Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (203)

Search Parameters:
Keywords = arbovirus transmission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5108 KiB  
Article
Case Series of Adverse Pregnancy Outcomes Associated with Oropouche Virus Infection
by Daniele Barbosa de Almeida Medeiros, Juarez Antônio Simões Quaresma, Raimunda do Socorro da Silva Azevedo, Ana Cecilia Ribeiro Cruz, Sandro Patroca da Silva, Arnaldo Jorge Martins Filho, Bruno Tardelli Diniz Nunes, Lucas Rafael Santana Pinheiro, Jorge Rodrigues de Sousa, Jannifer Oliveira Chiang, Lívia Carício Martins, Consuelo Silva Oliveira, Ivy Tissuya Essashika Prazeres, Daniele Feitas Henriques, Camille Ferreira Oliveira, Valéria Lima Carvalho, Clarice Neuenschwander Lins Morais, Bartolomeu Acioli-Santos, Keilla Maria Paze Silva, Diego Arruda Falcão, Mayara Matias de Oliveira Marques Costa, Eduardo Augusto Duque Bezerra, Ana Márcia Drechsler Rio, Neijla Cristina Vieira Cardoso, Juliana Carla Serafim da Silva, Simone Gurmão Ramos, Erika Cavalcante Maranhão, José Lancart de Lima, Pedro Fernando da Costa Vasconcelos, Bruno Issao Matos Ishigami and Lívia Medeiros Neves Cassebadd Show full author list remove Hide full author list
Viruses 2025, 17(6), 816; https://doi.org/10.3390/v17060816 - 5 Jun 2025
Abstract
The Oropouche virus (OROV) is an arbovirus (Peribunyaviridae: Orthobunyavirus) that traditionally causes febrile outbreaks in Latin America’s Amazon region. Previously, OROV was not associated with severe pregnancy outcomes. During the 2022–2024 outbreak in Brazil, OROV expanded geographically, revealing links to adverse pregnancy outcomes. [...] Read more.
The Oropouche virus (OROV) is an arbovirus (Peribunyaviridae: Orthobunyavirus) that traditionally causes febrile outbreaks in Latin America’s Amazon region. Previously, OROV was not associated with severe pregnancy outcomes. During the 2022–2024 outbreak in Brazil, OROV expanded geographically, revealing links to adverse pregnancy outcomes. This study describes six cases with varied fetal outcomes, including miscarriage, antepartum, intrauterine fetal demise (IFD), and normal development, correlating with maternal symptoms but not symptom severity. Vertical transmission was confirmed by detecting OROV through RT-qPCR, ELISA, and immunohistochemistry in fetal tissues. Genome sequencing from an IFD case identified a novel reassortment pattern reported in the 2022–2024 outbreak. Severe encephalomalacia, meningoencephalitis, vascular compromise, and multi-organ damage were evident, underscoring the significant risk OROV poses to fetal development and emphasizing the need for further investigation. Full article
(This article belongs to the Special Issue Oropouche Virus (OROV): An Emerging Peribunyavirus (Bunyavirus))
Show Figures

Figure 1

12 pages, 527 KiB  
Article
Arbovirus Prevalence and Vulnerability Assessment Through Entomological Surveillance in Ponce, Puerto Rico
by Kayra M. Rosado-Ortiz, Manuel Rivera-Vélez, Ivanna B. Lorenzo-Pérez, Elizabeth M. Ramos-Colón, Mileily Velázquez-Ferrer, Dayaneira Rivera-Alers, Vanessa Rivera-Amill and Robert Rodríguez-González
Int. J. Environ. Res. Public Health 2025, 22(6), 854; https://doi.org/10.3390/ijerph22060854 - 29 May 2025
Viewed by 290
Abstract
The Aedes aegypti mosquito is a vector for several arboviral diseases, posing a significant threat to human populations and exacerbating health disparities. Puerto Rico is a subtropical region where A. aegypti mosquitoes circulate all the year promoting the transmission of arboviruses. A cross-sectional [...] Read more.
The Aedes aegypti mosquito is a vector for several arboviral diseases, posing a significant threat to human populations and exacerbating health disparities. Puerto Rico is a subtropical region where A. aegypti mosquitoes circulate all the year promoting the transmission of arboviruses. A cross-sectional study in the municipality of Ponce, Puerto Rico was conducted to determine the prevalence of arbovirus in A. aegypti mosquitoes and community members, and the impact that sociodemographic and environmental factors on the presence of arbovirus in the community. Our results indicate that more than a third of the population has long-term antibodies (IgG) against chikungunya and the Mayaro virus (56% and 17%, respectively). In addition, more than two-thirds of the population have long-term antibodies (IgG) against dengue and Zika virus (96.0% and 77%, respectively). Dengue virus 1 (DENV-1) was only detected in mosquitoes from urban areas. The practice of storing water in containers uncovered and living near a river increased the odds of having arbovirus in the community (OR = 3.5, 95% CI = 1.8–10.6) (p < 0.05) and (OR = 1.6, 95% CI = 1.2–3.7). Furthermore, lower income was a social determinant associated with being at risk of arboviral disease in the communities (OR = 2.9, 95% CI = 1.4–8.5) (p < 0.05). It is recommended that public health activities be implemented, including education workshops on prevention and health promotion and health services such as vector control, to prevent arboviral diseases in communities. Full article
Show Figures

