Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (223)

Search Parameters:
Keywords = anthropogenic emission control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 712 KB  
Review
Next-Generation Wastewater Treatment: Omics and AI-Driven Microbial Strategies for Xenobiotic Bioremediation and Circular Resource Recovery
by Prabhaharan Renganathan and Lira A. Gaysina
Processes 2025, 13(10), 3218; https://doi.org/10.3390/pr13103218 - 9 Oct 2025
Viewed by 272
Abstract
Wastewater treatment plants (WWTPs) function as engineered ecosystems in which microbial consortia mediate nutrient cycling, xenobiotic degradation, and heavy metal detoxification. This review discusses a forward-looking roadmap that integrates microbial ecology, multi-omics diagnostics, and artificial intelligence (AI) for next-generation treatments. Meta-analyses suggest that [...] Read more.
Wastewater treatment plants (WWTPs) function as engineered ecosystems in which microbial consortia mediate nutrient cycling, xenobiotic degradation, and heavy metal detoxification. This review discusses a forward-looking roadmap that integrates microbial ecology, multi-omics diagnostics, and artificial intelligence (AI) for next-generation treatments. Meta-analyses suggest that a globally conserved core microbiome indicates sludge functions, with high predictive value for treatment stability. Multi-omics approaches, including metagenomics, metatranscriptomics, and environmental DNA (eDNA) profiling, have integrated microbial composition with greenhouse gas (GHG) emissions, showing that WWTPs contribute 2–5% of anthropogenic nitrous oxide (N2O) emissions. Emerging AI-enhanced eDNA models have achieved >90% predictive accuracy for effluent quality and antibiotic resistance gene (ARG) prevalence, facilitating near-real-time monitoring and adaptive control of effluent quality. Key advances include microbial strategies for degrading organic pollutants, pesticides, and heavy metals and monitoring industrial effluents. This review highlights both translational opportunities, including engineered microbial consortia, AI-driven digital twins and molecular indices, and persistent barriers, including ARG dissemination, resilience under environmental stress and regulatory integration. Future WWTPs are envisioned as adaptive, climate-conscious biorefineries that recover resources, mitigate ecological risks, and reduce their carbon footprint. Full article
(This article belongs to the Special Issue Feature Review Papers in Section "Environmental and Green Processes")
Show Figures

Figure 1

21 pages, 22622 KB  
Article
Comparison of FNR and GNR Based on TROPOMI Satellite Data for Ozone Sensitivity Analysis in Chinese Urban Agglomerations
by Jing Fan, Chao Yu, Yichen Li, Ying Zhang, Meng Fan, Jinhua Tao and Liangfu Chen
Remote Sens. 2025, 17(19), 3321; https://doi.org/10.3390/rs17193321 - 27 Sep 2025
Viewed by 283
Abstract
Currently, ozone (O3) has become one of the primary air pollutants in China, underscoring the importance of analyzing ozone formation sensitivity (OFS) for effective pollution control. Ozone sensitivity indices serve as effective tools for OFS identification. Among them, the ratio of [...] Read more.
Currently, ozone (O3) has become one of the primary air pollutants in China, underscoring the importance of analyzing ozone formation sensitivity (OFS) for effective pollution control. Ozone sensitivity indices serve as effective tools for OFS identification. Among them, the ratio of volatile organic compounds (VOCs) to nitrogen oxides (NOx)—such as the formaldehyde-to-nitrogen dioxide ratio (FNR, defined as HCHO/NO2, where HCHO represents VOCs and NO2 represents NOx)—is one of the most widely used satellite-based indicators. Recent studies have highlighted glyoxal (CHOCHO) as another critical ozone precursor, prompting the proposal of the glyoxal-to-nitrogen dioxide ratio (GNR, CHOCHO/NO2) as an alternative metric. This study systematically compares the performance of FNR and GNR across four major urban agglomerations in China: Beijing–Tianjin–Hebei (BTH), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Chengdu–Chongqing (CY) region, by integrating satellite remote sensing with ground-based observations. Results reveal that both indices exhibit consistent spatial trends in OFS distribution, transitioning from VOC-limited regimes in urban centers to NOx-limited regimes in surrounding suburban areas. However, differences emerge in threshold values and classification outcomes. During summer, FNR identifies urban areas as transitional regimes (or VOC-limited in regions such as YRD and PRD), while suburban areas are classified as NOx-limited. In contrast, GNR, which shows heightened sensitive to anthropogenic VOCs (AVOCs), exhibits a more restricted spatial extent in the transition regimes. By autumn, most urban areas shift toward VOC-limited regimes, while suburban regions remain NOx-limited. Thresholds for both VOCs and NOx increase during this period, with GNR demonstrating stronger sensitivity to NOx. These findings underscore that the choice between FNR and GNR directly influences OFS determination, as their differing responses to biogenic and anthropogenic emissions lead to different conclusions. Future research should focus on integrating the complementary strengths of both indices to develop a more robust OFS identification method, thereby providing a theoretical basis for formulating effective ozone control strategies. Full article
(This article belongs to the Special Issue Remote Sensing Applications for Trace Gases and Air Quality)
Show Figures

