Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = asymmetric grid faults

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1873 KB  
Article
Machine Learning Techniques for Fault Detection in Smart Distribution Grids
by Vishakh K. Hariharan, Amritha Geetha, Fabrizio Granelli and Manjula G. Nair
Energies 2025, 18(19), 5179; https://doi.org/10.3390/en18195179 - 29 Sep 2025
Viewed by 349
Abstract
Fault detection is critical to the resilience and operational integrity of electrical power grids, particularly smart grids. In addition to requiring a lot of labeled data, traditional fault detection approaches have limited flexibility in handling unknown fault scenarios. In addition, since traditional machine [...] Read more.
Fault detection is critical to the resilience and operational integrity of electrical power grids, particularly smart grids. In addition to requiring a lot of labeled data, traditional fault detection approaches have limited flexibility in handling unknown fault scenarios. In addition, since traditional machine learning models rely on historical data, they struggle to adapt to new fault patterns in dynamic grid environments. Due to these limitations, fault detection systems have limited resilience and scalability, necessitating more advanced approaches. This paper presents a hybrid technique that integrates supervised and unsupervised machine learning with Generative AI to generate artificial data to aid in fault identification. A number of machine learning algorithms were compared with regard to how they detect symmetrical and asymmetrical faults in varying conditions, with a particular focus on fault conditions that have not happened before. A key feature of this study is the application of the autoencoder, a new machine learning model, to compare different ML models. The autoencoder, an unsupervised model, performed better than other models in the detection of faults outside the learning dataset, pointing to its potential to enhance smart grid resilience and stability. Also, the study compared a generative AI-generated dataset (D2) with a conventionally prepared dataset (D1). When the two datasets were utilized to train various machine learning models, the synthetic dataset (D2) outperformed D1 in accuracy and scalability for fault detection applications. The strength of generative AI in improving the quality of data for machine learning is thus indicated by this discovery.By emphasizing the necessity of using advanced machine learning techniques and high-quality synthetic datasets, this research aims to increase the resilience of smart grid networks through improved fault detection and identification. Full article
Show Figures

Figure 1

18 pages, 5140 KB  
Article
Computational Efficiency–Accuracy Trade-Offs in EMT Modeling of ANPC Converters: Comparative Study and Real-Time HIL Validation
by Xinrong Yan, Zhijun Li, Jiajun Ding, Ping Zhang, Jia Huang, Qing Wei and Zhitong Yu
Energies 2025, 18(19), 5173; https://doi.org/10.3390/en18195173 - 29 Sep 2025
Viewed by 312
Abstract
With the increasing demands of the grid on power electronic converters, active neutral-point-clamped (ANPC) converters have been widely adopted due to their flexible modulation strategies and wide-range power regulation capabilities. To address grid-integration testing requirements for ANPC converters, this paper comparatively studies three [...] Read more.
With the increasing demands of the grid on power electronic converters, active neutral-point-clamped (ANPC) converters have been widely adopted due to their flexible modulation strategies and wide-range power regulation capabilities. To address grid-integration testing requirements for ANPC converters, this paper comparatively studies three electromagnetic transient (EMT) modeling approaches: switch-state prediction method (SPM), associated discrete circuit (ADC), and time-averaged method (TAM). Steady-state and transient simulations reveal that the SPM model achieves the highest accuracy (error ≤ 0.018%), while the TAM-based switching function model optimizes the efficiency–accuracy trade-off with 6.4× speedup versus traditional methods and acceptable error (≤2.62%). Consequently, the TAM model is implemented in a real-time hardware-in-the-loop (HIL) platform. Validation under symmetrical/asymmetrical grid faults confirms both the model’s efficacy and the controller’s robust fault ride-through capability. Full article
Show Figures

