Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,193)

Search Parameters:
Keywords = arterial blood flow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1201 KB  
Article
Collaboration and Innovation: A Bibliometric Study of the Rise in MMA Embolization in Neurosurgery
by Jagoš Golubović, Igor Horvat, Djula Djilvesi, Bojan Jelača and Petar Vuleković
Clin. Transl. Neurosci. 2025, 9(3), 38; https://doi.org/10.3390/ctn9030038 - 25 Aug 2025
Abstract
Chronic subdural hematoma (cSDH) is a common neurosurgical condition in the elderly, often resulting from minor head trauma. Traditional surgical treatments such as burr-hole drainage carry recurrence rates of 10–20% and significant risks in older patients, especially those on anticoagulation therapy. Middle meningeal [...] Read more.
Chronic subdural hematoma (cSDH) is a common neurosurgical condition in the elderly, often resulting from minor head trauma. Traditional surgical treatments such as burr-hole drainage carry recurrence rates of 10–20% and significant risks in older patients, especially those on anticoagulation therapy. Middle meningeal artery (MMA) embolization has emerged as a minimally invasive alternative, aiming to reduce blood flow to the dura and thereby promote hematoma resolution and lower recurrence. We conducted a bibliometric analysis of publications on MMA embolization for cSDH up to December 2023. The analysis shows a sharp increase in research activity over the past decade. North America, Japan, and Europe are leading contributors, with collaborative networks forming among major institutions. Key journals in neurosurgery and neurointervention have published much of this research, and author collaborations are extensive. Frequently used keywords such as “recurrence” and “treatment outcome” reflect an emphasis on reducing rebleeding and improving patient outcomes. In conclusion, MMA embolization is rapidly gaining attention as a promising treatment for cSDH. While early results are favorable and multi-center efforts are expanding the evidence base, further research is needed to establish long-term efficacy, optimize patient selection, and standardize techniques. Full article
(This article belongs to the Section Endovascular Neurointervention)
Show Figures

Figure 1

16 pages, 1085 KB  
Article
Predicting Regional Cerebral Blood Flow Using Voxel-Wise Resting-State Functional MRI
by Hongjie Ke, Bhim M. Adhikari, Yezhi Pan, David B. Keator, Daniel Amen, Si Gao, Yizhou Ma, Paul M. Thompson, Neda Jahanshad, Jessica A. Turner, Theo G. M. van Erp, Mohammed R. Milad, Jair C. Soares, Vince D. Calhoun, Juergen Dukart, L. Elliot Hong, Tianzhou Ma and Peter Kochunov
Brain Sci. 2025, 15(9), 908; https://doi.org/10.3390/brainsci15090908 - 23 Aug 2025
Viewed by 102
Abstract
Background: Regional cerebral blood flow (rCBF) is a putative biomarker for neuropsychiatric disorders, including major depressive disorder (MDD). Methods: Here, we show that rCBF can be predicted from resting-state functional MRI (rsfMRI) at the voxel level while correcting for partial volume averaging (PVA) [...] Read more.
Background: Regional cerebral blood flow (rCBF) is a putative biomarker for neuropsychiatric disorders, including major depressive disorder (MDD). Methods: Here, we show that rCBF can be predicted from resting-state functional MRI (rsfMRI) at the voxel level while correcting for partial volume averaging (PVA) artifacts. Cortical patterns of MDD-related CBF differences decoded from rsfMRI using a PVA-corrected approach showed excellent agreement with CBF measured using single-photon emission computed tomography (SPECT) and arterial spin labeling (ASL). A support vector machine algorithm was trained to decode cortical voxel-wise CBF from temporal and power-spectral features of voxel-level rsfMRI time series while accounting for PVA. Three datasets, Amish Connectome Project (N = 300; 179 M/121 F, both rsfMRI and ASL data), UK Biobank (N = 8396; 3097 M/5319 F, rsfMRI data), and Amen Clinics Inc. datasets (N = 372: N = 183 M/189 F, SPECT data), were used. Results: PVA-corrected CBF values predicted from rsfMRI showed significant correlation with the whole-brain (r = 0.54, p = 2 × 10−5) and 31 out of 34 regional (r = 0.33 to 0.59, p < 1.1 × 10−3) rCBF measures from 3D ASL. PVA-corrected rCBF values showed significant regional deficits in the UKBB MDD group (Cohen’s d = −0.30 to −0.56, p < 10−28), with the strongest effect sizes observed in the frontal and cingulate areas. The regional deficit pattern of MDD-related hypoperfusion showed excellent agreement with CBF deficits observed in the SPECT data (r = 0.74, p = 4.9 × 10−7). Consistent with previous findings, this new method suggests that perfusion signals can be predicted using voxel-wise rsfMRI signals. Conclusions: CBF values computed from widely available rsfMRI can be used to study the impact of neuropsychiatric disorders such as MDD on cerebral neurophysiology. Full article
(This article belongs to the Section Neurotechnology and Neuroimaging)
Show Figures

