omega-shaped and carry a tie-up cleat for interarch linkage to the opposite jaw. The ends at the throughs of each MWS segment are equipped with threaded screw holes to receive locking screws for attachment to underlying mandibular or maxillary bone. An MWS can be partitioned into segments of various length from single Omega-shaped elements over incremental chains of interconnected units up to a horseshoe-shaped bracing of the dental arches. The sinus wave design of each segment allows for stretch, compression and torque movements. So, the entire MWS device can conform to distinctive spatial anatomic relationships. Displaced fragments can be reduced by in-situ-bending of the screw-fixated MWS/Omega segments to obtain accurate realignment of the jaw fragments for the best possible occlusion. Conclusion: The Matrix WaveTM MMF System is an easy-to-apply modular MMF system that can be assembled according to individual demands. Its versatility allows to address most facial fracture scenarios in adults. The option of “omnidirectional” in-situ-bending provides a distinctive feature not found in alternate MMF solutions. Full article
Show Figures

Figure 1

20 pages, 13285 KB  
Article
Anchorage Performance of an Innovative Assembled Joint with Large-Diameter Steel Bar Grout Lapping in Concrete Reserved Hole
by Qi Chen, Xiaoyong Luo, Chao Deng, Tai Zhou and Xutong Zheng
Materials 2025, 18(13), 2950; https://doi.org/10.3390/ma18132950 - 22 Jun 2025
Viewed by 459
Abstract
To investigate the anchorage performance of an innovative assembled joint with large-diameter steel bar grout lapping in a concrete reserved hole, the effects of anchorage length and high-strength grouting material types on the failure mode, load–displacement curve, ultimate bond strength and strain variation [...] Read more.
To investigate the anchorage performance of an innovative assembled joint with large-diameter steel bar grout lapping in a concrete reserved hole, the effects of anchorage length and high-strength grouting material types on the failure mode, load–displacement curve, ultimate bond strength and strain variation were analyzed through the pull-out tests of 15 specimens. On this basis, the calculation formulae of critical and ultimate anchorage length were established and the applicability was verified, and then the recommended value of minimum anchorage length was provided. The results showed that the failure modes included splitting-steel bar pull-out failure and UHPC-concrete interface failure. With the increase in anchorage length, the bond strength showed a trend of increasing first and then decreasing. Increasing the grouting material strength can effectively improve the bond performance. When the anchored steel bar is HRB400 with a diameter not less than 20 mm, the recommended minimum anchorage length is 15.0d~18.3d. When the grouting material strength is larger than or equal to 100 MPa, the anchorage length should not be less than 15.0d. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 8463 KB  
Article
Changes in Material Properties and Damage Mechanism of Plate Ballastless Track Under Fire and High Temperature
by Hao Jin, Yike Yang, Xinxin Zhao, Yongjian Pan, Jinhui Chu, Shuming Li, Shenglin Xu and Yulin Feng
Buildings 2025, 15(12), 1987; https://doi.org/10.3390/buildings15121987 - 9 Jun 2025
Viewed by 406
Abstract
The service status of rail, fasteners and track slabs is the key determinant of whether the ballastless track is ready for traffic after a fire. The track slab rail support bolt anchoring performance and the shoulder service performance damaged by fire were tested. [...] Read more.
The service status of rail, fasteners and track slabs is the key determinant of whether the ballastless track is ready for traffic after a fire. The track slab rail support bolt anchoring performance and the shoulder service performance damaged by fire were tested. Experiments of ballastless track slab concrete burned at different high temperatures were carried out to compare macro- and microstructural properties of the concrete under high-temperature burning to study the microstructure of hydration products after high-temperature burning and reveal the damage mechanism of the track slab concrete after a fire. The results show that the fire damage to the rail and fastener is mainly deformations, fractures and strength reduction. The degree of the fire damage of the mortar layer and base slab is much lower than that of the track slab. The main fire damage to the concrete is track and base slab cracks, spalling and gaps. The degree of the fire damage to the mortar layer and base slab is much lower than that of the track slab. The fire damage of the track slab concrete is mainly bursts, and the concrete cracks, spalling and deterioration occur layer by layer from the outside to inside. The shoulder injury is the most serious, the shear resistance is greatly reduced, the rail support is protected by the rail and fastener, the impact of the fire damage is small and the bolt anchoring performance was not decreased. The position of the track slab’s inside damage corresponds to the surface damage position. The steel bar inside the track slab is in good condition, and there is no obvious damage. The bulk expansion of the ballastless track concrete was caused by the expansion of aggregates under fire. When the expansion of aggregates is constrained by the shrinkage of hydration products, greater internal stress is generated, which is the main reason for the cracking or bursting of the ballastless track slab concrete under high temperatures. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