Figure 1

25 pages, 4636 KiB  
Article
Epidemiology, Transmission, and Evolution of Japanese Encephalitis Virus
by Chengcheng Peng, Huiling Qin, Fan Yu, Yujia Hao, Yuge Yuan, Wenzhou Ma, Duo Zhang, Pengpeng Xiao and Nan Li
Microorganisms 2025, 13(6), 1226; https://doi.org/10.3390/microorganisms13061226 - 27 May 2025
Viewed by 159
Abstract
The Japanese encephalitis virus is an arbovirus that causes severe damage to the central nervous system. At present, there are still 67,900 cases of Japanese encephalitis worldwide every year, which poses a global public health concern and causes great economic losses to animal [...] Read more.
The Japanese encephalitis virus is an arbovirus that causes severe damage to the central nervous system. At present, there are still 67,900 cases of Japanese encephalitis worldwide every year, which poses a global public health concern and causes great economic losses to animal husbandry. In this study, we analyzed the epidemiology, transmission, and evolution of JEV based on the NCBI database. E and NS1 were emphatically analyzed for amino acid variation and predicted protein structure. Gene recombination and the evolutionary rate of JEV were analyzed using RDP 4 and BEAST. The maximum clade credibility tree of E was reconstructed to estimate the time of the most recent common ancestor. Chinese genotype Ⅰ (GI) strain recombination events occurred in the C, M/PrM, E, NS2A, NS4B, and NS5 proteins, and genotype III (GIII) strains occurred in the E, NS1, NS3, NS4A, and NS5 proteins. The average evolutionary rates of JEV were comparable (3.3830 × 10−4, 2.0481 × 10−4, 3.5650 × 10−4, 2.2423 × 10−4, 3.0844 × 10−4, and 1.9757 × 10−4 substitutions/site/year for the JEV-I whole genome, JEV-III whole genome, JEV-I E gene, JEV-III E gene, JEV-I NS1 gene, and JEV-III NS1 gene, respectively). The MCC tree revealed the evolutionary order was GⅢ, GⅠ, GⅤ, GⅡ, and GⅣ. This study was expected to provide theoretical support for vaccine development and comprehensive prevention and treatment of JEV. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