Figure 1

14 pages, 474 KB  
Article
Markers in Acute Coronary Syndrome: Distal Coronary Embolism at Percutaneous Coronary Intervention
by Niya Emilova Semerdzhieva, Simeon Dimitrov, Adelina Tsakova, Mariana Gospodinova, Petar Atanasov and Vesela Lozanova
J. Cardiovasc. Dev. Dis. 2025, 12(8), 315; https://doi.org/10.3390/jcdd12080315 - 19 Aug 2025
Viewed by 139
Abstract
(1) Introduction: Distal coronary emboli occur in up to 15–30.5% of patients undergoing percutaneous coronary intervention (PCI) for acute myocardial infarction (AMI) and are associated with poor myocardial reperfusion in the territory of the infarct-related artery. The objective of this study was to [...] Read more.
(1) Introduction: Distal coronary emboli occur in up to 15–30.5% of patients undergoing percutaneous coronary intervention (PCI) for acute myocardial infarction (AMI) and are associated with poor myocardial reperfusion in the territory of the infarct-related artery. The objective of this study was to analyze the possible laboratory, clinical and imaging indicators of distal coronary embolism detected with an angiography at the time of PCI with stent implantation for acute coronary syndrome (ACS). (2) Methods: This analysis included 137 patients with ACS. The levels of cardiac enzymes (creatine kinase [CK], muscle–brain fraction of CK, high-sensitivity troponin T [hsTnT]), inflammatory markers (high-sensitivity C-reactive protein, white blood cell counts), sex steroids (total 17β-estradiol, total testosterone, dehydroepiandrosterone sulfate [DHEA-S]), serum lipids and oxidized low-density lipoproteins (oxLDL) were measured and analyzed for their relationship with the incidence of distal coronary embolism at PCI. (3) Results: Slow coronary blood flow was detected in the coronary artery subject to intervention in 9.4% (n = 13) of patients. Triglyceride (TG), high-density lipoprotein (HDL), glucose and serum DHEA-S levels were found to be associated with distal coronary embolization and slow coronary flow at PCI with stenting (DHEA-S: 1.316, OR 1.044–1.659, p = 0.020; TG: 1.130, OR 0.990–1.300, p = 0.072; HDL: 2.326, OR 0.918–5.8977, p = 0.075; glucose: 1.130, OR 0.990–1.300, p = 0.072). In the multivariable model, only DHEA-S after PCI tended to indicate a risk of distal coronary embolism (DHEA-S: p = 0.071; TG: p = 0.339; glucose: p = 0.582; HDL: p = 0.502). (4) Conclusions: Patients with ACS with higher triglyceride levels are at risk of developing slow blood flow after percutaneous intervention with stent implantation. Elevated DHEA-S possibly reflects sympathoadrenal and hypothalamus–pituitary–adrenal hyperactivity associated with ACS and coronary intervention. Full article
Show Figures

Figure 1

17 pages, 1722 KB  
Article
Mitochondrial Reactive Oxygen Species Production in Vascular Dementia Following Experimental Diabetes
by Ed Wilson Santos, Subika Khatoon, Yun-Min Zheng and Yong-Xiao Wang
Cells 2025, 14(16), 1260; https://doi.org/10.3390/cells14161260 - 15 Aug 2025
Viewed by 1081
Abstract
Type 1 diabetes (T1D) is a serious disease which affects millions of people worldwide and is a major factor for vascular contributions to cognitive impairment and dementia (VCID). In this study, we first characterized cognitive and memory impairments, then evaluated their underlying molecular [...] Read more.
Type 1 diabetes (T1D) is a serious disease which affects millions of people worldwide and is a major factor for vascular contributions to cognitive impairment and dementia (VCID). In this study, we first characterized cognitive and memory impairments, then evaluated their underlying molecular mechanisms, and finally determined sex-dependent effects in male and female mice with streptozotocin (STZ)-induced T1D. Our findings indicated that significant cognitive impairment, memory loss, and vascular dementia occurred in male and female T1D mice. Cerebral artery (CA) blood flow was greatly reduced in the various brain regions tested. ROS generation in isolated cells, mitochondria, and mitochondrial complex III from CA smooth muscle cells (CASMCs) were all increased in T1D. DNA damage and Tau phosphorylation in CASMCs were largely increased. Linear regression analysis revealed that T1D-induced increased blood glucose was highly correlated with increased ROS production and increased VCID. Taken together, we conclude that T1D causes increased mitochondrial complex III ROS production, DNA damage, and Chk2 phosphorylation in CASMC, thereby leading to vascular dementia in both male and female mice; our results further demonstrate that mitochondrial complex III ROS-mediated DNA damage is more significant in male than female mice, which contributes to more serious vascular dementia in the former than the latter. Full article
(This article belongs to the Special Issue The Role of Mitochondria in Cell Development and Regeneration)
Show Figures