14 pages, 7500 KB  
Article
Performance Evolution and Damage Evaluation of CRTS I Track Slab in Service Status
by Hongyao Lu, Wentao Wu and Yuelei He
Materials 2025, 18(9), 2041; https://doi.org/10.3390/ma18092041 - 29 Apr 2025
Cited by 2 | Viewed by 614
Abstract
This study develops a quantitative framework to assess performance degradation and damage evolution in CRTS I ballastless track slabs. Based on the impact-echo method, the internal void distribution characteristics of the new and old track slabs were obtained. The track slabs were sampled [...] Read more.
This study develops a quantitative framework to assess performance degradation and damage evolution in CRTS I ballastless track slabs. Based on the impact-echo method, the internal void distribution characteristics of the new and old track slabs were obtained. The track slabs were sampled separately by drilling cores to verify the distribution of voids, and uniaxial compression tests were conducted simultaneously to quantify the attenuation of bearing capacity. The on-site wheel–rail force and temperature field data were monitored, based on the established three-dimensional finite element model of CRTS I ballastless track, and the damage distribution characteristics of the track slab under different load combinations after performance degradation were studied. The results show the following: (1) As the performance of the track slabs gradually deteriorated, it was reflected in the increasing internal void distribution area from 0.5% to 3.6%, corresponding to a 22.4% decrease in core strength. (2) The on-site monitoring results showed that the average wheel–rail force was 84.5 kN. The temperature gradient range varied from −50.4 °C/m to 100.0 °C/m, exceeding the allowable value of the design specifications. (3) The actual damage distribution of the track slab after performance degradation under different load combinations significantly increased at key stress locations such as near fasteners, convex abutments, and anchor holes of prestressed steel bars, which required special attention in actual maintenance and repair. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

16 pages, 73322 KB  
Article
A Study on the Mechanical Properties of Unbolted and Bolted Composite Rock Masses Under the Influence of Different Grain Sizes
by Chao Yuan, Xuanqi Huang, Weijun Wan and Yueyang Xu
Fractal Fract. 2025, 9(4), 232; https://doi.org/10.3390/fractalfract9040232 - 7 Apr 2025
Cited by 1 | Viewed by 503
Abstract
In order to explore the influence of grain size on the mechanical properties of unbolted and bolted composite rock masses, uniaxial compression tests were carried out on unbolted and bolted composite rock masses of different grain sizes. The characteristics of the variation in [...] Read more.
In order to explore the influence of grain size on the mechanical properties of unbolted and bolted composite rock masses, uniaxial compression tests were carried out on unbolted and bolted composite rock masses of different grain sizes. The characteristics of the variation in the strength, elastic modulus, Poisson’s ratio and energy parameters of composite rock masses with grain size were analyzed. The evolution process of crack propagation in the composite rock masses was studied, and the influence mechanism of rock grain size on the mechanical properties of the anchorage bearing structure of the rock surrounding the roadway was revealed. The results show that with an increase in the grain size, the peak strength and elastic modulus of a composite rock mass decrease gradually, and the post-peak residual strength, Poisson’s ratio and total input strain energy increase gradually. The evolution of crack propagation is from tensile cracking to tensile to shear mixed to shear cracking. Prestressed anchor bolts can effectively improve the peak strength and post-peak residual strength of composite rock masses and have inhibitory effects on crack propagation in the anchorage zone, such as weakening, deflection and crack arrest. Compared with an unbolted composite rock mass, the bearing capacity of a bolted composite rock mass is stronger, and its elastic modulus is significantly improved. Full article
(This article belongs to the Special Issue Applications of Fractal Analysis in Underground Engineering)
Show Figures