Figure 1

35 pages, 6812 KB  
Article
Modeling Transient Waveforms of Offshore Wind Power AC/DC Transmission Faults: Unveiling Symmetry–Asymmetry Mechanisms
by Yi Zheng, Qi You, Yujie Chen, Haoming Guo, Hao Yang, Shuang Liang and Xin Pan
Symmetry 2025, 17(9), 1551; https://doi.org/10.3390/sym17091551 - 16 Sep 2025
Viewed by 345
Abstract
This paper aims to unveil the symmetry–asymmetry transition mechanisms in transient fault waveforms of offshore wind power AC/DC transmission systems, addressing the critical limitation of traditional simulation methods of the fact that they cannot characterize the dynamic evolution of system symmetry, such as [...] Read more.
This paper aims to unveil the symmetry–asymmetry transition mechanisms in transient fault waveforms of offshore wind power AC/DC transmission systems, addressing the critical limitation of traditional simulation methods of the fact that they cannot characterize the dynamic evolution of system symmetry, such as static impedance adjustment failing to capture transient asymmetry caused by parameter imbalance or converter control. It proposes a fault waveform simulation approach integrating mechanism analysis, scenario extraction, and model optimization. Key contributions include clarifying the quantitative links between key system parameters like submarine cable capacitance and inductance and symmetry–asymmetry characteristics, defining the transient decay rate oscillation frequency and voltage peak as core indicators to quantify symmetry breaking intensity; classifying typical fault scenarios into a symmetry-breaking type with synchronous three-phase imbalance and a persistent asymmetry type with zero-sequence and negative-sequence distortion based on symmetry evolution dynamics and revising grid-connection test indices such as lowering the low-voltage ride-through threshold and specifying the voltage type for different test objectives; and constructing a simplified embedded RLC second-order model with symmetry–asymmetry constraints to reproduce the whole process of symmetric steady state–fault symmetry breaking–recovery symmetry reconstruction. Simulation results verify the method’s effectiveness, with symmetry indicator reproduction errors ≤ 5% and asymmetric feature fitting goodness R2 ≥ 0.92, which confirms that the method can effectively reveal the symmetry–asymmetry mechanisms of offshore wind power fault transients and provides reliable technical support for improving offshore wind power fault simulation accuracy and grid-connection test reliability, laying a theoretical basis for the grid-connection testing of offshore wind turbines and promoting the stable operation of offshore wind power systems. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

32 pages, 10857 KB  
Article
Improved Fault Resilience of GFM-GFL Converters in Ultra-Weak Grids Using Active Disturbance Rejection Control and Virtual Inertia Control
by Monigaa Nagaboopathy, Kumudini Devi Raguru Pandu, Ashmitha Selvaraj and Anbuselvi Shanmugam Velu
Sustainability 2025, 17(14), 6619; https://doi.org/10.3390/su17146619 - 20 Jul 2025
Viewed by 1006
Abstract
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair [...] Read more.
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair voltage and frequency stability, imposing challenging conditions for Inverter-Based Resources. To address these challenges, this paper considers a 110 KVA, three-phase, two-level Voltage Source Converter, interfacing a 700 V DC link to a 415 V AC ultra-weak grid. X/R = 1 is controlled using Sinusoidal Pulse Width Modulation, where the Grid-Connected Converter operates in Grid-Forming Mode to maintain voltage and frequency stability under a steady state. During symmetrical and asymmetrical faults, the converter transitions to Grid-Following mode with current control to safely limit fault currents and protect the system integrity. After fault clearance, the system seamlessly reverts to Grid-Forming Mode to resume voltage regulation. This paper proposes an improved control strategy that integrates voltage feedforward reactive power support and virtual capacitor-based virtual inertia using Active Disturbance Rejection Control, a robust, model-independent controller, which rapidly rejects disturbances by regulating d and q-axes currents. To test the practicality of the proposed system, real-time implementation is carried out using the OPAL-RT OP4610 platform, and the results are experimentally validated. The results demonstrate improved fault current limitation and enhanced DC link voltage stability compared to a conventional PI controller, validating the system’s robust Fault Ride-Through performance under ultra-weak grid conditions. Full article
Show Figures

