Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = anisotropic rough surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4443 KB  
Article
Effects of Ti6Al4V Substrate Roughness on the Surface Morphology, Mechanical Properties, and Cell Proliferation of Diamond-like Carbon Films
by Chehung Wei, Bo-Cheng Wu and Min-Sheng Hung
Coatings 2025, 15(9), 1086; https://doi.org/10.3390/coatings15091086 - 16 Sep 2025
Viewed by 266
Abstract
This study investigated how Ti6Al4V substrate topography affects the performance of diamond-like carbon (DLC) coatings. Substrates with four finishes (unpolished, #100, #400, #800 grit) were coated, and their morphology, wettability, bonding structure, mechanical properties, and biological response were examined. Characterization was performed using [...] Read more.
This study investigated how Ti6Al4V substrate topography affects the performance of diamond-like carbon (DLC) coatings. Substrates with four finishes (unpolished, #100, #400, #800 grit) were coated, and their morphology, wettability, bonding structure, mechanical properties, and biological response were examined. Characterization was performed using AFM, SEM, contact angle tests, Raman spectroscopy, and nanoindentation. Biocompatibility was evaluated with A549 epithelial cells. DLC deposition reduced roughness while partly preserving surface features. Increasing Ra was associated with lower surface free energy and ID/IG ratios. It also correlated with higher hardness and modulus, reflecting greater sp3 bonding. Biological results, however, indicated that surface organization was more decisive than Ra magnitude. The #100-grit surface, with aligned anisotropic grooves, supported uniform wetting, protein adsorption, and sustained proliferation. In contrast, the unpolished and smoother surfaces did not maintain long-term growth. These findings suggest that anisotropy, rather than Ra alone, plays a key role in optimizing DLC-coated Ti6Al4V implants. Full article
Show Figures

Figure 1

17 pages, 4948 KB  
Article
Plane-Stress Measurement in Anisotropic Pipe Walls Using an Improved Tri-Directional LCR Ultrasonic Method
by Yukun Li, Longsheng Wang, Fan Fei, Dongying Wang, Zhangna Xue, Xin Liu and Xinyu Sun
Sensors 2025, 25(14), 4371; https://doi.org/10.3390/s25144371 - 12 Jul 2025
Viewed by 560
Abstract
It is important to accurately characterize the plane-stress state of pipe walls for evaluating the bearing capacity of the pipe and ensuring the structural safety. This paper describes a novel ultrasonic technique for evaluating anisotropic pipe-wall plane stresses using three-directional longitudinal critical refracted [...] Read more.
It is important to accurately characterize the plane-stress state of pipe walls for evaluating the bearing capacity of the pipe and ensuring the structural safety. This paper describes a novel ultrasonic technique for evaluating anisotropic pipe-wall plane stresses using three-directional longitudinal critical refracted (LCR) wave time-of-flight (TOF) measurements. The connection between plane stress and ultrasonic TOF is confirmed by examining how the anisotropy of rolled steel plates affects the speed of ultrasonic wave propagation, which is a finding not previously documented in spiral-welded pipes. Then based on this relationship, an ultrasonic stress coefficient calibration experiment for spiral-welded pipes is designed. The results show that the principal stress obtained by the ultrasonic method is closer to the engineering stress than that obtained from the coercivity method. And, as a nondestructive testing technique, the ultrasonic method is more suitable for in-service pipelines. It also elucidates the effects of probe pressure and steel plate surface roughness on the ultrasonic TOF, obtains a threshold for probe pressure, and reveals a linear relationship between roughness and TOF. This study provides a feasible technique for nondestructive measurement of plane stress in anisotropic spiral-welded pipelines, which has potential application prospects in the health monitoring of in-service pipelines. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

