Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = anti-collapse drilling fluid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4059 KB  
Review
Instability Mechanisms and Wellbore-Stabilizing Drilling Fluids for Marine Gas Hydrate Reservoirs: A Review
by Qian Liu, Bin Xiao, Guanzheng Zhuang, Yun Li and Qiang Li
Energies 2025, 18(16), 4392; https://doi.org/10.3390/en18164392 - 18 Aug 2025
Viewed by 535
Abstract
The safe exploitation of marine natural gas hydrates, a promising cleaner energy resource, is hindered by reservoir instability during drilling. The inherent temperature–pressure sensitivity and cementation of hydrate-bearing sediments leads to severe operational risks, including borehole collapse, gas invasion, and even blowouts. This [...] Read more.
The safe exploitation of marine natural gas hydrates, a promising cleaner energy resource, is hindered by reservoir instability during drilling. The inherent temperature–pressure sensitivity and cementation of hydrate-bearing sediments leads to severe operational risks, including borehole collapse, gas invasion, and even blowouts. This review synthesizes the complex instability mechanisms and evaluates the state of the art in inhibitive, wellbore-stabilizing drilling fluids. The analysis first deconstructs the multiphysics-coupled failure process, where drilling-induced disturbances trigger a cascade of thermodynamic decomposition, kinetic-driven gas release, and geomechanical strength degradation. Subsequently, current drilling fluid strategies are critically assessed. This includes evaluating the limitations of conventional thermodynamic inhibitors (salts, alcohols, and amines) and the advancing role of kinetic inhibitors and anti-agglomerants. Innovations in wellbore reinforcement using nanomaterials and functional polymers to counteract mechanical failure are also highlighted. Finally, a forward-looking perspective is proposed, emphasizing the need for multiscale predictive models that bridge molecular interactions with macroscopic behavior. Future research should prioritize the development of “smart”, multifunctional, and green drilling fluid materials, integrated with real-time monitoring and control systems. This integrated approach is essential for unlocking the potential of marine gas hydrates safely and efficiently. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

21 pages, 1252 KB  
Article
Research and Performance Evaluation of Low-Damage Plugging and Anti-Collapse Water-Based Drilling Fluid Gel System Suitable for Coalbed Methane Drilling
by Jian Li, Zhanglong Tan, Qian Jing, Wenbo Mei, Wenjie Shen, Lei Feng, Tengfei Dong and Zhaobing Hao
Gels 2025, 11(7), 473; https://doi.org/10.3390/gels11070473 - 20 Jun 2025
Cited by 1 | Viewed by 509
Abstract
Coalbed methane (CBM), a significant unconventional natural gas resource, holds a crucial position in China’s ongoing energy structure transformation. However, the inherent low permeability, high brittleness, and strong sensitivity of CBM reservoirs to drilling fluids often lead to severe formation damage during drilling [...] Read more.
Coalbed methane (CBM), a significant unconventional natural gas resource, holds a crucial position in China’s ongoing energy structure transformation. However, the inherent low permeability, high brittleness, and strong sensitivity of CBM reservoirs to drilling fluids often lead to severe formation damage during drilling operations, consequently impairing well productivity. To address these challenges, this study developed a novel low-damage, plugging, and anti-collapse water-based drilling fluid gel system (ACWD) specifically designed for coalbed methane drilling. Laboratory investigations demonstrate that the ACWD system exhibits superior overall performance. It exhibits stable rheological properties, with an initial API filtrate loss of 1.0 mL and a high-temperature, high-pressure (HTHP) filtrate loss of 4.4 mL after 16 h of hot rolling at 120 °C. It also demonstrates excellent static settling stability. The system effectively inhibits the hydration and swelling of clay and coal, significantly reducing the linear expansion of bentonite from 5.42 mm (in deionized water) to 1.05 mm, and achieving high shale rolling recovery rates (both exceeding 80%). Crucially, the ACWD system exhibits exceptional plugging performance, completely sealing simulated 400 µm fractures with zero filtrate loss at 5 MPa pressure. It also significantly reduces core damage, with an LS-C1 core damage rate of 7.73%, substantially lower than the 19.85% recorded for the control polymer system (LS-C2 core). Field application in the JX-1 well of the Ordos Basin further validated the system’s effectiveness in mitigating fluid loss, preventing wellbore instability, and enhancing drilling efficiency in complex coal formations. This study offers a promising, relatively environmentally friendly, and cost-effective drilling fluid solution for the safe and efficient development of coalbed methane resources. Full article
(This article belongs to the Special Issue Chemical and Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