Figure 1

19 pages, 4701 KB  
Article
Temporal Dynamics and Source Apportionment of PM2.5 in a Coastal City of Southeastern China: Insights from Multiyear Analysis
by Liliang Chen, Jing Wang, Qiyuan Wang, Youwei Hong, Xinhua Wang, Wen Yang, Bin Han, Mazhan Zhuang and Zhipeng Bai
Atmosphere 2025, 16(10), 1119; https://doi.org/10.3390/atmos16101119 - 24 Sep 2025
Viewed by 366
Abstract
Xiamen, a rapidly developing coastal metropolis and tourist hub in southeastern China, faces air quality challenges due to its dense population and tourism reliance. This study investigates PM2.5 sources and temporal variations during autumn 2013–2017 via chemical characterization, mass reconstruction, and receptor [...] Read more.
Xiamen, a rapidly developing coastal metropolis and tourist hub in southeastern China, faces air quality challenges due to its dense population and tourism reliance. This study investigates PM2.5 sources and temporal variations during autumn 2013–2017 via chemical characterization, mass reconstruction, and receptor modeling. The Positive Matrix Factorization (PMF) model identified five sources: secondary sulfate (31%), coal/vehicle emissions (28%), industrial emissions with secondary organic aerosols (SOA, 20%), ship emissions (14%), and fugitive dust (7%). Interannual variations in source contributions highlighted impacts of anthropogenic activities, meteorology, power plant upgrades, and stricter vehicle standards. PM2.5 declined 19% (2013–2017), driven by emission controls, while SOA surged 42% (2015–2017) due to VOC oxidation and lower temperatures. Backward trajectory and Potential Source Contribution Function (PSCF) analyses revealed significant regional transport from northern industrial zones (32% contribution) and maritime activities. Ship emissions, which have remained relatively stable over the years, underscore the need for stricter marine regulations. Fugitive dust peaked in 2015 (25.8% of PM2.5), linked to urban construction. The findings emphasize the interplay of local emissions and regional transport in shaping PM2.5 pollution, providing a scientific basis for targeted control strategies in coastal cities with similar socioeconomic and geographic contexts. Full article
(This article belongs to the Special Issue Air Pollution in China (4th Edition))
Show Figures

Figure 1

20 pages, 3801 KB  
Article
Structural Study of Metakaolin-Phosphate Geopolymers Prepared with Wide Range of Al/P Molar Ratios
by Martin Keppert, Martina Urbanová, Ivana Šeděnková, Václav Pokorný, Michala Breníková, Jitka Krejsová, Vojtěch Pommer, Eva Vejmelková, Dana Koňáková and Jiří Brus
Polymers 2025, 17(17), 2358; https://doi.org/10.3390/polym17172358 - 30 Aug 2025
Viewed by 885
Abstract
Geopolymers represent an innovative and environmentally sustainable alternative to traditional construction materials, offering significant potential for reducing anthropogenic CO2 emissions. Among these, phosphoric acid-activated metakaolin-based systems have attracted increasing attention for their chemical and thermal resilience. In this study, we present a [...] Read more.
Geopolymers represent an innovative and environmentally sustainable alternative to traditional construction materials, offering significant potential for reducing anthropogenic CO2 emissions. Among these, phosphoric acid-activated metakaolin-based systems have attracted increasing attention for their chemical and thermal resilience. In this study, we present a comprehensive structural and mechanical evaluation of metakaolin-based geopolymers synthesized across a wide range of Al/P molar ratios (0.8–4.0). Six formulations were systematically prepared and analyzed using X-ray powder diffraction (XRPD), small-angle X-ray scattering (SAXS), Fourier-transform infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance (ssNMR), and complementary mechanical testing. The novelty of this work lies in the integrated mapping of composition–structure–property relationships across the broad Al/P spectrum under controlled synthesis, combined with the rare application of SAXS to reveal composition-dependent nanoscale domains (~18–50 nm). We identify a stoichiometric window at Al/P ≈ 1.5, where complete acid consumption leads to a structurally homogeneous AlVI–O–P network, yielding the highest compressive strength. In contrast, acid-rich systems exhibit divergent flexural and compressive behaviors, with enhanced flexural strength linked to hydrated silica domains arising from metakaolin dealumination, quantitatively tracked by 29Si MAS NMR. XRPD further reveals the formation of uncommon Si–P crystalline phases (SiP2O7, Si5P6O25) under low-temperature curing in acid-rich compositions. Together, these findings provide new insights into the nanoscale structuring, phase evolution, and stoichiometric control of silica–alumino–phosphate geopolymers, highlighting strategies for optimizing their performance in demanding thermal and chemical environments. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