18 pages, 2426 KB  
Article
Strain-Hardening and Strain-Softening Phenomena Observed in Thin Nitride/Carbonitride Ceramic Coatings During the Nanoindentation Experiments
by Uldis Kanders, Karlis Kanders, Ernests Jansons, Irina Boiko, Artis Kromanis, Janis Lungevics and Armands Leitans
Coatings 2025, 15(6), 674; https://doi.org/10.3390/coatings15060674 - 1 Jun 2025
Cited by 1 | Viewed by 706
Abstract
This study investigates the nanomechanical and tribological behavior of multilayered nitride/carbonitride nanostructured superlattice type coatings (NTCs) composed of alternating TiAlSiNb-N and TiCr-CN sublayers, deposited via high-power ion-plasma magnetron sputtering (HiPIPMS) technique. Reinforced with refractory elements Cr and Nb, the NTC samples exhibit high [...] Read more.
This study investigates the nanomechanical and tribological behavior of multilayered nitride/carbonitride nanostructured superlattice type coatings (NTCs) composed of alternating TiAlSiNb-N and TiCr-CN sublayers, deposited via high-power ion-plasma magnetron sputtering (HiPIPMS) technique. Reinforced with refractory elements Cr and Nb, the NTC samples exhibit high nanohardness (39–59 GPa), low friction, and excellent wear resistance. A novel analytical approach was introduced to extract stress–strain field (SSF) gradients and divergences from nanoindentation data, revealing alternating strain-hardening and strain-softening cycles beneath the incrementally loaded indenter. The discovered oscillatory behavior, consistent across all samples under the investigation, suggests a general deformation mechanism in thin films under incremental loading. Fourier analysis of the SSF gradient oscillatory pattern revealed a variety of characteristic dominant wavelengths within the length-scale interval (0.84–8.10) nm, indicating multi-scale nanomechanical responses. Additionally, the NTC samples display an anisotropic coating morphology exhibited as unidirectional undulating surface roughness waves, potentially attributed to atomic shadowing, strain-induced instabilities, and limited adatom diffusion. These findings deepen our understanding of nanoscale deformation in advanced PVD coatings and underscore the utility of SSF analysis for probing thin-film mechanics. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

32 pages, 5548 KB  
Article
Analysis of the Impact of Fabric Surface Profiles on the Electrical Conductivity of Woven Fabrics
by Ayalew Gebremariam, Magdalena Tokarska and Nawar Kadi
Materials 2025, 18(11), 2456; https://doi.org/10.3390/ma18112456 - 23 May 2025
Viewed by 711
Abstract
The surface profile and structural alignment of fibers and yarns in fabrics are critical factors affecting the electrical properties of conductive textile surfaces. This study aimed to investigate the impact of fabric surface roughness and the geometrical parameters of woven fabrics on their [...] Read more.
The surface profile and structural alignment of fibers and yarns in fabrics are critical factors affecting the electrical properties of conductive textile surfaces. This study aimed to investigate the impact of fabric surface roughness and the geometrical parameters of woven fabrics on their electrical resistance properties. Surface roughness was assessed using the MicroSpy® Profile profilometer FRT (Fries Research & Technology) Metrology™, while electrical resistance was evaluated using the Van der Pauw method. The findings indicate that rougher fabric surfaces exhibit higher electrical resistance due to surface irregularities and lower yarn compactness. In contrast, smoother fabrics improve conductivity by enhancing surface uniformity and yarn contact. Fabric density, particularly weft density, governs the structural alignment of yarns. A 35% increase in weft density (W19–W27) resulted in a 13–15% reduction in resistance, confirming that denser fabrics facilitate current flow. Higher weft density also increases directional resistance differences, enhancing anisotropic behavior. Angular distribution analysis showed lower resistance and greater anisotropy at perpendicular orientations (0° and 180°, the weft direction; 90° and 270°, the warp direction), while diagonal directions (45°, 135°, 225°, and 315°) exhibited higher resistance. Surface roughness further hindered current flow, whereas increased weft density and surface mass reduced resistance and improved the directional dependencies of the electrical resistances. This analysis was conducted based on research using woven fabrics produced from silver-plated polyamide yarns (Shieldex® 117/17 HCB). These insights support the optimization of these conductive fabrics for smart textiles, wearable sensors, and e-textiles. Fabric variants W19 and W21, with lower resistance variability and better isotropic behavior under the S electrode arrangement, could be proposed as suitable materials for integration into compact sensing systems like heart rate or bio-signal monitors. Full article
Show Figures