Figure 1

14 pages, 4138 KB  
Article
Comparative Analysis of Retrobulbar Blood Flow in Symmetric and Asymmetric Keratoconus Patients
by Fatma Huriye Kısa, Hüseyin Findik, Feyzahan Uzun, Muhammet Kaim, Merve Solak and Mehmet Gökhan Aslan
J. Clin. Med. 2025, 14(16), 5717; https://doi.org/10.3390/jcm14165717 - 12 Aug 2025
Viewed by 227
Abstract
Background/Objectives: Keratoconus is a progressive corneal disorder characterized by thinning and conical protrusion of the cornea, resulting in visual impairment. This study aimed to evaluate retrobulbar blood flow characteristics in patients with symmetric and asymmetric keratoconus and to compare these parameters with those [...] Read more.
Background/Objectives: Keratoconus is a progressive corneal disorder characterized by thinning and conical protrusion of the cornea, resulting in visual impairment. This study aimed to evaluate retrobulbar blood flow characteristics in patients with symmetric and asymmetric keratoconus and to compare these parameters with those of healthy individuals. Methods: Participants aged 18–40 years were recruited and categorized into three groups: symmetric keratoconus, asymmetric keratoconus, and healthy controls. Color Doppler ultrasonography was used to measure the pulsatility index (PI) and resistive index (RI) of the ophthalmic artery (OA), central retinal artery (CRA), and posterior ciliary artery (PCA). Retrobulbar hemodynamic parameters were analyzed and compared across groups using appropriate statistical methods. Results: The ophthalmic artery PI (oaPI) and central retinal artery PI (craPI) were significantly elevated in both symmetric keratoconus patients and the affected eyes of asymmetric keratoconus patients compared to the control group (p < 0.05). In contrast, the oaPI in the unaffected eyes of asymmetric keratoconus patients was significantly lower than that of controls (p < 0.05). Conclusions: The elevated oaPI and craPI values observed in keratoconus patients suggest that the disease may involve not only corneal structural abnormalities but also alterations in ocular blood flow. These findings may imply a potential vascular component in keratoconus pathophysiology. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

21 pages, 1786 KB  
Review
Aortic Stiffness and Alzheimer’s Disease: The Medin Connection
by Filippos Triposkiadis, Andrew Xanthopoulos, Harisios Boudoulas and Dirk L. Brutsaert
Biomolecules 2025, 15(8), 1148; https://doi.org/10.3390/biom15081148 - 8 Aug 2025
Viewed by 355
Abstract
Aging is associated with aortic stiffening (AoSt), a condition characterized by diminished aortic elasticity that predisposes individuals to cognitive decline, including Alzheimer’s disease (AD). Emerging evidence implicates medin, which is derived from milk fat globule-EGF factor 8 protein (MFG-E8), as a key link [...] Read more.
Aging is associated with aortic stiffening (AoSt), a condition characterized by diminished aortic elasticity that predisposes individuals to cognitive decline, including Alzheimer’s disease (AD). Emerging evidence implicates medin, which is derived from milk fat globule-EGF factor 8 protein (MFG-E8), as a key link between AoSt and AD. Medin aggregates into aortic medial amyloid (AMA), which is found in approximately 97% of Caucasian individuals aged 50 and above, contributing to vascular inflammation, calcification, and loss of arterial elasticity. These changes may promote hyperpulsatile cerebral blood flow and impair glymphatic clearance, resulting in increased deposition of neurotoxic proteins, such as amyloid-β (Aβ) and possibly medin, which colocalizes with vascular Aβ in the brain. Medin enhances Aβ aggregation, generating heterologous fibrils, and thereby contributes to cerebrovascular dysfunction and neuroinflammation. This interaction (cross-seeding) may deteriorate amyloid pathology in both the vasculature and the parenchyma in AD. Furthermore, medin per se causes endothelial dysfunction, increases oxidative stress, and activates glial cells, promoting the development of a pro-inflammatory environment that enhances cognitive decline. In this manuscript, we contend that medin might act as a bridge connecting the age-related increase in aortic stiffness to AD, and therefore, medin might present a novel therapeutic target within this context. This hypothesis deserves experimental and clinical validation. Full article
Show Figures

