Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = argyrodite electrolyte

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3928 KB  
Article
Environmental Stability of Li6PS5Cl0.5Br0.5 Electrolyte During Lithium Battery Manufacturing and a Simplified Test Protocol
by Eman Hassan and Siamak Farhad
Energies 2025, 18(13), 3391; https://doi.org/10.3390/en18133391 - 27 Jun 2025
Viewed by 474
Abstract
In this study, we investigate the environmental stability of the sulfide-based argyrodite solid electrolyte Li6PS5Cl0.5Br0.5, a promising candidate for all-solid-state lithium batteries due to its high ionic conductivity and favorable mechanical [...] Read more.
In this study, we investigate the environmental stability of the sulfide-based argyrodite solid electrolyte Li6PS5Cl0.5Br0.5, a promising candidate for all-solid-state lithium batteries due to its high ionic conductivity and favorable mechanical properties. Despite its potential, the material’s sensitivity to ambient air humidity presents challenges for large-scale battery manufacturing. Moisture exposure leads to performance degradation and the release of toxic hydrogen sulfide (H2S) gas, raising concerns for workplace safety. The objectives of this study are to validate the electrolyte synthesis process, evaluate the effects of air humidity exposure on its reactivity and ionic conductivity, and establish a standardized protocol for assessing environmental stability. We report a synthesis method based on ball milling and heat treatment that achieves an ionic conductivity of 2.11 mS/cm, along with a fundamental study incorporating modeling and formulation approaches to evaluate the electrolyte’s environmental stability. Furthermore, we introduce a simplified testing method for assessing environmental stability, which may serve as a benchmark protocol for the broader class of argyrodite solid electrolytes. Full article
(This article belongs to the Special Issue Advances in Manufacturing and Recycling of Energy Systems)
Show Figures

Figure 1

20 pages, 6764 KB  
Article
Exploring the Potential of SnHPO3 and Ni3.4Sn4 as Anode Materials in Argyrodite-Based All-Solid-State Lithium-Ion Batteries
by Wissal Tout, Junxian Zhang, Mickael Mateos, M’hamed Oubla, Fouzia Cherkaoui El Moursli, Fermin Cuevas and Zineb Edfouf
Nanomaterials 2025, 15(7), 512; https://doi.org/10.3390/nano15070512 - 28 Mar 2025
Cited by 1 | Viewed by 470
Abstract
All-solid-state batteries have garnered significant attention due to their potential to exceed the energy density of conventional lithium-ion batteries, particularly when alloying-based materials or lithium metal anodes are used. However, achieving compatibility with lithium metal remains a persistent bottleneck. In this study, we [...] Read more.
All-solid-state batteries have garnered significant attention due to their potential to exceed the energy density of conventional lithium-ion batteries, particularly when alloying-based materials or lithium metal anodes are used. However, achieving compatibility with lithium metal remains a persistent bottleneck. In this study, we shed light on the potential of SnHPO3 tin phosphite and Ni3.4Sn4 intermetallic as novel conversion/alloying anode materials for all-solid-state lithium batteries using Li6PS5Cl as the solid electrolyte. The two Sn-based active materials were nanostructured by ball-milling to demonstrate considerable promise for application in all-solid-state half-cells. Galvanostatic cycling at room temperature revealed electrochemical behavior based on conversion/alloying reactions akin to those observed in conventional lithium-ion batteries. Promisingly, both materials exhibited satisfying electrochemical stability, with coulombic efficiencies exceeding 97%. These findings indicate that Li6PS5Cl solid electrolyte is compatible with Sn-based alloying anodes. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