Figure 1

12 pages, 2235 KB  
Article
The Influence of Anisotropic Microstructures on the Ice Adhesion Performance of Rubber Surfaces
by Fangyuan Zhang, Xiaosen Wang, Shilin Zhang, Xiaoqing Cao, Qiang He and Lu Li
Coatings 2025, 15(5), 612; https://doi.org/10.3390/coatings15050612 - 21 May 2025
Viewed by 578
Abstract
Anti-icing and de-icing technologies are crucial in modern aviation, with optimising ice adhesion performance on material surfaces being a key challenge. This study proposes a straightforward method for fabricating hydrophobic silicone rubber surfaces using a mesh to construct microstructures. The influence of microstructure [...] Read more.
Anti-icing and de-icing technologies are crucial in modern aviation, with optimising ice adhesion performance on material surfaces being a key challenge. This study proposes a straightforward method for fabricating hydrophobic silicone rubber surfaces using a mesh to construct microstructures. The influence of microstructure size and anisotropy on surface wettability and ice adhesion performance is systematically investigated. The experimental results demonstrate that introducing microstructures significantly enhances the hydrophobicity of silicone rubber surfaces, achieving a maximum static contact angle of 149.3 ± 1.3°. For microstructures with identical shapes, dimensional variations affect surface roughness and functional performance. Although the structure with the most significant dimension (600#-SR) exhibits the highest surface roughness, smaller structures (e.g., 1400#-SR) demonstrate superior hydrophobicity and lower ice adhesion strength, likely due to enhanced air entrapment and reduced effective solid–liquid and solid–ice contact areas. Furthermore, due to anisotropic microstructures, a marked directional difference in ice adhesion strength is observed: the lowest strength in the X direction is 38.6 kPa, compared to 63.3 kPa in the Y direction. Fine-tuning the size and configuration of microstructures effectively minimises the ice adhesion strength and enables targeted optimisation of surface properties. This research offers theoretical support for developing innovative, energy-efficient materials with superior anti-icing properties and provides new insights for crafting solutions tailored to various anti-icing needs. Full article
Show Figures

Figure 1

26 pages, 47051 KB  
Article
Dynamic Light Path and Bidirectional Reflectance Effects on Solar Noise in UAV-Borne Photon-Counting LiDAR
by Kuifeng Luan, Jinhui Zheng, Wei Kong, Weidong Zhu, Lizhe Zhang, Peiyao Zhang and Lin Liu
Remote Sens. 2025, 17(10), 1708; https://doi.org/10.3390/rs17101708 - 13 May 2025
Viewed by 704
Abstract
Accurate solar background noise modeling in island-reef LiDAR surveys is hindered by anisotropic coastal reflectivity and dynamic light paths, which isotropic models fail to address. We propose BNR-B, a bidirectional reflectance distribution function (BRDF)-based noise model that integrates solar-receiver geometry with micro-facet scattering [...] Read more.
Accurate solar background noise modeling in island-reef LiDAR surveys is hindered by anisotropic coastal reflectivity and dynamic light paths, which isotropic models fail to address. We propose BNR-B, a bidirectional reflectance distribution function (BRDF)-based noise model that integrates solar-receiver geometry with micro-facet scattering dynamics. Validated via single-photon LiDAR field tests on diverse coastal terrains at Jiajing Island, China, BNR-B reveals the following: (1) Solar zenith/azimuth angles non-uniformly modulate noise fields—higher solar zenith angles reduce noise intensity and homogenize spatial distribution; (2) surface reflectivity linearly correlates with noise rate (R2 > 0.99), while roughness governs scattering directionality through micro-facet redistribution. BNR-B achieves 28.6% higher noise calculation accuracy than Lambertian models, with a relative phase error < 2% against empirical data. As the first BRDF-derived solar noise correction framework for coastal LiDAR, it addresses critical limitations of isotropic assumptions by resolving directional noise modulation. The model’s adaptability to marine–terrestrial interfaces enhances precision in coastal monitoring and submarine mapping, offering transformative potential for geospatial applications requiring photon-counting LiDAR in complex environments. Key innovations include dynamic coupling of geometric optics and surface scattering physics, enabling robust spatiotemporal noise quantification, critical for high-resolution terrain reconstruction. Full article
Show Figures