5 pages, 173 KiB  
Commentary
Oropouche Virus (OROV) and Breastfeeding Safety: Analysis of Related Orthobunyaviruses for Mother-Infant Vertical Transmission in Breast Milk
by David A. Schwartz, Creuza Rachel Vicente and Mija Ververs
Viruses 2025, 17(6), 738; https://doi.org/10.3390/v17060738 - 22 May 2025
Viewed by 822
Abstract
The discovery that the Oropouche virus (OROV) can be transmitted vertically from an infected pregnant mother to the fetus, resulting in fetal and placental OROV infection, miscarriage, stillbirth, and congenital malformations including microcephaly, has emphasized its public health significance. Because of the importance [...] Read more.
The discovery that the Oropouche virus (OROV) can be transmitted vertically from an infected pregnant mother to the fetus, resulting in fetal and placental OROV infection, miscarriage, stillbirth, and congenital malformations including microcephaly, has emphasized its public health significance. Because of the importance of breastfeeding in those areas affected by the Oropouche fever outbreak, public health agencies have continued to encourage nursing among mothers who have had OROV infection or who reside or travel in endemic regions. However, the basis for this recommendation has not been stated. At the present time, there have been no reports of the OROV being transmitted from mothers having had Oropouche fever during pregnancy to their infants through breast milk. To further evaluate the potential risk of OROV transmission through breastfeeding, we have examined the peer-reviewed literature to determine if related Orthobunyavirus species infecting humans and animals are transmissible via breast milk. Bibliographic search engines, including PubMed, Scopus, and Google Scholar, were extensively reviewed using keywords, MeSH terms, and other sources cited in the articles examined. Studies investigating Orthobunyavirus species that infect humans and animals, including reassortant strains of OROV and viruses within the Simbu serogroup, were reviewed. We found that there have been no reported events of vertical transmission of any Orthobunyavirus through breast milk. Based on these results, we believe that the advantages of breastfeeding following maternal OROV infection outweigh any negligible risk for vertical transmission. Full article
(This article belongs to the Special Issue Oropouche Virus (OROV): An Emerging Peribunyavirus (Bunyavirus))
18 pages, 1451 KiB  
Systematic Review
Viruses in Simuliidae: An Updated Systematic Review of Arboviral Diversity and Vector Potential
by Alejandra Rivera-Martínez, S. Viridiana Laredo-Tiscareño, Jaime R. Adame-Gallegos, Erick de Jesús de Luna-Santillana, Carlos A. Rodríguez-Alarcón, Julián E. García-Rejón, Mauricio Casas-Martínez and Javier A. Garza-Hernández
Life 2025, 15(5), 807; https://doi.org/10.3390/life15050807 - 19 May 2025
Viewed by 555
Abstract
Black flies (Diptera: Simuliidae) are important vectors of pathogens, including filarial nematodes, protozoans, and arboviruses, which significantly impact human and animal health. Although their role in arbovirus transmission has not been as thoroughly studied as that of mosquitoes and ticks, advances in molecular [...] Read more.
Black flies (Diptera: Simuliidae) are important vectors of pathogens, including filarial nematodes, protozoans, and arboviruses, which significantly impact human and animal health. Although their role in arbovirus transmission has not been as thoroughly studied as that of mosquitoes and ticks, advances in molecular tools, particularly metagenomics, have enabled the identification of non-cultivable viruses, significantly enhancing our understanding of black-fly-borne viral diversity and their public and veterinary health implications. However, these methods can also detect insect-specific viruses (i.e., viruses that are unable to replicate in vertebrate hosts), which may lead to the incorrect classification of black flies as potential vectors. This underscores the need for further research into their ecological and epidemiological roles. This systematic review, conducted following the PRISMA protocol, compiled and analyzed evidence on arbovirus detection in Simuliidae from scientific databases. Several arboviruses were identified in these insects, including vesicular stomatitis virus New Jersey serotype (VSVNJ), Venezuelan equine encephalitis virus (VEEV), and Rift Valley fever virus. Additionally, in vitro studies evaluating the vector competence of Simuliidae for arboviruses such as dengue virus, Murray Valley encephalitis virus, and Sindbis virus were reviewed. These findings provide critical insights into the potential role of black flies in arbovirus transmission cycles, emphasizing their importance as vectors in both public and veterinary health contexts. Full article
(This article belongs to the Section Epidemiology)
Show Figures

Figure 1

17 pages, 2563 KiB  
Article
Molecular Epidemiology of Travel-Associated and Locally Acquired Dengue Virus Infections in Catalonia, Spain, 2019
by Jéssica Navero-Castillejos, Adrián Sánchez-Montalvá, Elena Sulleiro, Aroa Silgado, Tomás Montalvo, Laura Barahona, Núria Busquets, José Muñoz, Daniel Camprubí-Ferrer, Manuel Valdivia, Ana Martínez, Maria Assumpció Bou-Monclús, Itziar Martínez-Calleja, Mireia Jané, Cristina Rius, Hernán Vargas-Leguas, Beatriz Escudero-Pérez, Rosa Albarracín, Alexander Navarro, Mireia Navarro, Josep Barrachina and Miguel J. Martínezadd Show full author list remove Hide full author list
Viruses 2025, 17(5), 621; https://doi.org/10.3390/v17050621 - 26 Apr 2025
Viewed by 400
Abstract
Dengue virus (DENV) is the most important arbovirus worldwide. In 2019, a significant increase in dengue cases was reported worldwide, resulting in a peak of imported cases in some European countries such as Spain. We aimed to describe travel-associated and locally acquired DENV [...] Read more.
Dengue virus (DENV) is the most important arbovirus worldwide. In 2019, a significant increase in dengue cases was reported worldwide, resulting in a peak of imported cases in some European countries such as Spain. We aimed to describe travel-associated and locally acquired DENV strains detected in 2019 in the Catalonia region (northeastern Spain), a hotspot for dengue introduction in Europe. Through sequencing and phylogenetic analysis of the envelope gene, 75 imported viremic cases and two local strains were described. Autochthonous transmission events included an infection of a local mosquito with an imported dengue strain and a locally acquired human dengue infection from a locally infected mosquito. Overall, all four DENV serotypes and up to 10 different genotypes were detected. Phylogenetic analysis revealed transcontinental circulations associated with DENV-1 and DENV-2 and the presence of DENV-4 genotype I in Indonesia, where few cases had been previously described. A molecular study of the autochthonous events determined that local Ae. albopictus mosquitoes were infected by an African DENV-1 genotype V strain, while the locally acquired human case was caused by a DENV-3 genotype I of Asian origin. These findings underline the wide variability of imported strains and the high risk of DENV introduction into this territory, emphasizing the importance and usefulness of molecular characterization and phylogenetics for both local and global surveillance of the disease. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