Figure 1

19 pages, 13388 KB  
Article
Spirally Confined Reinforcing Bar for Flexural Behavior of Glass Fiber-Reinforced Concrete Beam
by Nuria S. Mohammed, Ashraf A. M. Fadiel, Ahmad Baharuddin Abdul Rahman, Esam Abu Baker Ali, Taher Abu-Lebdeh, Antreas Kantaros and Florian Ion Tiberiu Petrescu
J. Compos. Sci. 2025, 9(4), 149; https://doi.org/10.3390/jcs9040149 - 22 Mar 2025
Cited by 1 | Viewed by 1104
Abstract
This paper presents experimental results on the influence of the spiral anchor system on the flexural behavior of concrete beams reinforced with glass fiber-reinforced plastic (GFRP) bars. The experimental program consisted of eight beams with the spiral anchor system and two control fiber-reinforced [...] Read more.
This paper presents experimental results on the influence of the spiral anchor system on the flexural behavior of concrete beams reinforced with glass fiber-reinforced plastic (GFRP) bars. The experimental program consisted of eight beams with the spiral anchor system and two control fiber-reinforced concrete beams without any spiral anchor system. All specimens were tested under bending load. Rough and smooth surface textures of GFRP bars were considered. The test parameters were the diameter of spiral anchor and the condition of the GFRP reinforcement bars as either bonded or unbonded to the surrounding grout. The experimental results indicate that beams reinforced with a rough GFRP bar with an anchor system under flexural load had higher ultimate flexural strength, first crack strength, and stiffness as compared to the beams without an end anchor system. The success of the anchor system is attributed to the confining effect of the steel spiral in anchoring the reinforcement ends. This confining effect enhances the anchorage capacity of the anchor system and subsequently improves the overall flexural performance of the reinforced concrete beams. Full article
(This article belongs to the Special Issue Sustainable Composite Construction Materials, Volume II)
Show Figures

Figure 1

38 pages, 9959 KB  
Article
Application of Carbon-Fiber-Reinforced Polymer Rods and Ultra-High-Performance Fiber-Reinforced Concrete Jackets with Mechanical Anchorage Systems to Reinforced Concrete Slabs
by Firas Hassan Saeed and Farzad Hejazi
Fibers 2025, 13(3), 33; https://doi.org/10.3390/fib13030033 - 13 Mar 2025
Cited by 1 | Viewed by 1501
Abstract
The aim of this experimental study was to develop and evaluate the effectiveness of a new strengthening system for reinforced concrete slabs employing external jackets consisting of ultra-high-performance fiber-reinforced-concrete (UHPFRC) and mechanical anchor systems. The issue of debonding between old and fresh concrete [...] Read more.
The aim of this experimental study was to develop and evaluate the effectiveness of a new strengthening system for reinforced concrete slabs employing external jackets consisting of ultra-high-performance fiber-reinforced-concrete (UHPFRC) and mechanical anchor systems. The issue of debonding between old and fresh concrete layers, as well as the efficiency of utilizing CFRP rods, is the primary challenge of applying the UHPFRC jackets with embedded CFRP rods. In this study, we propose a novel retrofitting technique for implementing a mechanical anchor system to improve the binding of fresh UHPFRC jackets with old RC slabs. An experimental test was conducted by subjecting three slabs to cyclic loads by utilizing a dynamic actuator: a reference slab, a retrofitted slab with an external UHPFRC layer, and a retrofitted slab with an external UHPFRC layer incorporating CFRP bars. Furthermore, finite element models (FEMs) were utilized to investigate the responses of the retrofitted slabs and compare the novel method with traditional strengthening techniques, including near-surface-mounted (NSM) CFRP rods, externally bonded CFRP strips, and epoxy-bonded UHPFRC jackets, as well as two models that were the same as the experimental strengthened slab specimens except for the fact that they did not have a mechanical anchor system. Additionally, analytical mechanistic models were employed to determine the flexural moment capacity of the RC slabs. The experimental findings demonstrated that the proposed strengthening strategy considerably prevented premature debonding and enhanced the maximum load of retrofitted RC slabs by over 82%. Also, the FEM and analytical results are significantly consistent with the experimental outcomes. In conclusion, the newly suggested strengthening technique is a reliable system for enhancing the efficacy of slabs, effectively preventing early debonding between existing and new components. Full article
Show Figures