Figure 1

14 pages, 3667 KB  
Article
Rough Surfaces Simulation and Its Contact Characteristic Parameters Based on Ubiquitiform Theory
by Yan Feng, Peng Yang, Yixiong Feng, Zhouming Hang, Laihua Tao and Peifeng Sun
Processes 2025, 13(5), 1330; https://doi.org/10.3390/pr13051330 - 26 Apr 2025
Viewed by 443
Abstract
Ubiquitiform is a new theory of finite-order self-similar physical structure and it is more reasonable to describe real engineering surfaces by ubiquitiform rather than fractal. In this paper, by introducing the frequency truncation criterion, a new analytical expression of the two-dimensional W–M function [...] Read more.
Ubiquitiform is a new theory of finite-order self-similar physical structure and it is more reasonable to describe real engineering surfaces by ubiquitiform rather than fractal. In this paper, by introducing the frequency truncation criterion, a new analytical expression of the two-dimensional W–M function based on the ubiquitiform theory is firstly derived and constructed and the two-dimensional ubiquitiformal curve characterization under different contact characteristic parameters is achieved. On this basis, the anisotropic three-dimensional surface W–M function with ubiquitiformal features is constructed, and the evolution law of the anisotropic three-dimensional surface morphology under the regulation of the ubiquitiformal complexity is investigated. Then, an improved adaptive box counting algorithm is proposed, and the lower limit of the metric scale in the self-similarity region of the asperities on the rough surface is determined and then the computation method of the ubiquitiformal complexity is established. At last, the validity and accuracy of the method are confirmed by the Koch curves. Key findings include: (1) higher ubiquitiformal complexity D corresponds to increased surface irregularity and complexity; (2) the characteristic scale factor G affects surface height only; (3) reducing the lower limit of metric scale δmin increases surface undulation frequency, revealing finer details. This research provides a rationale and quantitative guidance for the matching design of critical joint interfaces in modern precision machinery. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

31 pages, 7519 KB  
Article
An Experimental Investigation into Trochoidal Milling for High-Quality GFRP Machining
by Ondřej Bílek, Martin Řezníček, Andrzej Matras, Tomáš Solařík and Lubomír Macků
Materials 2025, 18(7), 1669; https://doi.org/10.3390/ma18071669 - 5 Apr 2025
Cited by 1 | Viewed by 2834
Abstract
This study investigates the effectiveness of trochoidal (adaptive) milling in machining Glass Fiber Reinforced Polymer (GFRP), emphasizing its potential advantages over conventional milling. Six coated solid carbide end mills, each with distinct geometries, were evaluated under identical conditions to assess the cutting forces, [...] Read more.
This study investigates the effectiveness of trochoidal (adaptive) milling in machining Glass Fiber Reinforced Polymer (GFRP), emphasizing its potential advantages over conventional milling. Six coated solid carbide end mills, each with distinct geometries, were evaluated under identical conditions to assess the cutting forces, surface quality, dimensional accuracy, burr formation, chip size distribution, and tool wear. Trochoidal milling demonstrated shorter cycle times—up to 23% faster—and higher material removal rates (MRRs), while conventional milling provided superior dimensional control and smoother surfaces in certain fiber-sensitive regions. A four-tooth cutter with a low helix angle (10°) and aluminum-oxide coating delivered the best overall performance, balancing minimal tool wear with high-quality finishes (arithmetic mean roughness, Ra, as low as 1.36 μm). The results indicate that although conventional milling can exhibit a 25%-lower RMS cutting force, its peak forces and extended machining times may limit the throughput. Conversely, trochoidal milling, when coupled with an appropriately robust tool, effectively manages the cutting forces, improves the surface quality, and reduces the machining time. Most chips produced were less than 11 μm in size, highlighting the need for suitable dust extraction. Notably, a hybrid approach—trochoidal roughing followed by conventional finishing—offers a promising method for achieving both efficient material removal and enhanced dimensional accuracy in GFRP components. Full article
(This article belongs to the Special Issue Research on Metal Cutting, Casting, Forming, and Heat Treatment)
Show Figures