15 pages, 1969 KiB  
Article
Does Nutrient Availability and Larval Competition Alter Chikungunya Virus Infection in the Mosquito Aedes albopictus?
by Maria Eduarda Barreto Resck, Nildimar Alves Honório and Barry Wilmer Alto
Viruses 2025, 17(5), 613; https://doi.org/10.3390/v17050613 - 25 Apr 2025
Viewed by 360
Abstract
Aedes albopictus is a mosquito that has spread rapidly in the United States and is considered an important vector for arbovirus transmission to humans in several countries. Larval interactions and environmental conditions can influence mosquitoes and their ability to transmit pathogens as adults. [...] Read more.
Aedes albopictus is a mosquito that has spread rapidly in the United States and is considered an important vector for arbovirus transmission to humans in several countries. Larval interactions and environmental conditions can influence mosquitoes and their ability to transmit pathogens as adults. We investigated whether intraspecific larval competition among Ae. albopictus mosquitoes from Florida, combined with varying food availability, affects vector competence for Chikungunya virus (CHIKV). We reared larvae under four competition treatment densities and two food levels. Measurements were taken for larval development duration, survival rate, and female wing length. Mosquitoes from each treatment group were orally challenged with CHIKV. Our results showed that development time was longer for both female and male Ae. albopictus under high-competition conditions and appeared as the most important factor, followed by survivorship. Survival rates were highest under low-density conditions compared to those reared under high-density conditions. Mosquitoes reared with a low amount of food had the lowest survivorship and longest development times compared to those provided with high food levels. Our results also showed susceptibility infection and disseminated infection of CHIKV was influenced by an interaction of density and food availability. Mosquitoes from the high-food, high-density treatment group exhibited lower CHIKV infection and dissemination rates compared to other treatment combinations. These findings highlight the role of larval competition and nutritional stress during immature stages in shaping adult mosquito traits, with important epidemiological implications for CHIKV transmission. Full article
(This article belongs to the Special Issue Chikungunya Virus and Emerging Alphaviruses—Volume II)
Show Figures

Figure 1

10 pages, 589 KiB  
Article
Yellow Fever Virus (YFV) Detection in Different Species of Culicids Collected During an Outbreak in Southeastern Brazil, 2016–2019
by Giovana Santos Caleiro, Lucila Oliveira Vilela, Karolina Morales Barrio Nuevo, Rosa Maria Tubaki, Regiane Maria Tironi de Menezes, Luis Filipe Mucci, Juliana Telles-de-Deus, Eduardo Sterlino Bergo, Emerson Luiz Lima Araújo and Mariana Sequetin Cunha
Trop. Med. Infect. Dis. 2025, 10(5), 118; https://doi.org/10.3390/tropicalmed10050118 - 24 Apr 2025
Viewed by 394
Abstract
Yellow fever virus (YFV) is an endemic arbovirus in parts of Africa and the Americas. In Brazil, following the eradication of the urban transmission cycle, YFV is maintained in a sylvatic cycle involving several species of neotropical primates and mosquitoes of the genera [...] Read more.
Yellow fever virus (YFV) is an endemic arbovirus in parts of Africa and the Americas. In Brazil, following the eradication of the urban transmission cycle, YFV is maintained in a sylvatic cycle involving several species of neotropical primates and mosquitoes of the genera Haemagogus and Sabethes, which serve as primary and secondary vectors, respectively. During the 2016–2019 outbreak in São Paulo State, a total of 3731 mosquito pools were collected from sites with ongoing epizootic events in 192 municipalities. The RT-qPCR analysis detected YFV in 46 pools (1.4%) across nine mosquito species, including both primary and secondary vectors, as well as species from the genera Aedes and Psorophora. Differences in viral loads were observed among species. While Aedes aegypti was not found to be positive, the detection of natural YFV infection in other Aedes species raises concerns about potential virus reurbanization. Further studies are needed to clarify the role of additional mosquito species in YFV transmission in Brazil. Full article
(This article belongs to the Special Issue Emerging Viral Threats: Surveillance, Impact, and Mitigation)
Show Figures