14 pages, 5227 KB  
Article
Study on Wellbore Instability Mechanism and High-Performance Water-Based Drilling Fluid for Deep Coal Reservoir
by Jinliang Han, Jie Xu, Jinsheng Sun, Kaihe Lv, Kang Ren, Jiafeng Jin, Hailong Li, Yifu Long and Yang Wu
Processes 2025, 13(5), 1262; https://doi.org/10.3390/pr13051262 - 22 Apr 2025
Cited by 2 | Viewed by 606
Abstract
Deep coalbed methane (CBM) reservoirs have the characteristics of low permeability, low porosity, and low water saturation, which easily experience wellbore instability due to drilling fluid, severely affecting drilling safety. Based on the physical property analysis of coal samples, the wellbore instability mechanism [...] Read more.
Deep coalbed methane (CBM) reservoirs have the characteristics of low permeability, low porosity, and low water saturation, which easily experience wellbore instability due to drilling fluid, severely affecting drilling safety. Based on the physical property analysis of coal samples, the wellbore instability mechanism of the deep CBM reservoir was investigated by multiple methods. It was found that the wellbore instability is mainly caused by drilling fluid intrusion and the interaction between drilling fluid and coal formation; the fracture pressure of coal after immersion decreased from 27.4 MPa to 25.0 MPa because of the imbibition of drilling fluid. A novel nano-plugging agent with a size of 460 nm was prepared that can cement coal particles to form disc-shaped briquettes with a tensile strength of 2.27 MPa. Based on that, an effective anti-collapse drilling fluid for deep coal rock reservoirs was constructed, the invasion depth of the optimized drilling fluid was only 6 mm. The CT result shows that the number of fractures and pores in coal rock significantly reduced after treatment with the wellbore-stabilizing drilling fluid; nano-plugging anti-collapse agent in drilling fluid can form a dense layer on the coal surface, and then the hydration swelling of clay in the wellbore region can be effectively suppressed. Finally, the drilling fluid in this work can achieve the purpose of sealing and wettability alternation to prevent the collapse of the wellbore in the deep coal reservoir. Full article
Show Figures

Figure 1

13 pages, 3915 KB  
Article
Mechanical Strength Degradation in Deep Coal Seams Due to Drilling Fluid Invasion
by Qin Zhang, Weiliang Wang, Mingming Zhu, Yanbing Zhang, Qingchen Wang, Huan Sun and Jiping She
Processes 2025, 13(4), 1222; https://doi.org/10.3390/pr13041222 - 17 Apr 2025
Cited by 1 | Viewed by 470
Abstract
With the rapid development of the coalbed methane (CBM) industry in China, coal seam No. 8 of the Benxi Formation in the Ordos Basin has emerged as a key target for CBM development due to its abundant deep reserves. However, wellbore instability during [...] Read more.
With the rapid development of the coalbed methane (CBM) industry in China, coal seam No. 8 of the Benxi Formation in the Ordos Basin has emerged as a key target for CBM development due to its abundant deep reserves. However, wellbore instability during deep CBM extraction has become increasingly problematic, with the degradation of coal mechanical strength caused by drilling fluid invasion being identified as a critical factor affecting drilling safety and operational efficiency. This study focuses on coal seam No. 8 of the Benxi Formation in the Sulige Gas Field, Ordos Basin. Through experimental analyses of the coal’s mineral composition, microstructure, hydration expansion properties, and mechanical strength variations, the mechanism underlying drilling fluid invasion-induced mechanical strength degradation is elucidated. The experimental results reveal that coal seam No. 8 of the Benxi Formation exhibits a high carbon content and a low absolute clay mineral content (approximately 6.11%), with minimal expansive minerals (e.g., mixed-layer illite–smectite accounts for 26.4%). Consequently, the coal demonstrates a low linear expansion rate and weak hydration dispersion properties, indicating that hydration expansion is not the dominant mechanism driving mechanical strength degradation. However, drilling fluid invasion significantly reduced coal’s Young’s modulus (from 1988.1 MPa to 1676.1 MPa, a 15.69% decrease) and compressive strength (from 7.9 MPa to 6.5 MPa, a 17.72% drop), while markedly affecting its internal friction angle. Friction coefficient tests further demonstrate that the synergistic action of water molecules and additives decreases microcrack sliding resistance by 19.22% with simulated formation water and by 25.00% with drilling fluid, thereby promoting microcrack propagation and failure. This process ultimately leads to a degradation in mechanical strength. Hence, the enhancement of sliding effects induced by drilling fluid invasion is identified as the primary factor contributing to coal mechanical strength degradation, whereas hydration expansion plays a secondary role. To mitigate these effects, optimizing the design of drilling fluid systems and selecting suitable anti-collapse additives to reduce sliding effects are critical for minimizing wellbore instability risks in coal seams. These measures will ensure safer and more efficient drilling operations for deep CBM extraction. Full article
Show Figures