13 pages, 10800 KB  
Article
On the Stability of the Interface between Li2TiS3 Cathode and Li6PS5Cl Solid State Electrolytes for Battery Applications: A DFT Study
by Riccardo Rocca, Naiara Leticia Marana, Fabrizio Silveri, Maddalena D’Amore, Eleonora Ascrizzi, Mauro Francesco Sgroi, Nello Li Pira and Anna Maria Ferrari
Batteries 2024, 10(10), 351; https://doi.org/10.3390/batteries10100351 - 7 Oct 2024
Viewed by 2036
Abstract
Lithium-titanium-sulfur cathodes have garnered interest due to their distinctive properties and potential applications in lithium-ion batteries. They present various benefits, including lower cost, enhanced safety, and greater energy density compared to the commonly used transition metal oxides. The current trend in lithium-ion batteries [...] Read more.
Lithium-titanium-sulfur cathodes have garnered interest due to their distinctive properties and potential applications in lithium-ion batteries. They present various benefits, including lower cost, enhanced safety, and greater energy density compared to the commonly used transition metal oxides. The current trend in lithium-ion batteries is to move to all-solid-state chemistries in order to improve safety and energy density. Several chemistries for solid electrolytes have been studied, tested, and characterized to evaluate the applicability in energy storage system. Among those, sulfur-based Argyrodites have been coupled with cubic rock-salt type Li2TiS3 electrodes. In this work, Li2TiS3 surfaces were investigated with DFT methods in different conditions, covering the possible configurations that can occur during the cathode usage: pristine, delithiated, and overlithiated. Interfaces were built by coupling selected Li2TiS3 surfaces with the most stable Argyrodite surface, as derived from a previous study, allowing us to understand the (electro)chemical compatibility between these two sulfur-based materials. Full article
(This article belongs to the Special Issue Recent Process of Solid State Lithium Batteries)
Show Figures

Figure 1

16 pages, 5696 KB  
Article
Functionalization of Cathode–Electrolyte Interface with Ionic Liquids for High-Performance Quasi-Solid-State Lithium–Sulfur Batteries: A Low-Sulfur Loading Study
by Milinda Kalutara Koralalage, Varun Shreyas, William R. Arnold, Sharmin Akter, Arjun Thapa, Badri Narayanan, Hui Wang, Gamini U. Sumanasekera and Jacek B. Jasinski
Batteries 2024, 10(5), 155; https://doi.org/10.3390/batteries10050155 - 30 Apr 2024
Cited by 3 | Viewed by 2550
Abstract
We introduce a quasi-solid-state electrolyte lithium-sulfur (Li–S) battery (QSSEB) based on a novel Li-argyrodite solid-state electrolyte (SSE), Super P–Sulfur cathode, and Li-anode. The cathode was prepared using a water-based carboxymethyl cellulose (CMC) solution and styrene butadiene rubber (SBR) as the binder while Li [...] Read more.
We introduce a quasi-solid-state electrolyte lithium-sulfur (Li–S) battery (QSSEB) based on a novel Li-argyrodite solid-state electrolyte (SSE), Super P–Sulfur cathode, and Li-anode. The cathode was prepared using a water-based carboxymethyl cellulose (CMC) solution and styrene butadiene rubber (SBR) as the binder while Li6PS5F0.5Cl0.5 SSE was synthesized using a solvent-based process, via the introduction of LiF into the argyrodite crystal structure, which enhances both the ionic conductivity and interface-stabilizing properties of the SSE. Ionic liquids (IL) were prepared using lithium bis(trifluoromethyl sulfonyl)imide (LiTFSI) as the salt, with pre-mixed pyrrolidinium bis(trifluoromethyl sulfonyl)imide (PYR) as solvent and 1,3-dioxolane (DOL) as diluent, and they were used to wet the SSE–electrode interfaces. The effect of IL dilution, the co-solvent amount, the LiTFSI concentration, the C rate at which the batteries are tested and the effect of the introduction of SSE in the cathode, were systematically studied and optimized to develop a QSSEB with higher capacity retention and cyclability. Interfacial reactions occurring at the cathode–SSE interface during cycling were also investigated using electrochemical impedance spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy supported by ab initio molecular dynamics simulations. This work offers a new insight into the intimate interfacial contacts between the SSE and carbon–sulfur cathodes, which are critical for improving the electrochemical performance of quasi-solid-state lithium–sulfur batteries. Full article
Show Figures