Figure 1

18 pages, 2025 KB  
Article
Optimized Submodule Capacitor Ripple Voltage Suppression of an MMC-Based Power Electronic Transformer
by Jinmu Lai, Zijian Wu, Xianyi Jia, Yaoqiang Wang, Yongxiang Liu and Xinbing Zhu
Electronics 2025, 14(12), 2385; https://doi.org/10.3390/electronics14122385 - 11 Jun 2025
Viewed by 568
Abstract
Modular multilevel converter (MMC)-based power electronic transformers (PETs) present a promising solution for connecting AC/DC microgrids to facilitate renewable energy access. However, the capacitor ripple voltage in MMC-based PET submodules hinders volume optimization and power density enhancement, significantly limiting their application in distribution [...] Read more.
Modular multilevel converter (MMC)-based power electronic transformers (PETs) present a promising solution for connecting AC/DC microgrids to facilitate renewable energy access. However, the capacitor ripple voltage in MMC-based PET submodules hinders volume optimization and power density enhancement, significantly limiting their application in distribution networks. To address this issue, this study introduces an optimized method for suppressing the submodule capacitor ripple voltage in MMC-based PET systems under normal and grid fault conditions. First, an MMC–PET topology featuring upper and lower arm coupling is proposed. Subsequently, a double-frequency circulating current injection strategy is incorporated on the MMC side to eliminate the double-frequency ripple voltage of the submodule capacitor. Furthermore, a phase-shifting control strategy is applied in the isolation stage of the dual-active bridge (DAB) to transfer the submodule capacitor selective ripple voltages to the isolation stage coupling link, effectively eliminating the fundamental frequency ripple voltage. The optimized approach successfully suppresses capacitor ripples without increasing current stress on the isolated-stage DAB switches, even under grid fault conditions, which are not addressed by existing ripple suppression methods, thereby reducing device size and cost while ensuring reliable operation. Specifically, the peak-to-peak submodule capacitor ripple voltage is reduced from 232 V to 10 V, and the peak current of the isolation-stage secondary-side switch is limited to ±90 A. The second harmonic ripple voltage on the LVDC bus can be decreased from ±5 V to ±1 V with the proposed method under the asymmetric grid voltage condition. Subsequently, a system simulation model is developed in MATLAB/Simulink. The simulation results validated the accuracy of the theoretical analysis and demonstrated the effectiveness of the proposed method. Full article
Show Figures

Figure 1

18 pages, 5351 KB  
Article
Fault Analysis and Protection Principle for the Distribution Networks Integrated with PV and BESS
by Jianan He, Lei Li, Jian Niu, Yabo Liang, Haitao Liu, Zhenxin Yang, Chao Li and Zhihui Zheng
Appl. Sci. 2025, 15(10), 5568; https://doi.org/10.3390/app15105568 - 16 May 2025
Viewed by 636
Abstract
With the rapid development of renewable energy technologies, large numbers of photovoltaic (PV) and battery energy storage systems (BESS) have been connected to distribution networks. However, both PV and the BESS are inverter interfaced power sources, which may cause the traditional protection relays [...] Read more.
With the rapid development of renewable energy technologies, large numbers of photovoltaic (PV) and battery energy storage systems (BESS) have been connected to distribution networks. However, both PV and the BESS are inverter interfaced power sources, which may cause the traditional protection relays to mis-operate or mal-operate. Moreover, according to the latest grid connection specifications, PV and BESS are required to absorb negative sequence current during asymmetric faults of distribution networks, indicating that they both must adopt new control strategies during the fault ride through period. In response to the above challenges, this work first studies the fault ride through control strategies of PV and BESS when different phase-to-phase faults occur according to the latest grid connection requirements. Second, it analyzes the negative sequence impedance characteristics of PV and BESS under asymmetric faults and quantitatively calculates its variation range. Third, during symmetric faults, the differences in fault current provided by PV and BESS and those provided by the large power grid are compared. Then, this work proposes a fault direction detection principle for the distribution network with PV and BESS. For asymmetric phase-to-phase faults, this principle detects the fault direction by using the negative sequence power angle; for symmetric faults, it detects the fault direction by using the reactive current and active current. Finally, simulation tests are carried out to verify the operation performance of the proposed principle. Full article
Show Figures