Figure 1

14 pages, 3881 KB  
Article
Tension Estimation in Anchor Rods Using Multimodal Ultrasonic Guided Waves
by Thilakson Raveendran and Frédéric Taillade
Sensors 2025, 25(6), 1665; https://doi.org/10.3390/s25061665 - 7 Mar 2025
Cited by 1 | Viewed by 654
Abstract
The diagnosis of post-stressed anchor rods is essential for maintaining the service and ensuring the safety of Electricité de France (EDF) structures. These rods are critical for the mechanical strength of structures and electromechanical components. Currently, the standard method for estimating the effective [...] Read more.
The diagnosis of post-stressed anchor rods is essential for maintaining the service and ensuring the safety of Electricité de France (EDF) structures. These rods are critical for the mechanical strength of structures and electromechanical components. Currently, the standard method for estimating the effective tension of post-stressed tie rods with a free length involves measuring the residual force using a hydraulic jack. However, this method can be costly, impact the structure’s operation, and pose risks to employees. Until now, there has been no reliable on-field approach to estimating residual tension using a lightweight setup. This research introduces a nondestructive method using multimodal ultrasonic guided waves to evaluate the residual tension of anchor rods with a few centimeters free at one end. The methodology was developed through both laboratory experiments and simulations. This new method allows for the extraction of dispersion curves for the first three modes, bending, torsional, and longitudinal, using time–frequency analysis and enables the estimation of the steel bar’s properties. Future work will focus on applying this methodology in the field. Full article
Show Figures

Figure 1

22 pages, 7497 KB  
Article
An Experimental Study on the Seismic Performance of New Precast Prestressed Concrete Exterior Joints Based on UHPC Connection
by Xueyu Xiong, Zhisheng Wei, Dawei Zhang, Ju Liu, Yifan Xie and Liang He
Buildings 2025, 15(5), 729; https://doi.org/10.3390/buildings15050729 - 24 Feb 2025
Cited by 4 | Viewed by 1050
Abstract
Traditional monolithic precast and precast prestressed concrete joints often face challenges such as complex steel reinforcement details and low construction efficiency. Grouting sleeve connections may also suffer from quality issues. To address these problems, a new precast prestressed concrete frame beam-column exterior joint [...] Read more.
Traditional monolithic precast and precast prestressed concrete joints often face challenges such as complex steel reinforcement details and low construction efficiency. Grouting sleeve connections may also suffer from quality issues. To address these problems, a new precast prestressed concrete frame beam-column exterior joint using ultra-high-performance concrete (UHPC) for connection (PPCFEJ-UHPC) is proposed. This innovative joint lessens the amount of stirrups in the core area, decreases the anchorage length of beam longitudinal reinforcement, and enables efficient lap splicing of column longitudinal reinforcement, thereby enhancing construction convenience. Cyclic loading tests were conducted on three new exterior joint specimens (PE1, PE2, PE3) and one cast-in-place joint specimen (RE1) to evaluate their seismic performance. The study concentrated on failure modes, energy dissipation capacity, displacement ductility, strength and stiffness degradation, shear stress, and deformation’s influence on the longitudinal reinforcement anchoring length and axial compression ratio. The results indicate that the new joint exhibits beam flexural failure with minimal damage to the core area, unlike the cast-in-place joint, which suffers severe core area damage. The novel joint exhibits at least 21.7% and 6.1% improvement in cumulative energy consumption and ductility coefficient, respectively, while matching the cast-in-place joint’s bearing capacity. These characteristics are further improved by 5.5% and 10.7% when the axial compression ratio is increased. The new joints’ seismic performance indices all satisfy the ACI 374.1-05 requirements. Additionally, UHPC significantly improves the anchoring performance of steel bars in the core area, allowing the anchorage length of beam longitudinal bars to be reduced from 16 times of the diameter of reinforcement to 12 times. Full article
(This article belongs to the Special Issue Research on Soil–Structure Interaction for Civil Structures)
Show Figures