Figure 1

11 pages, 5790 KB  
Article
Chlorine-Rich Na6−xPS5−xCl1+x: A Promising Sodium Solid Electrolyte for All-Solid-State Sodium Batteries
by Yi Zhang, Haoran Zheng, Jiale You, Hongyang Zhao, Abdul Jabbar Khan, Ling Gao and Guowei Zhao
Materials 2024, 17(9), 1980; https://doi.org/10.3390/ma17091980 - 24 Apr 2024
Cited by 2 | Viewed by 2585
Abstract
Developing argyrodite-type, chlorine-rich, sodium-ion, solid-state electrolytes with high conductivity is a long-term challenge that is crucial for the advancement of all-solid-state batteries (ASSBs). In this study, chlorine-rich, argyrodite-type Na6−xPS5−xCl1+x solid solutions were successfully developed with [...] Read more.
Developing argyrodite-type, chlorine-rich, sodium-ion, solid-state electrolytes with high conductivity is a long-term challenge that is crucial for the advancement of all-solid-state batteries (ASSBs). In this study, chlorine-rich, argyrodite-type Na6−xPS5−xCl1+x solid solutions were successfully developed with a solid solution formation range of 0 ≤ x ≤ 0.5. Na5.5PS4.5Cl1.5 (x = 0.5), displaying a highest ionic conductivity of 1.2 × 10−3 S/cm at 25 °C, which is more than a hundred times higher than that of Na6PS5Cl. Cyclic voltammetry and electrochemical impedance spectroscopy results demonstrated that the rich chlorine significantly enhanced the ionic conductivity and electrochemical stability, in addition to causing a reduction in activation energy. The Na5.5PS4.5Cl1.5 composite also showed the characteristics of a pure ionic conductor without electronic conductivity. Finally, the viability of Na5.5PS4.5Cl1.5 as a sodium electrolyte for all-solid-state sodium batteries was checked in a lab-scale ASSB, showing stable battery performance. This study not only demonstrates new composites of sodium-ionic, solid-state electrolytes with relatively high conductivity but also provides an anion-modulation strategy to enhance the ionic conductivity of argyrodite-type sodium solid-state ionic conductors. Full article
Show Figures

Figure 1

16 pages, 3832 KB  
Article
New Insights of Infiltration Process of Argyrodite Li6PS5Cl Solid Electrolyte into Conventional Lithium-Ion Electrodes for Solid-State Batteries
by Artur Tron, Andrea Paolella and Alexander Beutl
Batteries 2023, 9(10), 503; https://doi.org/10.3390/batteries9100503 - 4 Oct 2023
Cited by 8 | Viewed by 8012
Abstract
All-solid-state lithium-ion batteries based on solid electrolytes are attractive for electric applications due to their potential high energy density and safety. The sulfide solid electrolyte (e.g., argyrodite) shows a high ionic conductivity (10−3 S cm−1). There is an open question [...] Read more.
All-solid-state lithium-ion batteries based on solid electrolytes are attractive for electric applications due to their potential high energy density and safety. The sulfide solid electrolyte (e.g., argyrodite) shows a high ionic conductivity (10−3 S cm−1). There is an open question related to the sulfide electrode’s fabrication by simply infiltrating methods applied for conventional lithium-ion battery electrodes via homogeneous solid electrolyte solutions, the structure of electrolytes after drying, chemical stability of binders and electrolyte, the surface morphology of electrolyte, and the deepening of the infiltrated electrolyte into the active materials to provide better contact between the active material and electrolyte and favorable lithium ionic conduction. However, due to the high reactivity of sulfide-based solid electrolytes, unwanted side reactions between sulfide electrolytes and polar solvents may occur. In this work, we explore the chemical and electrochemical properties of the argyrodite-based film produced by infiltration mode by combining electrochemical and structural characterizations. Full article
(This article belongs to the Special Issue Recent Progress in All-Solid-State Lithium Batteries)
Show Figures