Figure 1

14 pages, 1670 KiB  
Article
Desiccation Tolerance of Aedes aegypti and Aedes albopictus Eggs of Northeastern Argentina Origin
by Mía E. Martín, Elizabet L. Estallo, Luis G. Estrada, Carolina Matiz Enriquez and Marina Stein
Trop. Med. Infect. Dis. 2025, 10(4), 116; https://doi.org/10.3390/tropicalmed10040116 - 21 Apr 2025
Viewed by 489
Abstract
This study examines the desiccation tolerance of Aedes aegypti and Aedes albopictus eggs, two major arbovirus vectors, in a subtropical region of Argentina to understand their survival under varying relative humidity (RH) conditions (35%, 68%, and 82%). Laboratory experiments revealed that Ae. aegypti [...] Read more.
This study examines the desiccation tolerance of Aedes aegypti and Aedes albopictus eggs, two major arbovirus vectors, in a subtropical region of Argentina to understand their survival under varying relative humidity (RH) conditions (35%, 68%, and 82%). Laboratory experiments revealed that Ae. aegypti eggs exhibited significantly higher survival rates across all RH levels and exposure times compared to Ae. albopictus. After 1 month, Ae. aegypti eggs maintained 88% survival at 35% RH, while Ae. albopictus survival dropped to 38%. This disparity was more pronounced at low RH, where Ae. albopictus eggs experienced a rapid decline in survival over time. The results highlight the importance of RH as a key factor influencing the persistence of both species in the environment. The coexistence of Ae. aegypti and Ae. albopictus in Puerto Iguazú suggests that microhabitats with distinct humidity conditions may favor one species over the other. These findings provide crucial insights for predicting mosquito population dynamics under changing climate conditions and developing more effective vector control strategies to reduce arbovirus transmission in subtropical regions. Full article
Show Figures

Figure 1

18 pages, 2106 KiB  
Article
Oropouche orthobunyavirus in Urban Mosquitoes: Vector Competence, Coinfection, and Immune System Activation in Aedes aegypti
by Silvana F. de Mendonça, Lívia V. R. Baldon, Yaovi M. H. Todjro, Bruno A. Marçal, Maria E. C. Rodrigues, Rafaela L. Moreira, Ellen C. Santos, Marcele N. Rocha, Isaque J. da S. de Faria, Bianca D. M. Silva, Thiago N. Pereira, Amanda C. de Freitas, Myrian M. Duarte, Felipe C. de M. Iani, Natália R. Guimarães, Talita E. R. Adelino, Marta Giovanetti, Luiz C. J. Alcantara, Álvaro G. A. Ferreira and Luciano A. Moreira
Viruses 2025, 17(4), 492; https://doi.org/10.3390/v17040492 - 28 Mar 2025
Viewed by 855
Abstract
Oropouche orthobunyavirus (OROV) is an emerging public health concern due to its expanding geographic range and increasing case numbers. In Brazil, 13,785 cases were confirmed in 2024, with an additional 3680 reported by January 2025, according to the Ministry of Health. Initially restricted [...] Read more.
Oropouche orthobunyavirus (OROV) is an emerging public health concern due to its expanding geographic range and increasing case numbers. In Brazil, 13,785 cases were confirmed in 2024, with an additional 3680 reported by January 2025, according to the Ministry of Health. Initially restricted to the Amazon region, OROV has recently been detected in new areas, highlighting the need for enhanced surveillance and vector control strategies. While Culicoides paraensis is the primary vector, the potential role of other species in transmitting the currently circulating OROV strain in Brazil remains unclear. Here, we experimentally assessed the infectivity and dissemination of a recently isolated Oropouche orthobunyavirus (OROV) strain in two widespread mosquito species, Aedes aegypti and Culex quinquefasciatus, collected from diverse regions of Brazil. Our results demonstrated that both mosquito species were refractory to oral infection, suggesting that natural transmission through these vectors is unlikely. However, in artificial systemic infection, Ae. aegypti showed viral replication and immune system activation, indicating its potential to support OROV replication under specific conditions. Additionally, to assess the potential impact of coinfection, we investigated whether Chikungunya virus (CHIKV), an arbovirus that naturally infects Ae. aegypti, could facilitate OROV infection dynamics in this mosquito species. Our results suggest that coinfection does not promote OROV oral infection. Furthermore, we examined whether OROV systemic infection induced an immune response in Ae aegypti. We analyzed the major immune response pathways—RNAi, Toll, IMD, and JAK-STAT—and observed that the RNAi pathway was the most strongly activated in response to OROV infection in Ae. aegypti. These findings highlight the importance of ongoing surveillance and further studies on OROV evolution, vector adaptation, and transmission dynamics, particularly in urban settings where vector populations and viral interactions may facilitate new epidemiological scenarios. Full article
(This article belongs to the Section Invertebrate Viruses)
Show Figures