27 pages, 17291 KB  
Article
Application of a Modeling Framework to Mitigate Ozone Pollution in Changzhou, Yangtze River Delta Region
by Zhihui Kong, Chuchu Chen, Jiong Fang, Ling Huang, Hui Chen, Jiani Tan, Yangjun Wang, Li Li and Miao Ning
Sustainability 2025, 17(16), 7202; https://doi.org/10.3390/su17167202 - 8 Aug 2025
Viewed by 593
Abstract
Ozone pollution in densely populated urban regions poses a great threat to public health, due to the intensive anthropogenic emissions of ozone precursors and is further aggravated by global warming and the urban heat island phenomenon. Air quality models have been utilized to [...] Read more.
Ozone pollution in densely populated urban regions poses a great threat to public health, due to the intensive anthropogenic emissions of ozone precursors and is further aggravated by global warming and the urban heat island phenomenon. Air quality models have been utilized to formulate and evaluate air pollution control strategies. This study presents a comprehensive modeling assessment of ozone mitigation strategies during an ozone pollution episode in Changzhou, an industrial city in the Yangtze River Delta region. Utilizing the Community Multiscale Air Quality Modeling System (CMAQ), we quantified the contribution of ozone from different emission sectors and counties within Changzhou using the integrated source apportionment method (ISAM). During the pollution period, local emissions within Changzhou account for an average of 41.5% of MDA8 ozone, with particularly notable contributions from Jingkai (11.2%), Wujin (9.5%), and Liyang (7.8%). Upon these findings, we evaluated three sets of emission reduction scenarios: uniform, sector-specific, and county-specific reductions. Results show that industry and transportation are responsible for over 20% of ozone concentrations, and targeted reductions in these sources yielded the most significant decreases in ozone levels. Notably, reducing industrial emissions alone decreased ozone concentrations by 3.2 μg m−3 during the pollution episode. County-specific reductions revealed the importance of targeted strategies, with certain counties showing more pronounced responses to emission controls. On a daily basis, emission reductions in Xinbei contributed to a maximum ozone decrease of 4.4 μg m−3. This study provides valuable insights into the efficacy of different mitigation measures in Changzhou and offers a practical and useful framework for policymakers to implement strategies while addressing the complexities of urban air quality management. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

15 pages, 1071 KB  
Article
A Synthetic Difference-in-Differences Approach to Assess the Impact of Shanghai’s 2022 Lockdown on Ozone Levels
by Yumin Li, Jun Wang, Yuntong Fan, Chuchu Chen, Jaime Campos Gutiérrez, Ling Huang, Zhenxing Lin, Siyuan Li and Yu Lei
Sustainability 2025, 17(15), 6997; https://doi.org/10.3390/su17156997 - 1 Aug 2025
Viewed by 615
Abstract
Promoting sustainable development requires a clear understanding of how short-term fluctuations in anthropogenic emissions affect urban environmental quality. This is especially relevant for cities experiencing rapid industrial changes or emergency policy interventions. Among key environmental concerns, variations in ambient pollutants like ozone (O [...] Read more.
Promoting sustainable development requires a clear understanding of how short-term fluctuations in anthropogenic emissions affect urban environmental quality. This is especially relevant for cities experiencing rapid industrial changes or emergency policy interventions. Among key environmental concerns, variations in ambient pollutants like ozone (O3) are closely tied to both public health and long-term sustainability goals. However, traditional chemical transport models often face challenges in accurately estimating emission changes and providing timely assessments. In contrast, statistical approaches such as the difference-in-differences (DID) model utilize observational data to improve evaluation accuracy and efficiency. This study leverages the synthetic difference-in-differences (SDID) approach, which integrates the strengths of both DID and the synthetic control method (SCM), to provide a more reliable and accurate analysis of the impacts of interventions on city-level air quality. Using Shanghai’s 2022 lockdown as a case study, we compare the deweathered ozone (O3) concentration in Shanghai to a counterfactual constructed from a weighted average of cities in the Yangtze River Delta (YRD) that did not undergo lockdown. The quasi-natural experiment reveals an average increase of 4.4 μg/m3 (95% CI: 0.24–8.56) in Shanghai’s maximum daily 8 h O3 concentration attributable to the lockdown. The SDID method reduces reliance on the parallel trends assumption and improves the estimate stability through unit- and time-specific weights. Multiple robustness checks confirm the reliability of these findings, underscoring the efficacy of the SDID approach in quantitatively evaluating the causal impact of emission perturbations on air quality. This study provides credible causal evidence of the environmental impact of short-term policy interventions, highlighting the utility of SDID in informing adaptive air quality management. The findings support the development of timely, evidence-based strategies for sustainable urban governance and environmental policy design. Full article
Show Figures