Graphical abstract

15 pages, 3995 KB  
Article
Ionic Conductivity of the Li6PS5Cl0.5Br0.5 Argyrodite Electrolyte at Different Operating and Pelletizing Pressures and Temperatures
by Joshua Dunham, Joshua Carfang, Chan-Yeop Yu, Raziyeh Ghahremani, Rashid Farahati and Siamak Farhad
Energies 2023, 16(13), 5100; https://doi.org/10.3390/en16135100 - 1 Jul 2023
Cited by 4 | Viewed by 3243
Abstract
All-solid-state lithium batteries (ASSLBs) using argyrodite electrolyte materials have shown promise for applications in electric vehicles (EVs). However, understanding the effects of processing parameters on the ionic conductivity of these electrolytes is crucial for optimizing battery performance and manufacturing methods. This study investigates [...] Read more.
All-solid-state lithium batteries (ASSLBs) using argyrodite electrolyte materials have shown promise for applications in electric vehicles (EVs). However, understanding the effects of processing parameters on the ionic conductivity of these electrolytes is crucial for optimizing battery performance and manufacturing methods. This study investigates the influence of electrolyte operating temperature, electrolyte operating pressure, electrolyte pelletization pressure, and electrolyte pelletizing temperature on the ionic conductivity of the Li6PS5Cl0.5Br0.5 argyrodite electrolyte (AmpceraTM, D50 = 10 µm). A specially designed test cell is employed for the experimental measurements, allowing for controlled pelletization and testing within the same tooling. The results demonstrate the significant impact of the four parameters on the ionic conductivity of the argyrodite electrolyte. The electrolyte operating temperature has a more pronounced effect than operating pressure, and pelletizing temperature exerts a greater influence than pelletizing pressure. This study provides graphs that aid in understanding the interplay between these parameters and achieving desired conductivity values. It also establishes a baseline for the maximum pelletizing temperature before undesirable degradation of the electrolyte occurs. By manipulating the pelletizing pressure, operating pressure, and pelletizing temperature, battery engineers can achieve the desired conductivity for specific applications. The findings emphasize the need to consider operating conditions to ensure satisfactory low-temperature performance, particularly for EVs. Overall, this study provides valuable insights into processing and operating conditions for ASSLBs utilizing the Li6PS5Cl0.5Br0.5 argyrodite electrolyte. Full article
Show Figures

Figure 1

10 pages, 2854 KB  
Article
LiNi0.6Co0.2Mn0.2O2 Cathode-Solid Electrolyte Interfacial Behavior Characterization Using Novel Method Adopting Microcavity Electrode
by Rahul S. Ingole, Rajesh Rajagopal, Orynbassar Mukhan, Sung-Soo Kim and Kwang-Sun Ryu
Molecules 2023, 28(8), 3537; https://doi.org/10.3390/molecules28083537 - 17 Apr 2023
Cited by 4 | Viewed by 2388
Abstract
Due to the limitations of organic liquid electrolytes, current development is towards high performance all-solid-state lithium batteries (ASSLBs). For high performance ASSLBs, the most crucial is the high ion-conducting solid electrolyte (SE), with a focus on interface analysis between SE and active materials. [...] Read more.
Due to the limitations of organic liquid electrolytes, current development is towards high performance all-solid-state lithium batteries (ASSLBs). For high performance ASSLBs, the most crucial is the high ion-conducting solid electrolyte (SE), with a focus on interface analysis between SE and active materials. In the current study, we successfully synthesized the high ion-conductive argyrodite-type (Li6PS5Cl) solid electrolyte, which has 4.8 mS cm−1 conductivity at room temperature. Additionally, the present study suggests the quantitative analysis of interfaces in ASSLBs. The measured initial discharge capacity of a single particle confined in a microcavity electrode was 1.05 nAh for LiNi0.6Co0.2Mn0.2O2 (NCM622)-Li6PS5Cl solid electrolyte materials. The initial cycle result shows the irreversible nature of active material due to the formation of the solid electrolyte interphase (SEI) layer on the surface of the active particle; further second and third cycles demonstrate high reversibility and good stability. Furthermore, the electrochemical kinetic parameters were calculated through the Tafel plot analysis. From the Tafel plot, it is seen that asymmetry increases gradually at high discharge currents and depths, which rise asymmetricity due to the increasing of the conduction barrier. However, the electrochemical parameters confirm the increasing conduction barrier with increased charge transfer resistance. Full article
(This article belongs to the Special Issue Recent Progress in Nanomaterials in Electrochemistry)
Show Figures