Figure 1

17 pages, 3443 KB  
Article
Low Voltage Ride Through Coordination Control Strategy of DFIG with Series Grid Side Converter
by Xin Qi, Can Ding, Jun Zhang, Quan Wang and Wenhui Chen
Energies 2025, 18(10), 2537; https://doi.org/10.3390/en18102537 - 14 May 2025
Viewed by 649
Abstract
The present study investigates the control strategy of a novel doubled-fed induction generator (DFIG) with a series grid-side converter (SGSC) during grid faults. The rotor-side inverter is subject to a control strategy derived from the Model Predictive Current Control (MPCC) theory, which is [...] Read more.
The present study investigates the control strategy of a novel doubled-fed induction generator (DFIG) with a series grid-side converter (SGSC) during grid faults. The rotor-side inverter is subject to a control strategy derived from the Model Predictive Current Control (MPCC) theory, which is implemented during periods of fault occurrence; for the series grid-side converter, the positive and negative sequence component control is implemented during both steady state and fault periods to enhance system stability and performance. The proposed coordinated control strategy is implemented on a doubly fed turbine with SGSC, while taking into account different degrees of symmetric and asymmetric faults to further evaluate the efficacy of the proposed method. The results of the simulations demonstrate the efficacy of the model-predictive current control scheme applied to the rotor-side converter under conditions of asymmetric faults. This enables the suppression of a range of phenomena, including rotor overcurrent, stator overcurrent, and overvoltage, electromagnetic torque ripple, and DC bus voltage during low-voltage ride-through (LVRT), among others. The present study confirms the viability of implementing positive and negative sequences of voltage separation control in the SGSC during both grid faults and steady state. This approach is expected to minimize the switching of SGSC control strategies and thereby reduce output power fluctuations. The Rotor Side Converter (RSC) and SGSC can perform coordinated control during faults, and the proposed method is able to improve low-voltage ride-through performance compared to existing methods, thereby preventing damage to the converter under multiple fault conditions. Full article
(This article belongs to the Special Issue Control and Optimization of Power Converters)
Show Figures

Figure 1

24 pages, 7335 KB  
Article
Grid-Connected Harmonic Suppression Strategy Considering Phase-Locked Loop Phase-Locking Error Under Asymmetrical Faults
by Yanjiu Zhang and Shuxin Tian
Energies 2025, 18(9), 2202; https://doi.org/10.3390/en18092202 - 26 Apr 2025
Viewed by 719
Abstract
Harmonic distortion caused by phase jumps in the phase-locked loop (PLL) during asymmetric faults poses a significant threat to the secure operation of renewable energy grid-connected systems. A harmonic suppression strategy based on Vague set theory is proposed for offshore wind power AC [...] Read more.
Harmonic distortion caused by phase jumps in the phase-locked loop (PLL) during asymmetric faults poses a significant threat to the secure operation of renewable energy grid-connected systems. A harmonic suppression strategy based on Vague set theory is proposed for offshore wind power AC transmission systems. By employing the three-dimensional membership framework of Vague sets—comprising true, false, and hesitation degrees—phase-locked errors are characterized, and dynamic, real-time PLL proportional-integral (PI) parameters are derived. This approach addresses the inadequacy of harmonic suppression in conventional PLL, where fixed PI parameters limit performance under asymmetric faults. The significance of this research is reflected in the improved power quality of offshore wind power grid integration, the provision of technical solutions supporting efficient clean energy utilization in alignment with “Dual Carbon” objectives, and the introduction of innovative approaches to harmonic suppression in complex grid environments. Firstly, an equivalent circuit model of the offshore wind power AC transmission system is established, and the impact of PLL phase jumps on grid harmonics during asymmetric faults is analyzed in conjunction with PLL locking mechanisms. Secondly, Vague sets are employed to model the phase-locked error interval across three dimensions, enabling adaptive PI parameter tuning to suppress harmonic content during such faults. Finally, time-domain simulations conducted in PSCAD indicate that the proposed Vague set-based control strategy reduces total harmonic distortion (THD) to 1.08%, 1.12%, and 0.97% for single-phase-to-ground, two-phase-to-ground, and two-phase short-circuit faults, respectively. These values correspond to relative reductions of 13.6%, 33.7%, and 80.87% compared to conventional control strategies, thereby confirming the efficacy of the proposed method in minimizing grid-connected harmonic distortions. Full article
Show Figures