Figure 1

19 pages, 4690 KB  
Article
Immune-Redox Biomarker Responses to Short- and Long-Term Exposure to Naturally Emitted Compounds from Korean Red Pine (Pinus densiflora) and Japanese Cypress (Chamaecyparis obtusa): In Vivo Study
by Hui Ma, Jiyoon Yang, Chang-Deuk Eom, Johny Bajgai, Md. Habibur Rahman, Thu Thao Pham, Haiyang Zhang, Won-Joung Hwang, Seong Hoon Goh, Bomi Kim, Cheol-Su Kim, Keon-Ho Kim and Kyu-Jae Lee
Toxics 2025, 13(8), 650; https://doi.org/10.3390/toxics13080650 - 31 Jul 2025
Viewed by 867
Abstract
Volatile organic compounds (VOCs) are highly volatile chemicals in natural and anthropogenic environments, significantly affecting indoor air quality. Major sources of indoor VOCs include emissions from building materials, furnishings, and consumer products. Natural wood products release VOCs, including terpenes and aldehydes, which exert [...] Read more.
Volatile organic compounds (VOCs) are highly volatile chemicals in natural and anthropogenic environments, significantly affecting indoor air quality. Major sources of indoor VOCs include emissions from building materials, furnishings, and consumer products. Natural wood products release VOCs, including terpenes and aldehydes, which exert diverse health effects ranging from mild respiratory irritation to severe outcomes, such as formaldehyde-induced carcinogenicity. The temporal dynamics of VOC emissions were investigated, and the toxicological and physiological effects of the VOCs emitted by two types of natural wood, Korean Red Pine (Pinus densiflora) and Japanese Cypress (Chamaecyparis obtusa), were evaluated. Using female C57BL/6 mice as an animal model, the exposure setups included phytoncides, formaldehyde, and intact wood samples over short- and long-term durations. The exposure effects were assessed using oxidative stress markers, antioxidant enzyme activity, hepatic and renal biomarkers, and inflammatory cytokine profiles. Long-term exposure to Korean Red Pine and Japanese Cypress wood VOCs did not induce significant pathological changes. Japanese Cypress exhibited more distinct benefits, including enhanced oxidative stress mitigation, reduced systemic toxicity, and lower pro-inflammatory cytokine levels compared to the negative control group, attributable to its more favorable VOC emission profile. These findings highlight the potential health and environmental benefits of natural wood VOCs and offer valuable insights for optimizing timber use, improving indoor air quality, and informing public health policies. Full article
Show Figures