Figure 1

17 pages, 2624 KB  
Article
Cerebral Hemodynamics as a Diagnostic Bridge Between Mild Cognitive Impairment and Late-Life Depression: A Multimodal Approach Using Transcranial Doppler and MRI
by Sergiu-Florin Arnautu, Diana-Aurora Arnautu, Minodora Andor, Cristina Vacarescu, Dragos Cozma, Brenda-Cristina Bernad, Catalin Juratu, Adrian Tutelca and Catalin-Dragos Jianu
Life 2025, 15(8), 1246; https://doi.org/10.3390/life15081246 - 6 Aug 2025
Viewed by 400
Abstract
Background: Vascular dysfunction is increasingly recognized as a shared contributor to both cognitive impairment and late-life depression (LLD). However, the combined diagnostic value of cerebral hemodynamics, neuroimaging markers, and neuropsychological outcomes remains underexplored. This study aimed to investigate the associations be-tween transcranial Doppler [...] Read more.
Background: Vascular dysfunction is increasingly recognized as a shared contributor to both cognitive impairment and late-life depression (LLD). However, the combined diagnostic value of cerebral hemodynamics, neuroimaging markers, and neuropsychological outcomes remains underexplored. This study aimed to investigate the associations be-tween transcranial Doppler (TCD) ultrasound parameters, cognitive performance, and depressive symptoms in older adults with mild cognitive impairment (MCI) and LLD. Importantly, we evaluated the integrative value of TCD-derived indices alongside MRI-confirmed white matter lesions (WMLs) and standardized neurocognitive and affective assessments. Methods: In this cross-sectional study, 96 older adults were enrolled including 78 cognitively unimpaired individuals and 18 with MCI. All participants underwent structured clinical, neuropsychological, and imaging evaluations including the Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Geriatric Depression Scale (GDS-15), MRI-based Fazekas scoring of WMLs, and TCD ultrasonography of the middle cerebral artery. Hemodynamic variables included mean blood flow velocity (MBFV), end-diastolic velocity (EDV), pulsatility index (PI), and resistive index (RI). Logistic regression and receiver operating characteristic (ROC) analyses were used to identify independent predictors of MCI. Results: Participants with MCI showed significantly lower MBFV and EDV, and higher PI and RI (p < 0.05 for all) compared with cognitively unimpaired participants. In multivariate analysis, lower MBFV (OR = 0.64, p = 0.02) and EDV (OR = 0.70, p = 0.03), and higher PI (OR = 3.2, p < 0.01) and RI (OR = 1.9, p < 0.01) remained independently associated with MCI. ROC analysis revealed excellent discriminative performance for RI (AUC = 0.919) and MBFV (AUC = 0.879). Furthermore, PI correlated positively with depressive symptom severity, while RI was inversely related to the GDS-15 scores. Conclusions: Our findings underscore the diagnostic utility of TCD-derived hemodynamic parameters—particularly RI and MBFV—in identifying early vascular contributions to cognitive and affective dysfunction in older adults. The integration of TCD with MRI-confirmed WML assessment and standardized cognitive/mood measures represents a novel and clinically practical multi-modal approach for neurovascular profiling in aging populations. Full article
(This article belongs to the Special Issue Intracerebral Hemorrhage: Advances and Perspectives)
Show Figures