Figure 1

30 pages, 6348 KB  
Article
Modular Multilevel Converter Control Strategy for AC Fault Current Maximization and Grid Code Compliance
by Ricardo Vidal-Albalate, Enrique Belenguer and Francisco Magraner
Electronics 2025, 14(9), 1763; https://doi.org/10.3390/electronics14091763 - 25 Apr 2025
Viewed by 707
Abstract
This paper proposes a dynamic current limit for modular multilevel converters (MMCs) that maximizes the injection of current during grid faults in order to mitigate the voltage dip, reduce voltage imbalances in case of an asymmetrical fault, and ensure the proper operation of [...] Read more.
This paper proposes a dynamic current limit for modular multilevel converters (MMCs) that maximizes the injection of current during grid faults in order to mitigate the voltage dip, reduce voltage imbalances in case of an asymmetrical fault, and ensure the proper operation of protective relays. The reduced short-circuit capacity of MMCs, and power converters in general, is one of their main limitations. In the event of a fault, the converter’s current is significantly lower than that of the synchronous generators, which may impact both the performance of power system protective relays and the mitigation of voltage drops during faults. Usually, to protect the MMCs themselves, their output current is limited by their control. However, the current flowing through the power semiconductors is the arm current, not the output current, and this consists of an AC and a DC component. A new current saturation strategy aiming at maximizing fault current injection, in compliance with the most recent grid codes, is proposed. This strategy limits the arm currents by dynamically adjusting the output current limit while injecting reactive currents (both positive- and negative-sequence) and active current according to the grid codes, the fault type, and voltage sag level. A theoretical analysis is carried out to determine the maximum current injection that will not exceed the arm limits, and this is then validated through detailed PSCAD simulations. With the proposed strategy, the supplied current can be increased by approximately 40%. Full article
Show Figures

Figure 1

19 pages, 8435 KB  
Article
Method for Network-Wide Characteristics in Multi-Terminal DC Distribution Networks During Asymmetric Short-Circuit Faults
by Xinhao Li, Qianmin Li, Hanwei Li, Xinze Zhou and Zhihui Dai
Electronics 2025, 14(6), 1120; https://doi.org/10.3390/electronics14061120 - 12 Mar 2025
Viewed by 653
Abstract
With the widespread integration of distributed energy resources and novel loads, the DC attributes of distribution networks are becoming increasingly pronounced. Multi-terminal flexible DC distribution networks have emerged as a trend for future distribution grids due to lower line losses, better power quality, [...] Read more.
With the widespread integration of distributed energy resources and novel loads, the DC attributes of distribution networks are becoming increasingly pronounced. Multi-terminal flexible DC distribution networks have emerged as a trend for future distribution grids due to lower line losses, better power quality, etc. However, owing to their low damping and inertia, the multi-terminal flexible DC distribution network is vulnerable to DC faults. Analyzing the fault characteristics and calculating the fault current level is of great significance for the design of relay protection systems and the optimization of associated parameters. Throughout the fault process, the discharge paths of multiple converters are mutually coupled, and the fault characteristics are complex, which poses a great challenge to short-circuit calculations. This paper proposes a method for calculating the characteristic quantities of the whole network throughout the asymmetric short-circuit fault in a multi-terminal flexible DC distribution network. During the capacitor discharge stage, an equivalent model of the fault port is established before the control response. During the fault ride-through stage, a transfer matrix that takes into account the electrical constraints on both the AC and DC sides of the converters is proposed by combining the equivalent circuit of fully controlled converters. Finally, a simulation model of a six-terminal flexible DC distribution network is developed in PSCAD/EMTDC, and the simulation results demonstrate that the proposed method expands the calculation range from faulty branch to network-wide characteristic quantities throughout the process of asymmetric short-circuit faults, with the maximum relative error remaining below 5%. Full article
(This article belongs to the Special Issue Efficient and Resilient DC Energy Distribution Systems)
Show Figures