Figure 1

17 pages, 3579 KB  
Article
Source Apportionment of PM2.5 in a Chinese Megacity During Special Periods: Unveiling Impacts of COVID-19 and Spring Festival
by Kejin Tang, Xing Peng, Yuqi Liu, Sizhe Liu, Shihai Tang, Jiang Wu, Shaoxia Wang, Tingting Xie and Tingting Yao
Atmosphere 2025, 16(8), 908; https://doi.org/10.3390/atmos16080908 - 26 Jul 2025
Viewed by 548
Abstract
Long-term source apportionment of PM2.5 during high-pollution periods is essential for achieving sustained reductions in both PM2.5 levels and their health impacts. This study conducted PM2.5 sampling in Shenzhen from January to March over the years 2021–2024 to investigate the [...] Read more.
Long-term source apportionment of PM2.5 during high-pollution periods is essential for achieving sustained reductions in both PM2.5 levels and their health impacts. This study conducted PM2.5 sampling in Shenzhen from January to March over the years 2021–2024 to investigate the long-term impact of coronavirus disease 2019 and the short-term impact of the Spring Festival on PM2.5 levels. The measured average PM2.5 concentration during the research period was 22.5 μg/m3, with organic matter (OM) being the dominant component. Vehicle emissions, secondary sulfate, secondary nitrate, and secondary organic aerosol were identified by receptor model as the primary sources of PM2.5 during the observational periods. The pandemic led to a decrease of between 30% and 50% in the contributions of most anthropogenic sources in 2022 compared to 2021, followed by a rebound. PM2.5 levels in January–March 2024 dropped by 1.4 μg/m3 compared to 2021, mainly due to reduced vehicle emissions, secondary sulfate, fugitive dust, biomass burning, and industrial emissions, reflecting Shenzhen’s and nearby cities’ effective control measures. However, secondary nitrate and fireworks-related emissions rose significantly. During the Spring Festival, PM2.5 concentrations were 23% lower than before the festival, but the contributions of fireworks burning exhibited a marked increase in both 2023 and 2024. Specifically, during intense peak events, fireworks burning triggered sharp, short-term spikes in characteristic metal concentrations, accounting for over 50% of PM2.5 on those peak days. In the future, strict control over vehicle emissions and enhanced management of fireworks burning during special periods like the Spring Festival are necessary to reduce PM2.5 concentration and improve air quality. Full article
(This article belongs to the Special Issue New Insights in Air Quality Assessment: Forecasting and Monitoring)
Show Figures

Figure 1

15 pages, 3070 KB  
Article
Characteristics and Sources of VOCs During a Period of High Ozone Levels in Kunming, China
by Chuantao Huang, Yufei Ling, Yunbo Chen, Lei Tong, Yuan Xue, Chunli Liu, Hang Xiao and Cenyan Huang
Atmosphere 2025, 16(7), 874; https://doi.org/10.3390/atmos16070874 - 17 Jul 2025
Viewed by 654
Abstract
The increasing levels of ozone pollution have become a significant environmental issue in urban areas worldwide. Previous studies have confirmed that the urban ozone pollution in China is mainly controlled by volatile organic compounds (VOCs) rather than nitrogen oxides. Therefore, a study on [...] Read more.
The increasing levels of ozone pollution have become a significant environmental issue in urban areas worldwide. Previous studies have confirmed that the urban ozone pollution in China is mainly controlled by volatile organic compounds (VOCs) rather than nitrogen oxides. Therefore, a study on the emission characteristics and source analysis of VOCs is important for controlling urban ozone pollution. In this study, hourly concentrations of 57 VOC species in four groups were obtained in April 2022, a period of high ozone pollution in Kunming, China. The ozone formation potential analysis showed that the accumulated reactive VOCs significantly contributed to the subsequent ozone formation, particularly aromatics (44.16%) and alkanes (32.46%). In addition, the ozone production rate in Kunming is mainly controlled by VOCs based on the results of the empirical kinetic modeling approach (KNOx/KVOCs = 0.25). The hybrid single-particle Lagrangian integrated trajectory model and polar coordinate diagram showed high VOC and ozone concentrations from the southwest outside the province (50.28%) and the south in local areas (12.78%). Six factors were obtained from the positive matrix factorization model: vehicle exhaust (31.80%), liquefied petroleum gas usage (24.16%), the petrochemical industry (17.81%), fuel evaporation (11.79%), coal burning (7.47%), and solvent usage (6.97%). These findings underscore that reducing anthropogenic VOC emissions and strengthening controls on the related sources could provide a scientifically robust strategy for mitigating ozone pollution in Kunming. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