Figure 1

18 pages, 1778 KiB  
Review
A Comprehensive Review of the Neglected and Emerging Oropouche Virus
by Fengwei Bai, Prince M. D. Denyoh, Cassandra Urquhart, Sabin Shrestha and Donald A. Yee
Viruses 2025, 17(3), 439; https://doi.org/10.3390/v17030439 - 19 Mar 2025
Cited by 1 | Viewed by 1732
Abstract
Oropouche virus (OROV) is a neglected and emerging arbovirus that infects humans and animals in South and Central America. OROV is primarily transmitted to humans through the bites of infected midges and possibly some mosquitoes. It is the causative agent of Oropouche fever, [...] Read more.
Oropouche virus (OROV) is a neglected and emerging arbovirus that infects humans and animals in South and Central America. OROV is primarily transmitted to humans through the bites of infected midges and possibly some mosquitoes. It is the causative agent of Oropouche fever, which has high morbidity but low mortality rates in humans. The disease manifests in humans as high fever, headache, myalgia, arthralgia, photophobia, and, in some cases, meningitis and encephalitis. Additionally, a recent report suggests that OROV may cause fetal death, miscarriage, and microcephaly in newborns when women are infected during pregnancy, similar to the issues caused by the Zika virus (ZIKV), another mosquito-borne disease in the same regions. OROV was first reported in the mid-20th century in the Amazon basin. Since then, over 30 epidemics and more than 500,000 infection cases have been reported. The actual case numbers may be much higher due to frequent misdiagnosis, as OROV infection presents similar clinical symptoms to other co-circulating viruses, such as dengue virus (DENV), chikungunya virus (CHIKV), ZIKV, and West Nile virus (WNV). Due to climate change, increased travel, and urbanization, OROV infections have occurred at an increasing pace and have spread to new regions, with the potential to reach North America. According to the World Health Organization (WHO), over 10,000 cases were reported in 2024, including in areas where it was not previously detected. There is an urgent need to develop vaccines, antivirals, and specific diagnostic tools for OROV diseases. However, little is known about this surging virus, and no specific treatments or vaccines are available. In this article, we review the most recent progress in understanding virology, transmission, pathogenesis, diagnosis, host–vector dynamics, and antiviral vaccine development for OROV, and provide implications for future research directions. Full article
(This article belongs to the Special Issue Oropouche Virus (OROV): An Emerging Peribunyavirus (Bunyavirus))
Show Figures