Figure 1

29 pages, 10283 KB  
Article
Multi-Fault-Tolerant Operation of Grid-Interfaced Photovoltaic Inverters Using Twin Delayed Deep Deterministic Policy Gradient Agent
by Shyamal S. Chand, Branislav Hredzak and Maurizio Cirrincione
Energies 2025, 18(1), 44; https://doi.org/10.3390/en18010044 - 26 Dec 2024
Cited by 2 | Viewed by 1185
Abstract
The elevated penetration of renewable energy has seen a significant increase in the integration of inverter-based resources (IBRs) into the electricity network. According to various industrial standards on interconnection and interoperability, IBRs should be able to withstand variability in grid conditions. Positive sequence [...] Read more.
The elevated penetration of renewable energy has seen a significant increase in the integration of inverter-based resources (IBRs) into the electricity network. According to various industrial standards on interconnection and interoperability, IBRs should be able to withstand variability in grid conditions. Positive sequence voltage-oriented control (PSVOC) with a feed-forward decoupling approach is often adopted to ensure closed-loop control of inverters. However, the dynamic response of this control scheme deteriorates during fluctuations in the grid voltage due to the sensitivity of proportional–integral controllers, the presence of the direct- and quadrature-axis voltage terms in the cross-coupling, and predefined saturation limits. As such, a twin delayed deep deterministic policy gradient-based voltage-oriented control (TD3VOC) is formulated and trained to provide effective current control of inverter-based resources under various dynamic conditions of the grid through transfer learning. The actor–critic-based reinforcement learning agent is designed and trained using the model-free Markov decision process through interaction with a grid-connected photovoltaic inverter environment developed in MATLAB/Simulink® 2023b. Using the standard PSVOC method results in inverter input voltage overshoots of up to 2.50 p.u., with post-fault current restoration times of as high as 0.55 s during asymmetrical faults. The designed TD3VOC technique confines the DC link voltage overshoot to 1.05 p.u. and achieves a low current recovery duration of 0.01 s after fault clearance. In the event of a severe symmetric fault, the conventional control method is unable to restore the inverter operation, leading to integral-time absolute errors of 0.60 and 0.32 for the currents of the d and q axes, respectively. The newly proposed agent-based control strategy restricts cumulative errors to 0.03 and 0.09 for the d and q axes, respectively, thus improving inverter regulation. The results indicate the superior performance of the proposed control scheme in maintaining the stability of the inverter DC link bus voltage, reducing post-fault system recovery time, and limiting negative sequence currents during severe asymmetrical and symmetrical grid faults compared with the conventional PSVOC approach. Full article
(This article belongs to the Special Issue Advances in Electrical Power System Quality)
Show Figures