19 pages, 1633 KB  
Article
Machine Learning Modeling Reveals Divergent Air Pollutant Responses to Stringent Emission Controls in the Yangtze River Delta Region
by Qiufang Yao, Linhao Wang, Wenjing Qiu, Yutong Shi, Qi Xu, Yanping Xiao, Jiacheng Zhou, Shilong Li, Haobin Zhong and Jinsong Liu
Atmosphere 2025, 16(6), 710; https://doi.org/10.3390/atmos16060710 - 12 Jun 2025
Viewed by 1210
Abstract
Ozone (O3) and fine particulate matter (PM2.5) are critical atmospheric pollutants whose complex chemical coupling presents significant challenges for multi-pollutant control strategies. This study investigated the spatiotemporal variations and driving mechanisms of O3 and PM2.5 in Jiaxing, [...] Read more.
Ozone (O3) and fine particulate matter (PM2.5) are critical atmospheric pollutants whose complex chemical coupling presents significant challenges for multi-pollutant control strategies. This study investigated the spatiotemporal variations and driving mechanisms of O3 and PM2.5 in Jiaxing, China, during different COVID-19 lockdown periods from November 2019 to January 2024. Using high-resolution monitoring data, random forest modeling, and HYSPLIT backward trajectory analysis, we quantified the relative contributions of anthropogenic emissions, meteorological conditions, and regional transport to the formation and variation of O3 and PM2.5 concentrations. The results revealed a distinct inverse relationship between O3 and PM2.5, with meteorologically normalized PM2.5 decreasing significantly (−5.0 μg/m3 compared to the pre-lockdown baseline of 0.6 μg/m3), while O3 increased substantially (15.2 μg/m3 compared to the baseline of 5.3 μg/m3). Partial dependency analysis revealed that PM2.5-O3 relationships evolved from linear to non-linear patterns across lockdown periods, while NO2-O3 interactions indicated shifts from VOC-limited to NOx-limited regimes. Regional transport patterns exhibited significant temporal variations, with source regions shifting from predominantly northern areas pre-lockdown to more diverse directional contributions afterward. Notably, the partial lockdown period demonstrated the most balanced pollution control outcomes, maintaining reduced PM2.5 levels while avoiding O3 increases. These findings provide critical insights for developing targeted multi-pollutant control strategies in the Yangtze River Delta region and similar urban environments. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

19 pages, 810 KB  
Review
A Review of Offshore Methane Quantification Methodologies
by Stuart N. Riddick, Mercy Mbua, Catherine Laughery and Daniel J. Zimmerle
Atmosphere 2025, 16(5), 626; https://doi.org/10.3390/atmos16050626 - 20 May 2025
Cited by 1 | Viewed by 891
Abstract
Since pre-industrial times, anthropogenic methane emissions have increased and are partly responsible for a changing global climate. Natural gas and oil extraction activities are one significant source of anthropogenic methane. While methods have been developed and refined to quantify onshore methane emissions, the [...] Read more.
Since pre-industrial times, anthropogenic methane emissions have increased and are partly responsible for a changing global climate. Natural gas and oil extraction activities are one significant source of anthropogenic methane. While methods have been developed and refined to quantify onshore methane emissions, the ability of methods to directly quantify emissions from offshore production facilities remains largely unknown. Here, we review recent studies that have directly measured emissions from offshore production facilities and critically evaluate the suitability of these measurement strategies for emission quantification in a marine environment. The average methane emissions from production platforms measured using downwind dispersion methods were 32 kg h−1 from 188 platforms; 118 kg h−1 from 104 platforms using mass balance methods; 284 kg h−1 from 151 platforms using aircraft remote sensing; and 19,088 kg h−1 from 10 platforms using satellite remote sensing. Upon review of the methods, we suggest the unusually large emissions, or zero emissions observed could be caused by the effects of a decoupling of the marine boundary layer (MBL). Decoupling can happen when the MBL becomes too deep or when there is cloud cover and results in a stratified MBL with air layers of different depths moving at different speeds. Decoupling could cause: some aircraft remote sensing observations to be biased high (lower wind speed at the height of the plume); the mass balance measurements to be biased high (narrow plume being extrapolated too far vertically) or low (transects miss the plume); and the downwind dispersion measurements much lower than the other methods or zero (plume lofting in a decoupled section of the boundary layer). To date, there has been little research on the marine boundary layer, and guidance on when decoupling happens is not currently available. We suggest an offshore controlled release program could provide a better understanding of these results by explaining how and when stratification happens in the MBL and how this affects quantification methodologies. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