Figure 1

9 pages, 3341 KB  
Article
Sn-Substituted Argyrodite Li6PS5Cl Solid Electrolyte for Improving Interfacial and Atmospheric Stability
by Seul-Gi Kang, Dae-Hyun Kim, Bo-Joong Kim and Chang-Bun Yoon
Materials 2023, 16(7), 2751; https://doi.org/10.3390/ma16072751 - 29 Mar 2023
Cited by 6 | Viewed by 5093
Abstract
Sulfide-based solid electrolytes exhibit good formability and superior ionic conductivity. However, these electrolytes can react with atmospheric moisture to generate H2S gas, resulting in performance degradation. In this study, we attempted to improve the stability of the interface between Li metal [...] Read more.
Sulfide-based solid electrolytes exhibit good formability and superior ionic conductivity. However, these electrolytes can react with atmospheric moisture to generate H2S gas, resulting in performance degradation. In this study, we attempted to improve the stability of the interface between Li metal and an argyrodite Li6Ps5Cl solid electrolyte by partially substituting P with Sn to form an Sn–S bond. The solid electrolyte was synthesized via liquid synthesis instead of the conventional mechanical milling method. X-ray diffraction analyses confirmed that solid electrolytes have an argyrodite structure and peak shift occurs as substitution increases. Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses confirmed that the particle size gradually increased, and the components were evenly distributed. Moreover, electrochemical impedance spectroscopy and DC cycling confirmed that the ionic conductivity decreased slightly but that the cycling behavior was stable for about 500 h at X = 0.05. The amount of H2S gas generated when the solid electrolyte is exposed to moisture was measured using a gas sensor. Stability against atmospheric moisture was improved. In conclusion, liquid-phase synthesis could be applied for the large-scale production of argyrodite-based Li6PS5Cl solid electrolytes. Moreover, Sn substitution improved the electrochemical stability of the solid electrolyte. Full article
(This article belongs to the Special Issue Applications of High-Performance Electrolyte Materials in Batteries)
Show Figures

Figure 1

13 pages, 2584 KB  
Article
Rational Optimization of Cathode Composites for Sulfide-Based All-Solid-State Batteries
by Artur Tron, Raad Hamid, Ningxin Zhang and Alexander Beutl
Nanomaterials 2023, 13(2), 327; https://doi.org/10.3390/nano13020327 - 12 Jan 2023
Cited by 12 | Viewed by 6077
Abstract
All-solid-state lithium-ion batteries with argyrodite solid electrolytes have been developed to attain high conductivities of 10−3 S cm−1 in studies aiming at fast ionic conductivity of electrolytes. However, no matter how high the ionic conductivity of the electrolyte, the design of [...] Read more.
All-solid-state lithium-ion batteries with argyrodite solid electrolytes have been developed to attain high conductivities of 10−3 S cm−1 in studies aiming at fast ionic conductivity of electrolytes. However, no matter how high the ionic conductivity of the electrolyte, the design of the cathode composite is often the bottleneck for high performance. Thus, optimization of the composite cathode formulation is of utmost importance. Unfortunately, many reports limit their studies to only a few parameters of the whole electrode formulation. In addition, different measurement setups and testing conditions employed for all-solid-state batteries make a comparison of results from mutually independent studies quite difficult. Therefore, a detailed investigation on different key parameters for preparation of cathodes employed in all-solid-state batteries is presented here. Employing a rational approach for optimization of composite cathodes using solid sulfide electrolytes elucidated the influence of different parameters on the cycling performance. First, powder electrodes made without binders are investigated to optimize several parameters, including the active materials’ particle morphology, the nature and amount of the conductive additive, the particle size of the solid electrolyte, as well as the active material-to-solid electrolyte ratio. Finally, cast electrodes are examined to determine the influence of a binder on cycling performance. Full article
(This article belongs to the Special Issue Sulfur Based Nanomaterials for Secondary Batteries)
Show Figures