Figure 1

12 pages, 1997 KiB  
Article
Insecticide Resistance Status of Aedes aegypti Adults and Larvae in Nouakchott, Mauritania
by Mohamed Haidy Massa, Mohamed Aly Ould Lemrabott, Nicolas Gomez, Ali Ould Mohamed Salem Boukhary and Sébastien Briolant
Insects 2025, 16(3), 288; https://doi.org/10.3390/insects16030288 - 11 Mar 2025
Viewed by 849
Abstract
Aedes aegypti mosquitoes are established throughout Nouakchott, Mauritania, where its insecticide resistance status is unknown and dengue has become endemo-epidemic since 2014. Eggs were collected using ovitraps at 12 sites in five districts of Nouakchott, in August 2024. Adult females and larvae of [...] Read more.
Aedes aegypti mosquitoes are established throughout Nouakchott, Mauritania, where its insecticide resistance status is unknown and dengue has become endemo-epidemic since 2014. Eggs were collected using ovitraps at 12 sites in five districts of Nouakchott, in August 2024. Adult females and larvae of the F1 generation were used for bioassays. Permethrin, deltamethrin, bendiocarb, and malathion were evaluated at discriminating concentrations. Larval assays were carried out at seven concentrations with Bacillus thuriengensis var israelensis (Bti) and temephos. The presence of knockdown resistance (kdr) mutations known to be associated with pyrethroid resistance was assessed by polymerase chain reaction and amplicons sequencing. Adults showed high levels of resistance to all insecticides tested. Larvae were susceptible to Bti (LD50 < 50 µg/L) and temephos (LD50% = 6.8 ± 0.7 µg/L). Only three kdr point mutations, S989P, V1016G, and F1534C, were found. The tri-locus genotypes SP/VG/FC were significantly associated with pyrethroid survival while only the tri-locus genotypes PP/GG/FF showed significant association with deltamethrin resistance. Given their level of insecticide resistance, there is an urgent need to control Ae. aegypti populations by several methods, including the use of biological larvicides, physical elimination of peridomestic breeding sites, water drainage, and public education to prevent arbovirus transmission. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

17 pages, 9975 KiB  
Article
Oropouche Virus: Isolation and Ultrastructural Characterization from a Human Case Sample from Rio de Janeiro, Brazil, Using an In Vitro System
by Ana Luisa Teixeira de Almeida, Igor Pinto Silva da Costa, Maycon Douglas do Nascimento Garcia, Marcos Alexandre Nunes da Silva, Yasmim Gonçalves Lazzaro, Ana Maria Bispo de Filippis, Fernanda de Bruycker Nogueira and Debora Ferreira Barreto-Vieira
Viruses 2025, 17(3), 373; https://doi.org/10.3390/v17030373 - 5 Mar 2025
Viewed by 1128
Abstract
The Oropouche virus (OROV) is a segmented negative-sense RNA arbovirus member of the Peribunyaviridae family, associated with recurring epidemics of Oropouche fever in Central and South America. Since its identification in 1955, OROV has been responsible for outbreaks in both rural and urban [...] Read more.
The Oropouche virus (OROV) is a segmented negative-sense RNA arbovirus member of the Peribunyaviridae family, associated with recurring epidemics of Oropouche fever in Central and South America. Since its identification in 1955, OROV has been responsible for outbreaks in both rural and urban areas, with transmission involving sylvatic and urban cycles. This study focuses on the characterization of an OROV isolate from a human clinical sample collected in the state of Rio de Janeiro, a non-endemic region in Brazil, highlighting ultrastructural and morphological aspects of the viral replicative cycle in Vero cells. OROV was isolated in Vero cell monolayers which, following viral inoculation, exhibited marked cytopathic effects (CPEs), mainly represented by changes in cell morphology, including membrane protrusions and vacuolization, as well as cell death. Studies by transmission electron microscopy (TEM) revealed significant ultrastructural changes, such as apoptosis, intense remodeling of membrane-bound organelles and signs of rough endoplasmic reticulum and mitochondrial stress. Additionally, the formation of specialized cytoplasmic vacuoles and intra- and extracellular vesicles emphasized trafficking and intercellular communication as essential mechanisms in OROV infection. RT-qPCR studies confirmed the production of viral progeny in high titers, corroborating the efficiency of this experimental model. These findings contribute to a better understanding of the cytopathogenic mechanisms of OROV infection and the contribution of cellular alterations in OROV morphogenesis. Full article
(This article belongs to the Special Issue Oropouche Virus (OROV): An Emerging Peribunyavirus (Bunyavirus))
Show Figures