23 pages, 8775 KB  
Article
Spatial Variation Characteristics of Polycyclic Aromatic Hydrocarbons and Their Derivatives in Surface Water of Suzhou City: Occurrence, Sources, and Risk Assessment
by Jinxu Fan, Zhangwei Jing, Feng Guo, Jing Jia, Yu Jiang, Xiaoyu Cai, Shuting Wang, Hu Zhao and Xianjing Song
Toxics 2025, 13(5), 403; https://doi.org/10.3390/toxics13050403 - 16 May 2025
Viewed by 760
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their substituted derivatives (SPAHs) are persistent organic pollutants derived from incomplete combustion of fossil fuels and industrial processes. These compounds are of global concern due to their carcinogenicity and environmental persistence. This study provides the first comprehensive analysis [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) and their substituted derivatives (SPAHs) are persistent organic pollutants derived from incomplete combustion of fossil fuels and industrial processes. These compounds are of global concern due to their carcinogenicity and environmental persistence. This study provides the first comprehensive analysis of PAH and SPAH contamination in Suzhou’s rapidly urbanizing watersheds, integrating ultra-high-performance liquid chromatography and high-resolution mass spectrometry with multidimensional risk assessment to address critical gaps in understanding pollutant dynamics in urban aquatic systems. Key findings reveal that SPAHs were significantly more abundant than parent PAHs (mean ∑19 SPAHs = 107.43 ng/L vs. ∑8 PAHs = 48.05 ng/L), with hydroxylated derivatives accounting for 67.9% of the total SPAHs, indicating active environmental transformation processes. Source apportionment identified coal combustion and industrial emissions as the dominant contributors (58.2% of PAHs), directly linking contamination patterns to localized anthropogenic activities. Notably, industrial zones exhibited unexpected toxicity hotspots, where SPAH toxicity equivalents (e.g., 3-OH-BaP) surpassed parent PAHs 2–5-fold, demonstrating substituent-driven toxicity enhancement—a critical finding for regulatory prioritization. This study advances the field by uncovering SPAHs as emerging risks in urban waterways, challenging traditional PAH-centric monitoring frameworks, and providing a novel integration of analytical chemistry and spatial risk mapping to guide targeted pollution control (e.g., prioritizing industrial discharges and non-exhaust traffic emissions). Furthermore, it highlights the urgent need for updated toxicological databases to account for substituted PAH derivatives and advocates for the regulatory inclusion of SPAHs. These insights underscore the necessity of adapting environmental policies to address complex pollutant mixtures in rapidly developing regions, emphasizing the replicability of the proposed framework for urban watershed management. Full article
Show Figures

Figure 1

27 pages, 15583 KB  
Article
Assessment of Potentially Toxic Metals (PTMs) Pollution, Ecological Risks, and Source Apportionment in Urban Soils from University Campuses: Insights from Multivariate and Positive Matrix Factorisation Analyses
by Mohamed Ali, Dalal Alshamsi, Tofeeq Ahmad, Alaa Ahmed and Khaled M. Abdelfadil
Minerals 2025, 15(5), 482; https://doi.org/10.3390/min15050482 - 4 May 2025
Cited by 2 | Viewed by 815
Abstract
Understanding pollution levels, ecological health risks, and sources of potentially toxic metals (PTMs) in the soil from university campuses is critical for assessing environmental safety. Soil samples were collected from 12 locations across urban parks and green areas at Sohag University in Egypt. [...] Read more.
Understanding pollution levels, ecological health risks, and sources of potentially toxic metals (PTMs) in the soil from university campuses is critical for assessing environmental safety. Soil samples were collected from 12 locations across urban parks and green areas at Sohag University in Egypt. The samples were processed and analysed for heavy metals, including iron (Fe), manganese (Mn), cobalt (Co), nickel (Ni), chromium (Cr), lead (Pb), zinc (Zn), copper (Cu), and cadmium (Cd). Pollution levels were evaluated using indices such as the pollution index (PI), pollution load index (PLI), geo-accumulation index (Igeo), and enrichment factors (EFs). Among the pollution indices, the EFs showed the highest sensitivity in detecting anthropogenic contributions, particularly for Cd, Pb, and Cr. Spatial distribution maps and multivariate statistical analyses, including correlation matrix (CM), principal component analysis (PCA), and cluster analysis (CA), were applied to identify the relationships between PTMs and soil properties, and source apportionment was performed using positive matrix factorisation (PMF). The results indicated that Mn, Ni, and Co were primarily geogenic, whereas Pb, Zn, Cr, and Cd showed higher concentrations, suggesting moderate-to-significant anthropogenic pollution. Pb and Cd pose considerable ecological risks, whereas other metals such as Cr and Cu exhibit moderate ecological threats. The non-carcinogenic and carcinogenic risks to the students were within safe limits, as defined by United States Environmental Protection Agency (USEPA) threshold values. Source apportionment using PMF identified five main sources of PTMs: industrial and anthropogenic activities (30.0%), traffic emissions (25.0%), natural soil processes (20.0%), agricultural practices (15.0%), and mixed industrial traffic sources (10.0%). These findings emphasise the importance of controlling anthropogenic activities to ensure a safer campus environment. Full article
Show Figures