Figure 1

17 pages, 829 KB  
Review
The Carotid Siphon as a Pulsatility Modulator for Brain Protection: Role of Arterial Calcification Formation
by Pim A. de Jong, Daniel Bos, Huiberdina L. Koek, Pieter T. Deckers, Netanja I. Harlianto, Ynte M. Ruigrok, Wilko Spiering, Jaco Zwanenburg and Willem P.Th.M. Mali
J. Pers. Med. 2025, 15(8), 356; https://doi.org/10.3390/jpm15080356 - 4 Aug 2025
Viewed by 454
Abstract
A healthy vasculature with well-regulated perfusion and pulsatility is essential for the brain. One vascular structure that has received little attention is the carotid siphon. The proximal portion of the siphon is stiff due to the narrow location in the skull base, whilst [...] Read more.
A healthy vasculature with well-regulated perfusion and pulsatility is essential for the brain. One vascular structure that has received little attention is the carotid siphon. The proximal portion of the siphon is stiff due to the narrow location in the skull base, whilst the distal portion is highly flexible. This flexible part in combination with the specific curves lead to lower pulsatility at the cost of energy deposition in the arterial wall. This deposited energy contributes to damage and calcification. Severe siphon calcification stiffens the distal part of the siphon, leading to less damping of the pulsatility. Increased blood flow pulsatility is a possible cause of stroke and cognitive disorders. In this review, based on comprehensive multimodality imaging, we first describe the anatomy and physiology of the carotid siphon. Subsequently, we review the in vivo imaging data, which indeed suggest that the siphon attenuates pulsatility. Finally, the data as available in the literature are shown to provide convincing evidence that severe siphon calcifications and the calcification pattern are linked to incident stroke and dementia. Interventional studies are required to test whether this association is causal and how an assessment of pulsatility and the siphon calcification pattern can improve personalized medicine, working to prevent and treat brain disease. Full article
(This article belongs to the Special Issue Advances in Cardiothoracic Surgery)
Show Figures

Figure 1

12 pages, 677 KB  
Review
Prognostic Utility of Arterial Spin Labeling in Traumatic Brain Injury: From Pathophysiology to Precision Imaging
by Silvia De Rosa, Flavia Carton, Alessandro Grecucci and Paola Feraco
NeuroSci 2025, 6(3), 73; https://doi.org/10.3390/neurosci6030073 - 4 Aug 2025
Viewed by 374
Abstract
Background: Traumatic brain injury (TBI) remains a significant contributor to global mortality and long-term neurological disability. Accurate prognostic biomarkers are crucial for enhancing prognostic accuracy and guiding personalized clinical management. Objective: This review assesses the prognostic value of arterial spin labeling (ASL), a [...] Read more.
Background: Traumatic brain injury (TBI) remains a significant contributor to global mortality and long-term neurological disability. Accurate prognostic biomarkers are crucial for enhancing prognostic accuracy and guiding personalized clinical management. Objective: This review assesses the prognostic value of arterial spin labeling (ASL), a non-invasive MRI technique, in adult and pediatric TBI, with a focus on quantitative cerebral blood flow (CBF) and arterial transit time (ATT) measures. A comprehensive literature search was conducted across PubMed, Embase, Scopus, and IEEE databases, including observational studies and clinical trials that applied ASL techniques (pCASL, PASL, VSASL, multi-PLD) in TBI patients with functional or cognitive outcomes, with outcome assessments conducted at least 3 months post-injury. Results: ASL-derived CBF and ATT parameters demonstrate potential as prognostic indicators across both acute and chronic stages of TBI. Hypoperfusion patterns correlate with worse neurocognitive outcomes, while region-specific perfusion alterations are associated with affective symptoms. Multi-delay and velocity-selective ASL sequences enhance diagnostic sensitivity in TBI with heterogeneous perfusion dynamics. Compared to conventional perfusion imaging, ASL provides absolute quantification without contrast agents, making it suitable for repeated monitoring in vulnerable populations. ASL emerges as a promising prognostic biomarker for clinical use in TBI. Conclusion: Integrating ASL into multiparametric models may improve risk stratification and guide individualized therapeutic strategies. Full article
(This article belongs to the Topic Neurological Updates in Neurocritical Care)
Show Figures