Figure 1

8 pages, 219 KiB  
Editorial
Oropouche Virus (OROV): Expanding Threats, Shifting Patterns, and the Urgent Need for Collaborative Research in Latin America
by André Ricardo Ribas Freitas, David A. Schwartz, Antônio Silva Lima Neto, Rosana Rodrigues, Luciano Pamplona Goes Cavalcanti and Pedro María Alarcón-Elbal
Viruses 2025, 17(3), 353; https://doi.org/10.3390/v17030353 - 28 Feb 2025
Cited by 3 | Viewed by 961
Abstract
Recent outbreaks of Oropouche virus (OROV) in Latin America demonstrate shifting epidemiological trends, with increasing clinical severity and geographic expansion driven by environmental and anthropogenic factors, many of which remain uncertain. Viral evolution with new reassortant strains, changes in vectors, environmental degradation, and [...] Read more.
Recent outbreaks of Oropouche virus (OROV) in Latin America demonstrate shifting epidemiological trends, with increasing clinical severity and geographic expansion driven by environmental and anthropogenic factors, many of which remain uncertain. Viral evolution with new reassortant strains, changes in vectors, environmental degradation, and human activities have been postulated as factors that have facilitated its spread into new areas beyond the Amazon Basin. Multiple reports starting in July 2024 of pregnant women with Oropouche fever developing vertical infections and adverse perinatal outcomes, including placental infection, stillbirth, and fetal infections with microcephaly and malformation syndromes, have reinforced the public health significance of this disease. Here, we describe the evidence surrounding this re-emerging epidemic threat, examine these changes, and propose specific strategies for enhanced surveillance and a public health response. Full article
(This article belongs to the Special Issue Oropouche Virus (OROV): An Emerging Peribunyavirus (Bunyavirus))
17 pages, 1904 KiB  
Article
Identification of Potential Vectors and Detection of Rift Valley Fever Virus in Mosquitoes Collected Before and During the 2022 Outbreak in Rwanda
by Isidore Nsengimana, Emmanuel Hakizimana, Jackie Mupfasoni, Jean Nepomuscene Hakizimana, Augustino A. Chengula, Christopher J. Kasanga and Gillian Eastwood
Pathogens 2025, 14(1), 47; https://doi.org/10.3390/pathogens14010047 - 8 Jan 2025
Viewed by 1303
Abstract
Rift Valley fever virus (RVFV) is an emerging mosquito-borne arbovirus of One Health importance that caused two large outbreaks in Rwanda in 2018 and 2022. Information on vector species with a role in RVFV eco-epidemiology in Rwanda is scarce. Here we sought to [...] Read more.
Rift Valley fever virus (RVFV) is an emerging mosquito-borne arbovirus of One Health importance that caused two large outbreaks in Rwanda in 2018 and 2022. Information on vector species with a role in RVFV eco-epidemiology in Rwanda is scarce. Here we sought to identify potential mosquito vectors of RVFV in Rwanda, their distribution and abundance, as well as their infection status. Since an outbreak of RVF occurred during the study period, data were obtained both during an interepidemic period and during the 2022 Rwanda RVF outbreak. Five districts of the eastern province of Rwanda were prospected using a combination of unbaited light traps and Biogents (BG Sentinel and Pro) traps baited with an artificial human scent during three periods, namely mid-August to mid-September 2021, December 2021, and April to May 2022. Trapped mosquitoes were morphologically identified and tested for viral evidence using both RT-PCR and virus isolation methods on a Vero cell line. A total of 14,815 adult mosquitoes belonging to five genera and at least 17 species were collected and tested as 765 monospecific pools. Culex quinquefasciatus was the most predominant species representing 72.7% of total counts. Of 527 mosquito pools collected before the 2022 outbreak, a single pool of Cx. quinquefasciatus showed evidence of RVFV RNA. Of 238 pools collected during the outbreak, RVFV was detected molecularly from five pools (two pools of Cx. quinquefasciatus, two pools of Anopheles ziemanni, and one pool of Anopheles gambiae sensu lato), and RVFV was isolated from the two pools of Cx. quinquefasciatus, from Kayonza and Rwamagana districts, respectively. Minimum infection rates (per 1000 mosquitoes) of 0.4 before the outbreak and 0.6–7 during the outbreak were noted. Maximum-likelihood phylogenetic analysis indicates that RVFV detected in these mosquitoes is closely related to viral strains that circulated in livestock in Rwanda and in Burundi during the same RVF outbreak in 2022. The findings reveal initial evidence for the incrimination of several mosquito species in the transmission of RVFV in Rwanda and highlight the need for more studies to understand the role of each species in supporting the spread and persistence of RVFV in the country. Full article
(This article belongs to the Special Issue Mosquito-Borne Viruses)
Show Figures

Figure 1

Back to TopTop