Figure 1

12 pages, 5401 KB  
Article
Comparison of 2D and 3D Surface Roughness Parameters of AlMgSi0.5 Aluminium Alloy Surfaces Machined by Abrasive Waterjet
by Csaba Felhő, Krisztina Kun-Bodnár and Zsolt Maros
J. Manuf. Mater. Process. 2025, 9(3), 80; https://doi.org/10.3390/jmmp9030080 - 2 Mar 2025
Cited by 2 | Viewed by 1003
Abstract
The use of 3D roughness parameters is increasingly gaining ground in various areas of engineering, especially in academic research. In many cases, however, these studies primarily cover the illustration of the character of the surfaces, the interpretation of areal numerical roughness values is [...] Read more.
The use of 3D roughness parameters is increasingly gaining ground in various areas of engineering, especially in academic research. In many cases, however, these studies primarily cover the illustration of the character of the surfaces, the interpretation of areal numerical roughness values is often disputed. The goal of this paper is to examine how the 2D and 3D roughness parameters change in the case of anisotropic surfaces, such as surfaces cut with an abrasive water jet. For this purpose, abrasive water jet cutting experiments were performed on AlMgSi0.5 aluminum alloy using different technological parameters. After the experiments, two amplitude-type 3D roughness parameters (Sa and Sz) of the cut surface and four profile parameters (Ra, Rz for roughness and Pa, Pz for raw profile) were measured at five different depths. Our conducted research indicates that the 3D parameters represent a kind of average value for certain roughness characteristics and a maximum value for others. The paper also reports on how these roughness characteristics change as a function of feed speed. Full article
Show Figures

Figure 1

16 pages, 5593 KB  
Article
Geometric Accuracy and Dimensional Precision in 3D Printing-Based Gear Manufacturing: A Study on Interchangeability and Forming Precision
by Xiaofeng Wei, Siwei Zhang, Lingli Sun, Xinyu Zhao, Mengchen Sun, Run Yu, Xingwen Zhou and Yuhang Li
Polymers 2025, 17(3), 416; https://doi.org/10.3390/polym17030416 - 4 Feb 2025
Cited by 1 | Viewed by 2055
Abstract
This paper investigates the geometric interchangeability and dimensional precision of parts fabricated using Fused Deposition Modeling (FDM), with a focus on gear manufacturing. By employing a substrate and two spur gears as test components, critical process parameters, including layer thickness, extrusion speed, and [...] Read more.
This paper investigates the geometric interchangeability and dimensional precision of parts fabricated using Fused Deposition Modeling (FDM), with a focus on gear manufacturing. By employing a substrate and two spur gears as test components, critical process parameters, including layer thickness, extrusion speed, and print temperature, were optimized to achieve enhanced accuracy. Geometric and dimensional tolerances such as straightness, roundness, and surface roughness were systematically evaluated using advanced metrological techniques. The results indicate that larger components demonstrate higher precision, with deviations for large and pinion gears ranging between −0.045 and 0.060 mm, and −0.150 and 0.078 mm, respectively. Analysis reveals that the anisotropic nature of the FDM process and thermal shrinkage significantly impact accuracy, particularly in smaller features. Residual stress analysis reveals that smaller components formed via FDM exhibit higher stress concentrations and dimensional deviations due to voids and uneven thermal contraction, whereas larger components and flat substrates achieve better stress distribution and precision. The findings suggest that reducing material shrinkage coefficients and optimizing process parameters can enhance part quality, achieving dimensional tolerances within ±0.1 mm and geometric consistency suitable for practical applications. This research highlights the potential of FDM for precision manufacturing and provides insights into improving its performance for high-demand industrial applications. Full article
(This article belongs to the Special Issue Polymer Materials for Application in Additive Manufacturing)
Show Figures

Figure 1

16 pages, 15998 KB  
Article
The Abrasive Water Jet Cutting Process of Carbon-Fiber-Reinforced Polylactic Acid Samples Obtained by Additive Manufacturing: A Comparative Analysis
by Sergio de la Rosa, Lucía Rodríguez-Parada, Moises Batista Ponce and Pedro F. Mayuet Ares
J. Compos. Sci. 2024, 8(10), 437; https://doi.org/10.3390/jcs8100437 - 21 Oct 2024
Cited by 2 | Viewed by 1621
Abstract
Carbon-fiber-reinforced polymer (CFRP) composites are widely used across industries due to their enhanced strength and stiffness properties. Fused deposition modeling (FDM) enables the cost-effective production of polymer samples, such as carbon-fiber-reinforced PLA (CFR-PLA). However, CFRP’s hardness and anisotropic nature present significant challenges in [...] Read more.
Carbon-fiber-reinforced polymer (CFRP) composites are widely used across industries due to their enhanced strength and stiffness properties. Fused deposition modeling (FDM) enables the cost-effective production of polymer samples, such as carbon-fiber-reinforced PLA (CFR-PLA). However, CFRP’s hardness and anisotropic nature present significant challenges in conventional machining, including rapid tool wear and thermal sensitivity. Consequently, abrasive water jet machining (AWJM) has proven to be an effective alternative for machining CFRP materials, offering benefits such as reduced tool wear, minimized thermal damage, and improved cutting quality. This study focuses on a comparative analysis of the effects of AWJM parameters on PLA and CFR-PLA samples, specifically to evaluate the influence of carbon fiber reinforcement on machining performance. The findings highlight the critical role of reinforcements in machining behavior. The results suggest that optimizing cutting parameters significantly reduces taper formation and improves machining accuracy. In particular, adjustments to process parameters resulted in lower taper angles and reduced surface roughness in the cutting zones of the CFR-PLA samples. Full article
(This article belongs to the Special Issue Application of Composite Materials in Additive Manufacturing)
Show Figures