Figure 1

12 pages, 2847 KB  
Article
Research on Multi-Layer Drilling Mud Reuse Technology
by Jian Huang, Ling Wang and Fanxiu Li
Processes 2024, 12(8), 1586; https://doi.org/10.3390/pr12081586 - 29 Jul 2024
Cited by 2 | Viewed by 1711
Abstract
Addressing the issues of low reuse rates and high waste content of drilling fluids commonly observed in oilfields, research on reuse technology based on utilizing the same system across different sections of the same well has been conducted. Using the F oilfield as [...] Read more.
Addressing the issues of low reuse rates and high waste content of drilling fluids commonly observed in oilfields, research on reuse technology based on utilizing the same system across different sections of the same well has been conducted. Using the F oilfield as a case study, the mechanism of wellbore destabilization was investigated through X-ray diffraction and scanning electron microscopy. Corresponding inhibitory anti-collapse drilling fluids for shallow layers were formulated, and a successful deep drilling fluid formula was developed by adding and replacing chemicals in the base fluid, thereby achieving the reuse of multilayered waste drilling fluids. Indoor evaluation results indicate that the high-temperature rheology of the modified deep drilling fluid is reasonable; the high-temperature inhibitor performs excellently, with a 16-h rolling recovery rate of ≥98%; and the settlement stability is robust, with a settlement ratio of 0.50 after 2 h of resting. These findings demonstrate that the drilling fluid possesses both excellent sand-carrying capacity and strong inhibitory effects, meeting the requirements for rapid drilling and wellbore stabilization in this stratum. This technology is straightforward and easy to implement, and it is expected to reduce treatment costs and promote efficient development within the block. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 1585 KB  
Article
Experimental Optimization of High-Temperature-Resistant and Low Oil—Water Ratio High-Density Oil-Based Drilling Fluid
by Zhenzhen Shen, Heng Zhang, Xingying Yu, Mingwei Wang, Chaoli Gao, Song Li and Haotian Zhang
Processes 2023, 11(4), 1129; https://doi.org/10.3390/pr11041129 - 6 Apr 2023
Cited by 5 | Viewed by 4739
Abstract
Problems such as well loss and collapses in deep shale gas drilling are most often due to the development of cracks in the shale formation, resulting in significant leaks of drilling fluid, the sticking and burrowing of drilling tools, and other engineering accidents. [...] Read more.
Problems such as well loss and collapses in deep shale gas drilling are most often due to the development of cracks in the shale formation, resulting in significant leaks of drilling fluid, the sticking and burrowing of drilling tools, and other engineering accidents. In addition, the horizontal sections of wells are very long and issues of friction, rock transport, and formation contamination loom large. As a result, the performance of drilling fluids directly affects drilling efficiency, engineering accident rates, and reservoir protection effects. We first analyze the mechanisms of each emulsifier in an oil-based drilling fluid formulation and the filtration reduction mechanisms, taking into account the collapse-prone and abnormally high-pressure characteristics of shale formations. We undertake an experimental evaluation and optimization of polymeric surfactants, such as primary and secondary emulsions for high-performance oil-based drilling fluids. The design of rigid and deformable nano-micron plugging materials with a reasonable particle size range was achieved, and we obtained a low Oil—Water ratio and high-density oil-based drilling fluid system, with temperature resistance of 200 °C, an Oil—Water ratio as low as 70:30, compressive fracturing fluid pollution of 10%, and a maximum density of 2.6 g/cm3. The reuse rate reached 100%. The developed oil-based drilling fluid system with strong plugging, a high density, and a low Oil—Water ratio suitable for deep shale gas can effectively seal the well wall, reduce liquid invasion, prevent the wall from collapsing, reduce mud leakage, reduce the consumption of oil-based drilling fluid, improve the utilization rate of old mud, and reduce drilling costs. Full article
Show Figures