Figure 1

19 pages, 3763 KB  
Article
Mathematical Study of Pulsatile Blood Flow in the Uterine and Umbilical Arteries During Pregnancy
by Anastasios Felias, Charikleia Skentou, Minas Paschopoulos, Petros Tzimas, Anastasia Vatopoulou, Fani Gkrozou and Michail Xenos
Fluids 2025, 10(8), 203; https://doi.org/10.3390/fluids10080203 - 1 Aug 2025
Viewed by 370
Abstract
This study applies Computational Fluid Dynamics (CFD) and mathematical modeling to examine uterine and umbilical arterial blood flow during pregnancy, providing a more detailed understanding of hemodynamic changes across gestation. Statistical analysis of Doppler ultrasound data from a large cohort of more than [...] Read more.
This study applies Computational Fluid Dynamics (CFD) and mathematical modeling to examine uterine and umbilical arterial blood flow during pregnancy, providing a more detailed understanding of hemodynamic changes across gestation. Statistical analysis of Doppler ultrasound data from a large cohort of more than 200 pregnant women (in the second and third trimesters) reveals significant increases in the umbilical arterial peak systolic velocity (PSV) between the 22nd and 30th weeks, while uterine artery velocities remain relatively stable, suggesting adaptations in vascular resistance during pregnancy. By combining the Navier–Stokes equations with Doppler ultrasound-derived inlet velocity profiles, we quantify several key fluid dynamics parameters, including time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), Reynolds number (Re), and Dean number (De), evaluating laminar flow stability in the uterine artery and secondary flow patterns in the umbilical artery. Since blood exhibits shear-dependent viscosity and complex rheological behavior, modeling it as a non-Newtonian fluid is essential to accurately capture pulsatile flow dynamics and wall shear stresses in these vessels. Unlike conventional imaging techniques, CFD offers enhanced visualization of blood flow characteristics such as streamlines, velocity distributions, and instantaneous particle motion, providing insights that are not easily captured by Doppler ultrasound alone. Specifically, CFD reveals secondary flow patterns in the umbilical artery, which interact with the primary flow, a phenomenon that is challenging to observe with ultrasound. These findings refine existing hemodynamic models, provide population-specific reference values for clinical assessments, and improve our understanding of the relationship between umbilical arterial flow dynamics and fetal growth restriction, with important implications for maternal and fetal health monitoring. Full article
Show Figures

Figure 1

13 pages, 1001 KB  
Review
Old and New Definitions of Acute Respiratory Distress Syndrome (ARDS): An Overview of Practical Considerations and Clinical Implications
by Cesare Biuzzi, Elena Modica, Noemi De Filippis, Daria Pizzirani, Benedetta Galgani, Agnese Di Chiaro, Daniele Marianello, Federico Franchi, Fabio Silvio Taccone and Sabino Scolletta
Diagnostics 2025, 15(15), 1930; https://doi.org/10.3390/diagnostics15151930 - 31 Jul 2025
Viewed by 1269
Abstract
Lower respiratory tract infections remain a leading cause of morbidity and mortality among Intensive Care Unit patients, with severe cases often progressing to acute respiratory distress syndrome (ARDS). This life-threatening syndrome results from alveolar–capillary membrane injury, causing refractory hypoxemia and respiratory failure. Early [...] Read more.
Lower respiratory tract infections remain a leading cause of morbidity and mortality among Intensive Care Unit patients, with severe cases often progressing to acute respiratory distress syndrome (ARDS). This life-threatening syndrome results from alveolar–capillary membrane injury, causing refractory hypoxemia and respiratory failure. Early detection and management are critical to treat the underlying cause, provide protective lung ventilation, and, eventually, improve patient outcomes. The 2012 Berlin definition standardized ARDS diagnosis but excluded patients on non-invasive ventilation (NIV) or high-flow nasal cannula (HFNC) modalities, which are increasingly used, especially after the COVID-19 pandemic. By excluding these patients, diagnostic delays can occur, risking the progression of lung injury despite ongoing support. Indeed, sustained, vigorous respiratory efforts under non-invasive modalities carry significant potential for patient self-inflicted lung injury (P-SILI), underscoring the need to broaden diagnostic criteria to encompass these increasingly common therapies. Recent proposals expand ARDS criteria to include NIV and HFNCs, lung ultrasound, and the SpO2/FiO2 ratio adaptations designed to improve diagnosis in resource-limited settings lacking arterial blood gases or advanced imaging. However, broader criteria risk overdiagnosis and create challenges in distinguishing ARDS from other causes of acute hypoxemic failure. Furthermore, inter-observer variability in imaging interpretation and inconsistencies in oxygenation assessment, particularly when relying on non-invasive measurements, may compromise diagnostic reliability. To overcome these limitations, a more nuanced diagnostic framework is needed—one that incorporates individualized therapeutic strategies, emphasizes lung-protective ventilation, and integrates advanced physiological or biomarker-based indicators like IL-6, IL-8, and IFN-γ, which are associated with worse outcomes. Such an approach has the potential to improve patient stratification, enable more targeted interventions, and ultimately support the design and conduct of more effective interventional studies. Full article
Show Figures