Figure 1

35 pages, 5171 KB  
Review
A Review of Biogenic Volatile Organic Compounds from Plants: Research Progress and Future Prospects
by Rongrong Luo, Xiaoxiu Lun, Rui Gao, Le Wang, Yuan Yang, Xingqian Su, Md Habibullah-Al-Mamun, Xiaohang Xu, Hong Li and Jinjuan Li
Toxics 2025, 13(5), 364; https://doi.org/10.3390/toxics13050364 - 30 Apr 2025
Cited by 3 | Viewed by 3971
Abstract
Biogenic volatile organic compounds (BVOCs) emitted by plants contribute to secondary air pollution through photochemical reactions in sunlight. Due to the influence of multiple factors, accurately characterizing and quantifying the emission of BVOCs from plant sources is challenging, which poses significant obstacles to [...] Read more.
Biogenic volatile organic compounds (BVOCs) emitted by plants contribute to secondary air pollution through photochemical reactions in sunlight. Due to the influence of multiple factors, accurately characterizing and quantifying the emission of BVOCs from plant sources is challenging, which poses significant obstacles to the effective management and control of BVOCs. Therefore, this paper summarizes the emission mechanisms of BVOCs from plants, explores the primary factors influencing variations in the emission rates of these compounds, and evaluates the advantages and limitations of contemporary “measurement-modeling” methods for characterizing BVOC emissions. It is concluded that current measurement techniques still need to be further developed to meet the criteria of simplicity, affordability, and high precision simultaneously, and in terms of modeling and prediction studies, there is a lack of in-depth research on the atmospheric chemistry of BVOCs and the synergistic effects of multiple factors. Finally, it is suggested to leverage interdisciplinary strengths to develop advanced measurement technologies and high-resolution models for monitoring volatile compounds. Additionally, strategically selecting low-BVOC tree species in pollution-vulnerable urban areas—contingent on rigorous ecological assessments—combined with stringent controls on anthropogenic precursors (e.g., anthropogenic volatile organic compounds (AVOCs)) could serve as a complementary measure to mitigate secondary pollution. Full article
(This article belongs to the Special Issue Source and Components Analysis of Aerosols in Air Pollution)
Show Figures

Graphical abstract

21 pages, 2623 KB  
Review
Leaves and Tree Rings as Biomonitoring Archives of Atmospheric Mercury Deposition: An Ecophysiological Perspective
by Fabrizio Monaci and Davide Baroni
Plants 2025, 14(9), 1275; https://doi.org/10.3390/plants14091275 - 22 Apr 2025
Viewed by 904
Abstract
Trees mediate critical biogeochemical cycles involving nutrients, pollutants, water, and energy at the interface between terrestrial biosphere and atmosphere. Forest ecosystems significantly influence the global cycling of mercury (Hg), serving as important sinks and potential sources of re-emission through various biotic and abiotic [...] Read more.
Trees mediate critical biogeochemical cycles involving nutrients, pollutants, water, and energy at the interface between terrestrial biosphere and atmosphere. Forest ecosystems significantly influence the global cycling of mercury (Hg), serving as important sinks and potential sources of re-emission through various biotic and abiotic processes. Anthropogenic Hg emissions, predominantly from industrial activities, mining, and fossil fuel combustion, have substantially altered the natural Hg cycle, intensifying ecotoxicological concerns and establishing forests as primary routes for atmospheric Hg deposition into terrestrial reservoirs. This perturbation profoundly affects global atmospheric Hg concentrations, residence times, and spatial distribution patterns. While early investigations focused on forest stands near heavily polluted areas, contemporary research has expanded to diverse ecosystems, revealing that trees provide tissues that function as temporal archives for atmospheric-terrestrial Hg exchange. Leaves capture high-resolution records of contemporary Hg dynamics at sub-annual timescales, whereas annual growth rings preserve multi-decadal chronologies of historical atmospheric exposure. Incorporating this dual temporal perspective is crucial for analysing Hg deposition trends and assessing the efficacy of environmental policies designed to control and mitigate Hg pollution. This review critically evaluates recent developments concerning the ecophysiological determinants of Hg accumulation in trees, highlighting how combined foliar and dendrochemical analytical methods strengthen our mechanistic understanding of vegetation-atmosphere Hg exchange. To enhance biomonitoring approaches, we emphasised the need for methodological standardisation, deeper integration of ecophysiological variables, and consideration of climate change implications as priority research areas. Furthermore, integrating Hg measurements with functional markers (δ13C and δ18O) and Hg isotope analyses strengthens the capacity to differentiate between physiological and environmental influences on Hg accumulation, thereby refining the mechanistic framework underlying effective tree-based Hg biomonitoring. Full article
(This article belongs to the Special Issue Biological Responses of Plants to Environmental Pollution)
Show Figures

Figure 1

Back to TopTop