Figure 1

15 pages, 1970 KB  
Article
Optimization of High Temperature-Resistant Modified Starch Polyamine Anti-Collapse Water-Based Drilling Fluid System for Deep Shale Reservoir
by Xiangwei Kong, Mingzhong Chen, Chaoju Zhang, Zuocai Liu, Yanxin Jin, Xue Wang, Minggang Liu and Song Li
Molecules 2022, 27(24), 8936; https://doi.org/10.3390/molecules27248936 - 15 Dec 2022
Cited by 22 | Viewed by 3289
Abstract
During drilling in deep shale gas reservoirs, drilling fluid losses, hole wall collapses, and additional problems occur frequently due to the development of natural fractures in the shale formation, resulting in a high number of engineering accidents such as drilling fluid leaks, sticking, [...] Read more.
During drilling in deep shale gas reservoirs, drilling fluid losses, hole wall collapses, and additional problems occur frequently due to the development of natural fractures in the shale formation, resulting in a high number of engineering accidents such as drilling fluid leaks, sticking, mud packings, and buried drilling tools. Moreover, the horizontal section of horizontal well is long (about 1500 m), and the problems of friction, rock carrying, and reservoir pollution are extremely prominent. The performance of drilling fluids directly affects drilling efficiency, the rate of engineering accidents, and the reservoir protection effect. In order to overcome the problems of high filtration in deep shale formations, collapse of borehole walls, sticking of pipes, mud inclusions, etc., optimization studies of water-based drilling fluid systems have been conducted with the primary purpose of controlling the rheology and water loss of drilling fluid. The experimental evaluation of the adsorption characteristics of “KCl + polyamine” anti-collapse inhibitor on the surface of clay particles and its influence on the morphology of bentonite was carried out, and the mechanism of inhibiting clay mineral hydration expansion was discussed. The idea of controlling the rheology and water loss of drilling fluid with high temperature resistant modified starch and strengthening the inhibition performance of drilling fluid with “KCl + polyamine” was put forward, and a high temperature-resistant modified starch polyamine anti-sloughing drilling fluid system with stable performance and strong plugging and strong inhibition was optimized. The temperature resistance of the optimized water-based drilling fluid system can reach 180 °C. Applied to on-site drilling of deep shale gas horizontal wells, it effectively reduces the rate of complex accidents such as sticking, mud bagging, and reaming that occur when resistance is encountered during shale formation drilling. The time for a single well to trip when encountering resistance decreases from 2–3 d in the early stages to 3–10 h. The re-use rate of the second spudded slurry is 100 percent, significantly reducing the rate of complex drilling accidents and saving drilling costs. It firmly supports the optimal and rapid construction of deep shale gas horizontal wells. Full article
Show Figures