Figure 1

59 pages, 3467 KB  
Review
Are Hippocampal Hypoperfusion and ATP Depletion Prime Movers in the Genesis of Alzheimer’s Disease? A Review of Recent Pertinent Observations from Molecular Biology
by Valerie Walker
Int. J. Mol. Sci. 2025, 26(15), 7328; https://doi.org/10.3390/ijms26157328 - 29 Jul 2025
Viewed by 704
Abstract
Alzheimer’s dementia (AD) is a disease of the ageing brain. It begins in the hippocampal region with the epicentre in the entorhinal cortex, then gradually extends into adjacent brain areas involved in memory and cognition. The events which initiate the damage are unknown [...] Read more.
Alzheimer’s dementia (AD) is a disease of the ageing brain. It begins in the hippocampal region with the epicentre in the entorhinal cortex, then gradually extends into adjacent brain areas involved in memory and cognition. The events which initiate the damage are unknown and under intense investigation. Localization to the hippocampus can now be explained by anatomical features of the blood vessels supplying this region. Blood supply and hence oxygen delivery to the area are jeopardized by poor flow through narrowed arteries. In genomic and metabolomic studies, the respiratory chain and mitochondrial pathways which generate ATP were leading pathways associated with AD. This review explores the notion that ATP depletion resulting from hippocampal hypoperfusion has a prime role in initiating damage. Sections cover sensing of ATP depletion and protective responses, vulnerable processes with very heavy ATP consumption (the malate shuttle, the glutamate/glutamine/GABA (γ-aminobutyric acid) cycle, and axonal transport), phospholipid disturbances and peroxidation by reactive oxygen species, hippocampal perfusion and the effects of hypertension, chronic hypoxia, and arterial vasospasm, and an overview of recent relevant genomic studies. The findings demonstrate strong scientific arguments for the proposal with increasing supportive evidence. These lines of enquiry should be pursued. Full article
Show Figures

Graphical abstract

15 pages, 798 KB  
Article
Associations Between Serum Gut-Derived Tryptophan Metabolites and Cardiovascular Health Markers in Adolescents with Obesity
by Jeny E. Rivera, Renny Lan, Mario G. Ferruzzi, Elisabet Børsheim, Emir Tas and Eva C. Diaz
Nutrients 2025, 17(15), 2430; https://doi.org/10.3390/nu17152430 - 25 Jul 2025
Viewed by 402
Abstract
Background/Objectives: Gut-derived tryptophan (Trp) metabolites play important roles in metabolic and cardiovascular regulation. Although animal studies suggest their protective effects against metabolic dysfunction, data in adolescents, particularly those with obesity, remain limited. The objective of this study was to evaluate associations between circulating [...] Read more.
Background/Objectives: Gut-derived tryptophan (Trp) metabolites play important roles in metabolic and cardiovascular regulation. Although animal studies suggest their protective effects against metabolic dysfunction, data in adolescents, particularly those with obesity, remain limited. The objective of this study was to evaluate associations between circulating gut-derived Trp metabolites and markers of cardiometabolic, vascular, and platelet health in adolescents with obesity. Methods: Data were analyzed from 28 adolescents (ages 13–18; mean BMI = 36 ± 6.4 kg/m2). Fasting blood was collected to assess lipid profiles using a clinical analyzer and insulin resistance using the homeostatic model assessment for insulin resistance (HOMA-IR). Gut-derived Trp metabolites were measured by UPLC–mass spectrometry, peak oxygen uptake (VO2 peak) by gas exchange during an incremental cycle ergometer test, and body composition by dual-energy X-ray absorptiometry. Platelet spare respiratory capacity (SRC), endothelial function, and liver fat were measured using high-resolution respirometry, flow-mediated dilation (FMD) of the brachial artery, and magnetic resonance imaging respectively. Results: Indole-3-propionic acid was inversely associated with diastolic blood pressure (rho = −0.39, p = 0.047), total cholesterol (rho = −0.55, p = 0.002), and LDL-C (rho = −0.57, p = 0.0014), independent of sex and obesity severity. Indoxyl sulfate was positively correlated with fasting glucose (rho = 0.47, p = 0.012), and adolescents with impaired fasting glucose had 1.6-fold higher IS levels. Indole-3-acetaldehyde declined with age (rho = −0.50, p = 0.007), and Indole-3-acetic acid and indole were higher in Hispanics vs. non-Hispanics. No significant associations were observed between Trp metabolites and FMD, VO2 peak, or SRC. Conclusions: Gut-derived Trp metabolites, particularly indole-3-propionic and indoxyl sulfate, are associated with markers of cardiometabolic risk in adolescents with obesity. These findings support their potential relevance in early-onset cardiovascular disease risk. Full article
Show Figures