Graphical abstract

11 pages, 3974 KB  
Article
Cl- and Al-Doped Argyrodite Solid Electrolyte Li6PS5Cl for All-Solid-State Lithium Batteries with Improved Ionic Conductivity
by Yeong Jun Choi, Sun-I Kim, Mingyu Son, Jung Woo Lee and Duck Hyun Lee
Nanomaterials 2022, 12(24), 4355; https://doi.org/10.3390/nano12244355 - 7 Dec 2022
Cited by 21 | Viewed by 7316
Abstract
Argyrodite solid electrolytes such as lithium phosphorus sulfur chloride (Li6PS5Cl) have recently attracted great attention due to their excellent lithium-ion transport properties, which are applicable to all-solid-state lithium batteries. In this study, we report the improved ionic conductivity of [...] Read more.
Argyrodite solid electrolytes such as lithium phosphorus sulfur chloride (Li6PS5Cl) have recently attracted great attention due to their excellent lithium-ion transport properties, which are applicable to all-solid-state lithium batteries. In this study, we report the improved ionic conductivity of an argyrodite solid electrolyte, Li6PS5Cl, in all-solid-state lithium batteries via the co-doping of chlorine (Cl) and aluminum (Al) elements. Electrochemical analysis was conducted on the doped argyrodite structure of Li6PS5Cl, which revealed that the substitution of cations and anions greatly improved the ionic conductivity of solid electrolytes. The ionic conductivity of the Cl- and Al-doped Li6PS5Cl (Li5.4Al0.1PS4.7Cl1.3) electrolyte was 7.29 × 10−3 S cm−1 at room temperature, which is 4.7 times higher than that of Li6PS5Cl. The Arrhenius plot of the Li5.4Al0.1PS4.7Cl1.3 electrolyte further elucidated its low activation energy at 0.09 eV. Full article
(This article belongs to the Special Issue Nanomaterials for Energy Conversion and Catalytic Applications)
Show Figures

Figure 1

21 pages, 7827 KB  
Review
A Review on the Molecular Modeling of Argyrodite Electrolytes for All-Solid-State Lithium Batteries
by Oluwasegun M. Ayoola, Alper Buldum, Siamak Farhad and Sammy A. Ojo
Energies 2022, 15(19), 7288; https://doi.org/10.3390/en15197288 - 4 Oct 2022
Cited by 11 | Viewed by 4060
Abstract
Solid-state argyrodite electrolytes are promising candidate materials to produce safe all-solid-state lithium batteries (ASSLBs) due to their high ionic conductivity. These batteries can be used to power electric vehicles and portable consumer electronics which need high power density. Atomic-scale modeling with ab initio [...] Read more.
Solid-state argyrodite electrolytes are promising candidate materials to produce safe all-solid-state lithium batteries (ASSLBs) due to their high ionic conductivity. These batteries can be used to power electric vehicles and portable consumer electronics which need high power density. Atomic-scale modeling with ab initio calculations became an invaluable tool to better understand the intrinsic properties and stability of these materials. It is also used to create new structures to tailor their properties. This review article presents some of the recent theoretical investigations based on atomic-scale modeling to study argyrodite electrolytes for ASSLBs. A comparison of the effectiveness of argyrodite materials used for ASSLBs and the underlying advantages and disadvantages of the argyrodite materials are also presented in this article. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries: Latest Advances, Challenges and Prospects)
Show Figures

Figure 1

15 pages, 5160 KB  
Article
Effects of Coating on the Electrochemical Performance of a Nickel-Rich Cathode Active Material
by Eman Hassan, Mahdi Amiriyan, Dominic Frisone, Joshua Dunham, Rashid Farahati and Siamak Farhad
Energies 2022, 15(13), 4886; https://doi.org/10.3390/en15134886 - 3 Jul 2022
Cited by 9 | Viewed by 3163
Abstract
Due to their safety and high power density, one of the most promising types of all-solid-state lithium batteries is the one made with the argyrodite solid electrolyte (ASE). Although substantial efforts have been made toward the commercialization of this battery, it is still [...] Read more.
Due to their safety and high power density, one of the most promising types of all-solid-state lithium batteries is the one made with the argyrodite solid electrolyte (ASE). Although substantial efforts have been made toward the commercialization of this battery, it is still challenged by some technical issues. One of these issues is to prevent the side reactions at the interface of the ASE and the cathode active material (CAM). A solution to address this issue is to coat the CAM particles with a material that is compatible with both ASE and CAM. Prior studies show that the lithium niobate, LiNbO3, (LNO) is a promising material for coating CAM particles to reduce the interfacial side reactions. However, no systematic study is available in the literature to show the effect of coating LNO on CAM performance. This paper aims to quantify the effect of LNO coating on the electrochemical performance of a nickel-rich CAM. The electrochemical performance parameters that are studied are the capacity, cycling performance, and rate performance of the coated-CAM; and the effectiveness of the coating to prevent the side reactions at the ASE and CAM interface is out of the scope of this study. To eliminate the effect of side reactions at the ASE and CAM interface, we conduct all tests in the organic liquid electrolyte (OLE) cells to solely present the effect of coating on the CAM performance. For this purpose, 0.5 wt.% and 1 wt.% LNO are used to coat the LiNi0.6Mn0.2Co0.2O2 (NMC-60) CAM through two synthesizing methods. Consequently, the effects of the synthesizing method and the coating weight percentage on the NMC-60 performance are presented. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries: Latest Advances, Challenges and Prospects)
Show Figures