Graphical abstract

23 pages, 4313 KB  
Article
Corrosion-Resistant Polymer Composite Tubes with Enhanced Thermal Conductivity for Heat Exchangers
by Jan-Hendrik Imholze and Heike Glade
Inventions 2024, 9(5), 111; https://doi.org/10.3390/inventions9050111 - 21 Oct 2024
Cited by 1 | Viewed by 2852
Abstract
The heat transfer surfaces of heat exchangers are usually made of metals which may suffer from severe corrosion. When corrosive fluids are present, highly corrosion-resistant metals, graphite or ceramics are used, resulting in high costs. This study presents measured data on the thermophysical [...] Read more.
The heat transfer surfaces of heat exchangers are usually made of metals which may suffer from severe corrosion. When corrosive fluids are present, highly corrosion-resistant metals, graphite or ceramics are used, resulting in high costs. This study presents measured data on the thermophysical and mechanical properties of recently developed corrosion-resistant polymer composite tubes for use in heat exchangers. Extruded polymer composite tubes based on polypropylene or polyphenylene sulfide filled with graphite flakes were investigated. The anisotropic thermal conductivities of the polymer composite tubes were measured at various temperatures. The through-wall thermal conductivity of the tubes made of polypropylene filled with 50 vol.% graphite is increased by a factor of 30 compared to pure polypropylene, resulting in a thermal conductivity of 6.5 W/(m K) at 25 °C. The tubes composed of polyphenylene sulfide filled with 50 vol.% graphite have a through-wall thermal conductivity of 4.5 W/(m K) at 25 °C. The mechanical properties of the polymer composites were measured using tensile and flexural tests at different temperatures. The composite materials are more rigid and keep their mechanical properties up to a higher temperature level compared to the unfilled polymers. Surface roughness measurements show the very smooth and sealed surface of the composite tubes. The results contribute to establishing the viability of using polymer composites for heat exchanger applications with corrosive fluids. Full article
(This article belongs to the Special Issue Innovations in Heat Exchangers)
Show Figures

Figure 1

14 pages, 21261 KB  
Article
Investigating the Relationship between Building Orientation and Surface Properties of Stainless Steel Prepared via Selective Laser Melting
by Tao Fang, Huanghuang Jin, Feng Huang, Yuan Chu, Xiaofan Zheng and Song Yu
Coatings 2024, 14(9), 1206; https://doi.org/10.3390/coatings14091206 - 19 Sep 2024
Viewed by 1182
Abstract
In our investigation of the influence rules and mechanisms of the building orientation on the surface properties of 316L stainless steel created via selective laser melting, we used X-ray diffractometry, scanning electron microscopy, and electron backscatter diffraction to investigate the phases, microstructures, and [...] Read more.
In our investigation of the influence rules and mechanisms of the building orientation on the surface properties of 316L stainless steel created via selective laser melting, we used X-ray diffractometry, scanning electron microscopy, and electron backscatter diffraction to investigate the phases, microstructures, and textures of specimens. In addition, we employed a digital microhardness tester, friction, and wear-testing apparatus, along with an electrochemical workstation, to examine variations in the surface properties. The results indicated that the surface phase compositions of the specimens with different building orientations were similar; however, they displayed anisotropic behavior in grain size, orientation, and texture. Notably, the surface densification of the specimens at 0°, 30°, 45°, and 60° initially decreased before subsequently increasing. In contrast, the surface roughness showed a pattern of first increasing and then declining. Moreover, the microhardness, wear resistance, and corrosion resistance decreased with an increasing inclination angle. Full article
Show Figures