Figure 1

9 pages, 284 KB  
Article
Can Conditioning Activity with Blood Flow Restriction Impact Neuromuscular Performance and Perceptual Responses to Exercise?
by Robson Conceição Silva, Leandro Lima Sousa, Hugo de Luca Correa, Thailson Fernandes Silva, Lucas de Souza Martins, Pedro Felix, Martim Bottaro, Denis César Leite Vieira and Carlos Ernesto
Sports 2025, 13(8), 243; https://doi.org/10.3390/sports13080243 - 24 Jul 2025
Viewed by 332
Abstract
Low-load conditioning activity with blood flow restriction has been addressed as an efficient method to enhance an individual’s performance during their main exercise activity. However, the optimal degree of blood flow restriction remains unclear. Therefore, this study investigated the acute effects of low-load [...] Read more.
Low-load conditioning activity with blood flow restriction has been addressed as an efficient method to enhance an individual’s performance during their main exercise activity. However, the optimal degree of blood flow restriction remains unclear. Therefore, this study investigated the acute effects of low-load conditioning activity with different degrees of blood flow restriction on muscle strength, power, and perceived exertion. Twenty recreationally trained men (20.9 ± 2.3 years) participated in a randomized crossover design including three conditions: control, low-load blood flow restriction at 50%, and 75% of total arterial occlusion pressure. Participants performed squats (three sets of ten reps) followed by isokinetic assessments of the knee flexor and extensor performance at 7 and 10-min post-exercise. The session rating of perceived exertion (SRPE) was recorded 30 min after each session. No significant effects were observed for condition, time, or their interaction on peak torque, total work, or average power (p < 0.05). However, SRPE was significantly higher in the 75% BFR condition compared to both the 50% BFR and control conditions (p < 0.05), with no difference between the 50% BFR and control. These findings suggest that low-load conditioning activity with blood flow restriction does not acutely enhance neuromuscular performance. However, a higher degree of restriction increases perceived exertion. Full article
(This article belongs to the Special Issue Neuromechanical Adaptations to Exercise and Sports Training)
Show Figures

Figure 1

26 pages, 2343 KB  
Review
Molecular Mechanisms of Microvascular Obstruction and Dysfunction in Percutaneous Coronary Interventions: From Pathophysiology to Therapeutics—A Comprehensive Review
by Andre M. Nicolau, Pedro G. Silva, Hernan Patricio G. Mejía, Juan F. Granada, Grzegorz L. Kaluza, Daniel Burkhoff, Thiago Abizaid, Brunna Pileggi, Antônio F. D. Freire, Roger R. Godinho, Carlos M. Campos, Fabio S. de Brito, Alexandre Abizaid and Pedro H. C. Melo
Int. J. Mol. Sci. 2025, 26(14), 6835; https://doi.org/10.3390/ijms26146835 - 16 Jul 2025
Viewed by 882
Abstract
Coronary microvascular obstruction and dysfunction (CMVO) frequently arise following primary percutaneous coronary intervention (PCI), particularly in individuals with myocardial infarction. Despite the restoration of epicardial blood flow, microvascular perfusion might still be compromised, resulting in negative clinical outcomes. CMVO is a complex condition [...] Read more.
Coronary microvascular obstruction and dysfunction (CMVO) frequently arise following primary percutaneous coronary intervention (PCI), particularly in individuals with myocardial infarction. Despite the restoration of epicardial blood flow, microvascular perfusion might still be compromised, resulting in negative clinical outcomes. CMVO is a complex condition resulting from a combination of ischemia, distal thrombotic embolization, reperfusion injury, and individual susceptibilities such as inflammation and endothelial dysfunction. The pathophysiological features of this condition include microvascular spasm, endothelial swelling, capillary plugging by leukocytes and platelets, and oxidative stress. Traditional angiographic assessments, such as Thrombolysis in Myocardial Infarction (TIMI) flow grade and myocardial blush grade, have limited sensitivity. Cardiac magnetic resonance imaging (CMR) stands as the gold standard for identifying CMVO, while the index of microvascular resistance (IMR) is a promising invasive option. Treatment approaches involve powerful antiplatelet drugs, anticoagulants, and supersaturated oxygen, yet no treatment has been definitively shown to reverse established CMVO. CMVO remains a significant therapeutic challenge in coronary artery disease management. Enhancing the comprehension of its core mechanisms is vital for the development of more effective and personalized treatment strategies. Full article
(This article belongs to the Special Issue Cardiovascular Diseases: From Pathology to Therapeutics)
Show Figures

Figure 1

Back to TopTop