Figure 1

16 pages, 2316 KB  
Article
Wellbore Stabilization Technology of “Fluid-Solid-Chemical Coupling” in Continental Shale Oil—A Case Study of Shale Oil in Block GL
by Xin Ai and Mian Chen
Energies 2022, 15(19), 6962; https://doi.org/10.3390/en15196962 - 22 Sep 2022
Cited by 2 | Viewed by 2386
Abstract
During the oil shale drilling in Group Q of Block GL, the shale is prone to hydration, deterioration, sidewall exfoliation and frequent collapse, which affects the efficient exploration and development of shale oil. In order to reveal the mechanism of wellbore instability in [...] Read more.
During the oil shale drilling in Group Q of Block GL, the shale is prone to hydration, deterioration, sidewall exfoliation and frequent collapse, which affects the efficient exploration and development of shale oil. In order to reveal the mechanism of wellbore instability in the shale formation, the tectonic characteristics of shale are studied by combining microscopic and macroscopic methods, which identifies three key factors of physics, chemistry and mechanics about wellbore instability. Based on the analysis of earth stress and rock mechanics parameters, the experiment has established the prediction model of “fluid-solid-chemical coupling” collapse pressure of shale formation in Group Q, and calculated the safe drilling fluid density window for the horizontal wells of shale oil in Block GL by the prediction model. The main factors of wellbore instability in shale formation, deterioration characteristics and high density of oil-based drilling fluid on the well site is combined. The targeted plugging anti-sloughing and strong wetting agent were developed by using laser particle size instruments and pressure transmission experiments. A high thixotropy and strong plugging oil-based drilling fluid system is formed. The research results have been successfully applied in 16 horizontal wells of the shale oil test platform. The excellent rheological property, reliable plugging and bearing capacity and outstanding wellbore stabilization effect provides technical support for high-quality and efficient exploration and development of shale oil in Block GL. The “fluid-solid-chemical coupling” wellbore stabilization technology of continental shale oil formed in this study can provide a reference for the exploration and development of similar types of shale oil and gas reservoirs. Full article
Show Figures

Figure 1

19 pages, 3280 KB  
Article
Design and Evaluation of a Surfactant–Mixed Metal Hydroxide-Based Drilling Fluid for Maintaining Wellbore Stability in Coal Measure Strata
by Shuya Chen, Yanping Shi, Xianyu Yang, Kunzhi Xie and Jihua Cai
Energies 2019, 12(10), 1862; https://doi.org/10.3390/en12101862 - 16 May 2019
Cited by 14 | Viewed by 3980
Abstract
Co-exploitation of coal measure gases (coalbed gas, shale gas, and tight sandstone gas) puts a higher requirement on drilling fluids. Conventional drilling fluids have disadvantages, such as causing problems of borehole collapse, formation damage, and water blockage. This paper proposes a set of [...] Read more.
Co-exploitation of coal measure gases (coalbed gas, shale gas, and tight sandstone gas) puts a higher requirement on drilling fluids. Conventional drilling fluids have disadvantages, such as causing problems of borehole collapse, formation damage, and water blockage. This paper proposes a set of high inhibitive and low-damage drilling fluids that function by electrical inhibition and neutral wetting. Zeta potential results showed that the negative electrical property of Longtan coal in Bijie, Guizhou, can be reversed by organic mixed metal hydroxide (MMH) and the cationic surfactant alkyl trimethylammonium bromide (CS-5) from −3.63 mV to 19.75 mV and 47.25 mV, respectively. Based on the contact angle and Fourier Transform Infrared Spectroscopy (FT-IR) results, it can be concluded that chemical adsorption dominates between the Longmaxi shale and surfactants, and physical adsorption between the Longtan coal and surfactants. A compound surfactant formula (0.001 wt% CS-4 + 0.001 wt% CS-1 + 0.001 wt% CS-3), which could balance the wettability of the Longmaxi shale and the Longtan coal, making them both appear weakly hydrophilic simultaneously, was optimized. After being treated by the compound surfactants, the contact angles of the Longmaxi shale and the Longtan coal were 89° and 86°, respectively. Pressure transmission tests showed that the optimized combination of compound surfactants and inorganic MMH (MMH-1) could effectively reduce permeability of the Longmaxi shale and the Longtan coal, thus retarding pore pressure transmission in coal measure strata. Then, the proposed water-based drilling fluid (WBDF) system (4 wt% sodium bentonite + 1.5 wt% sodium carboxymethyl cellulose + 2 wt% lignite resin + 5 wt% potassium chloride + 3 wt%MMH-1 + 0.001 wt% CS-4 + 0.001 wt% CS-1 + 0.001 wt% CS-3) was evaluated based on parameters including rheology, American Petroleum Institute (API) filtration, electrical property, wettability, inhibition capability, reservoir protection characteristics, and anti-pollution performance. It had an API filtration of 7 mL, reservoir damage rate of 10%, moderate and acceptable viscosity, strong inhibition capability to coal measure strata rocks, good tolerance to inorganic pollutants and drilling cuttings, and environmentally friendly properties. It could meet wellbore stability and reservoir protection requirements in the co-exploitation of coal measure gases. Full article
(This article belongs to the Special Issue Development of Unconventional Reservoirs)
Show Figures

Figure 1

Back to TopTop