Figure 1

15 pages, 3486 KB  
Article
Preparation of Composite Electrodes for All-Solid-State Batteries Based on Sulfide Electrolytes: An Electrochemical Point of View
by Sara Giraldo, Koki Nakagawa, Ferley A. Vásquez, Yuta Fujii, Yongming Wang, Akira Miura, Jorge A. Calderón, Nataly C. Rosero-Navarro and Kiyoharu Tadanaga
Batteries 2021, 7(4), 77; https://doi.org/10.3390/batteries7040077 - 11 Nov 2021
Cited by 12 | Viewed by 8807
Abstract
All-solid-state batteries (ASSBs) are a promising response to the need for safety and high energy density of large-scale energy storage systems in challenging applications such as electric vehicles and grid integration. ASSBs based on sulfide solid electrolytes (SEs) have attracted much attention because [...] Read more.
All-solid-state batteries (ASSBs) are a promising response to the need for safety and high energy density of large-scale energy storage systems in challenging applications such as electric vehicles and grid integration. ASSBs based on sulfide solid electrolytes (SEs) have attracted much attention because of their high ionic conductivity and wide electrochemical windows of the sulfide SEs. Here, we study the electrochemical performance of ASSBs using composite electrodes prepared via two processes (simple mixture and solution processes) and varying the ionic conductor additive (80Li2S∙20P2S5 and argyrodite-type Li6PS5Cl). The composite electrodes consist of lithium-silicate-coated LiNi1/3Mn1/3Co1/3O2 (NMC), a sulfide SE, and carbon additives. The charge-transfer resistance at the interface of the solid electrolyte and NMC is the main parameter related to the ASSB’s status. This value decreases when the composite electrodes are prepared via a solution process. The lithium silicate coating and the use of a high-Li-ion additive conductor are also important to reduce the interfacial resistance and achieve high initial capacities (140 mAh g−1). Full article
(This article belongs to the Special Issue Ionic Transportation Bases in All-Solid-State Batteries)
Show Figures

Figure 1

10 pages, 2076 KB  
Article
All-Solid-State Lithium-Ion Batteries with Oxide/Sulfide Composite Electrolytes
by Young Seon Park, Jae Min Lee, Eun Jeong Yi, Ji-Woong Moon and Haejin Hwang
Materials 2021, 14(8), 1998; https://doi.org/10.3390/ma14081998 - 16 Apr 2021
Cited by 26 | Viewed by 6992
Abstract
Li6.3La3Zr1.65W0.35O12 (LLZO)-Li6PS5Cl (LPSC) composite electrolytes and all-solid-state cells containing LLZO-LPSC were fabricated by cold pressing at room temperature. The LPSC:LLZO ratio was varied, and the microstructure, ionic conductivity, and electrochemical [...] Read more.
Li6.3La3Zr1.65W0.35O12 (LLZO)-Li6PS5Cl (LPSC) composite electrolytes and all-solid-state cells containing LLZO-LPSC were fabricated by cold pressing at room temperature. The LPSC:LLZO ratio was varied, and the microstructure, ionic conductivity, and electrochemical performance of the corresponding composite electrolytes were investigated; the ionic conductivity of the composite electrolytes was three or four orders of magnitude higher than that of LLZO. The high conductivity of the composite electrolytes was attributed to the enhanced relative density and the rule of mixture for soft LPSC particles with high lithium-ion conductivity (~10−4 S·cm−1). The specific capacities of all-solid-state cells (ASSCs) consisting of a LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode and the composite electrolytes of LLZO:LPSC = 7:3 and 6:4 were 163 and 167 mAh·g−1, respectively, at 0.1 C and room temperature. Moreover, the charge–discharge curves of the ASSCs with the composite electrolytes revealed that a good interfacial contact was successfully formed between the NCM811 cathode and the LLZO-LPSC composite electrolyte. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

Back to TopTop