Figure 1

15 pages, 2867 KB  
Review
Optimizing Milling Parameters for Enhanced Machinability of 3D-Printed Materials: An Analysis of PLA, PETG, and Carbon-Fiber-Reinforced PETG
by Mohamad El Mehtedi, Pasquale Buonadonna, Rayane El Mohtadi, Gabriela Loi, Francesco Aymerich and Mauro Carta
J. Manuf. Mater. Process. 2024, 8(4), 131; https://doi.org/10.3390/jmmp8040131 - 26 Jun 2024
Cited by 13 | Viewed by 5244
Abstract
Fused deposition modeling (FDM) is widely applied in various fields due to its affordability and ease of use. However, it faces challenges such as achieving high surface quality, precise dimensional tolerance, and overcoming anisotropic mechanical properties. This review analyzes and compares the machinability [...] Read more.
Fused deposition modeling (FDM) is widely applied in various fields due to its affordability and ease of use. However, it faces challenges such as achieving high surface quality, precise dimensional tolerance, and overcoming anisotropic mechanical properties. This review analyzes and compares the machinability of 3D-printed PLA, PETG, and carbon-fiber-reinforced PETG, focusing on surface roughness and burr formation. A Design of Experiments (DoE) with a full-factorial design was used, considering three factors: rotation speed, feed rate, and depth of cut. Each factor had different levels: rotational speed at 3000, 5500, and 8000 rpm; feed rate at 400, 600, and 800 mm/min; and depth of cut at 0.2, 0.4, 0.6, and 0.8 mm. Machinability was evaluated by roughness and burr height using a profilometer for all the materials under the same milling conditions. To evaluate the statistical significance of the influence of various processing parameters on surface roughness and burr formation in 3D-printed components made of three different materials—PLA, PETG, and carbon-fiber-reinforced PETG—an analysis of variance (ANOVA) test was conducted. This analysis investigated whether variations in rotational speed, feed rate, and depth of cut resulted in measurable and significant differences in machinability results. Results showed that milling parameters significantly affect roughness and burr formation, with optimal conditions for minimizing any misalignment highlighting the trade-offs in parameter selection. These results provide insights into the post-processing of FDM-printed materials with milling, indicating the need for a balanced approach to parameter selection based on application-specific requirements. Full article
Show Figures

Figure 1

19 pages, 6057 KB  
Article
Experimental Study of Direct Shear Properties of Anisotropic Reservoir Shale
by Bowen Zheng, Shengwen Qi, Songfeng Guo, Ning Liang, Guangming Luo, Xiaohui Zhang, Wei Lu, Chao Jin, Yongchao Li, Xin Yu, Zifang Zhu and Jianing Cong
Energies 2024, 17(8), 1977; https://doi.org/10.3390/en17081977 - 22 Apr 2024
Cited by 3 | Viewed by 1492
Abstract
Understanding the shear mechanical properties of shale reservoirs is of great significance in the study of the formation stability around horizontal shale wells and the propagation and evolution of fractures for shale fracturing. However, the existing direct shear test results are limited due [...] Read more.
Understanding the shear mechanical properties of shale reservoirs is of great significance in the study of the formation stability around horizontal shale wells and the propagation and evolution of fractures for shale fracturing. However, the existing direct shear test results are limited due to small sample sizes and low shear rates. Based on previous experimental research results, the mechanical properties of anisotropic reservoir shale in direct shear tests with different experimental conditions were explored in this study. It was found that the shear mode, shear strain rate, and normal stress have a significant impact on the deformation and failure characteristics of shale. The peak shear displacement, peak shear strength, and shear stiffness of shale present an increasing trend of fluctuation, with an increase in the bedding angle. The peak shear strength of shale decreases with an increase in the shear strain rate, and this decrease trend descends with an increase in the shear strain rate. The shape of the shear fracture zone and the shear fracture mode of shale exhibit bedding effect characteristics. The fractal dimension of the shale shear fracture surface morphology shows a trend of fluctuation with the variation in the bedding angle. Further, the shear strain rate was found to play a dominant role in the fractal dimension of the shear fracture surface. The larger shear strain rate strengthens the bedding effect of the roughness for the shear fracture surface morphology. The results of this study provide a theoretical reference for determining the engineering geomechanics characteristics of shale reservoirs. Full article
(This article belongs to the Special Issue New Challenges in Unconventional Oil and Gas Reservoirs)
Show Figures

Figure 1

Back to TopTop