Figure 1

18 pages, 7357 KB  
Article
Validation of Cable-Driven Experimental Setup to Assess Movements Made with Elbow Joint Assistance
by Sreejan Alapati, Deep Seth, Sanjeevi Nakka and Yannick Aoustin
Appl. Sci. 2025, 15(4), 1892; https://doi.org/10.3390/app15041892 - 12 Feb 2025
Cited by 1 | Viewed by 1048
Abstract
This article investigates a cable-driven experimental setup to simulate elbow joint assistance in the sagittal plane provided by an exosuit. Cable-driven exosuits, particularly fabric-based designs, significantly enhance rehabilitation by enabling targeted joint exercises and promoting functional recovery. To achieve an optimal design, these [...] Read more.
This article investigates a cable-driven experimental setup to simulate elbow joint assistance in the sagittal plane provided by an exosuit. Cable-driven exosuits, particularly fabric-based designs, significantly enhance rehabilitation by enabling targeted joint exercises and promoting functional recovery. To achieve an optimal design, these devices require an analysis of the cable tension, reaction forces, and moments and their dependency on the anchor position. This study presents a cable-driven experimental setup with two rigid bars and variable anchor positions, designed to mimic the human forearm, upper arm, and elbow joint, to evaluate the performance of a potential cable-driven exosuit. Based on the experimental setup, a static model was developed to validate the measured cable tension and estimate the reaction force at the joint and the moments at the anchor positions. Furthermore, based on the observations, an optimization problem was defined to identify optimal anchor positions to improve the exosuit’s design. The optimal position on the forearm and upper arm is studied between 15% and 50% distance from the elbow joint. Our findings suggest that prioritizing user comfort requires both anchor points to be as far away from the elbow joint as possible, i.e., 50% distance, whereas, for optimal exosuit performance, the forearm anchor position can be adjusted based on the joint angle while keeping the upper arm anchor position at the farthest point. The findings in the current work can be used to decide the anchor point position for designing an elbow exosuit. Full article
(This article belongs to the Special Issue New Trends in Exoskeleton Robot)
Show Figures

Figure 1

15 pages, 1054 KB  
Article
Early Spatio-Temporal and Cognitive Deficits in Alzheimer’s Disease
by Tina Iachini, Mariachiara Rapuano, Francesco Ruotolo, Alessandro Iavarone, Sabrina Iuliano and Gennaro Ruggiero
J. Clin. Med. 2025, 14(2), 579; https://doi.org/10.3390/jcm14020579 - 17 Jan 2025
Cited by 2 | Viewed by 1520
Abstract
Background/Objectives: Mental representation of spatial information relies on egocentric (body-based) and allocentric (environment-based) frames of reference. Research showed that spatial memory deteriorates as Alzheimer’s disease (AD) progresses and that allocentric spatial memory is among the earliest impaired areas. Most studies have been conducted [...] Read more.
Background/Objectives: Mental representation of spatial information relies on egocentric (body-based) and allocentric (environment-based) frames of reference. Research showed that spatial memory deteriorates as Alzheimer’s disease (AD) progresses and that allocentric spatial memory is among the earliest impaired areas. Most studies have been conducted in static situations despite the dynamic nature of real-world spatial processing. Thus, this raises the question: Does temporal order affect spatial memory? The present study, by adopting a dynamic spatial memory task, explored how the temporal order of item presentation influences egocentric and allocentric spatial judgments in individuals with early-stage Alzheimer’s disease (eAD) and healthy elderly individuals (normal controls—NC). Method: Participants were required to memorize dyads of simple 3D geometrical objects presented one at a time on a desk along with a bar. Afterwards, they had to choose what stimulus appeared either closest to them (egocentric judgment) or closest to the bar (allocentric judgment). Results: Results revealed that the temporal order significantly affected spatial judgments in eAD patients but not in NC participants. While eAD patients remain anchored to the item presented first, which is more accurate regardless of the frame used, NC are equally accurate with the item that appears first or second. This is presumably because eAD patients struggle to flexibly shift attention and update spatial representations in dynamic situations, which leads to reliance on initial information and difficulties with information presented later. Conclusions: This highlights the importance of further understanding the cognitive strategies employed by AD patients. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

Back to TopTop