Figure 1

14 pages, 9408 KB  
Article
General Fault-Tolerant Operation of Electric-Drive-Reconstructed Onboard Charger Incorporating Asymmetrical Six-Phase Drive for EVs
by Xing Liu, Xunhui Cheng, Hui Yang and Yuhao Zhang
World Electr. Veh. J. 2024, 15(11), 488; https://doi.org/10.3390/wevj15110488 - 27 Oct 2024
Viewed by 917
Abstract
In this paper, the fault-tolerant operation of an electric-drive-reconstructed onboard charger (EDROC) designed on the basis of an asymmetrical six-phase permanent magnet synchronous machine (ASPMSM) drive is studied and discussed for cases where an open-phase fault (OPF) occurs in any phase. The fault-tolerant [...] Read more.
In this paper, the fault-tolerant operation of an electric-drive-reconstructed onboard charger (EDROC) designed on the basis of an asymmetrical six-phase permanent magnet synchronous machine (ASPMSM) drive is studied and discussed for cases where an open-phase fault (OPF) occurs in any phase. The fault-tolerant operation is realized by rearranging the stator currents, aiming to eliminate the rotating field caused by the OPFs and to ensure the balance of grid currents. Each faulty case is discussed, and the rearranging scheme of stator currents is deduced. Meanwhile, a controller shared for both healthy and faulty cases is designed. Finally, some experiments are conducted to verify the theoretical analyses. Full article
Show Figures

Figure 1

14 pages, 2280 KB  
Article
Impact of Adding Fast Switching Fault Current Limiter (FSFCL) to the Neutral Point of 220 kV Transformer
by Lujian Dai, Jun Zhao, Meng Guo, Shuguo Gao, Chenmeng Xiang, Bin Wei, Weiqi Qin, Guoming Ma and Yuan Tian
Energies 2024, 17(19), 4862; https://doi.org/10.3390/en17194862 - 27 Sep 2024
Cited by 1 | Viewed by 1198
Abstract
In recent years, as the power grid continues to expand, the issue of asymmetrical short-circuit currents exceeding limits on the 220 kV medium-voltage side has become increasingly severe, and traditional current-limiting methods have certain limitations. Therefore, this paper explores the potential benefits and [...] Read more.
In recent years, as the power grid continues to expand, the issue of asymmetrical short-circuit currents exceeding limits on the 220 kV medium-voltage side has become increasingly severe, and traditional current-limiting methods have certain limitations. Therefore, this paper explores the potential benefits and feasibility of installing a Fast Switching Fault Current Limiter (FSFCL) at the neutral point of a 220 kV transformer to effectively limit asymmetrical short-circuit currents on the medium-voltage side. The paper first analyzes the current-limiting performance of the FSFCL under different installation configurations, transformer operating conditions, and fault conditions through theoretical calculations. Subsequently, through simulation studies, the impact of different limiting reactance values on the overvoltage effect at the neutral point is discussed. The results show that the installation of the FSFCL has a significant effect on suppressing the asymmetrical short-circuit current on the medium-voltage side of the transformer, but this measure has also led to an increase in the voltage at the grounded neutral point. Finally, taking the No. 2 main transformer of a certain 220 kV substation as an example, to achieve the expected current-limiting effect, the limiting reactance value of the FSFCL needs to be at least 4 ohms. At this reactance value, the overvoltage level at the neutral point remains well below the withstand limit of its insulating material. Additionally, given the existing overvoltage protection devices at the neutral point, no further overvoltage protection measures are required. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

17 pages, 5634 KB  
Article
Nonlinear Modeling and Transient Stability Analysis of Grid-Connected Voltage Source Converters during Asymmetric Faults Considering Multiple Control Loop Coupling
by Jingkuan Guo, Denghui Zhai, Xialin Li and Zhi Wang
Appl. Sci. 2024, 14(17), 7834; https://doi.org/10.3390/app14177834 - 4 Sep 2024
Cited by 1 | Viewed by 1415
Abstract
As large-scale renewable energy sources are increasingly integrated into AC grids via voltage source converters (VSCs), the transient synchronization stability of phase-locked loop (PLL)-based VSCs during fault ride-through is gaining more attention. Most existing studies assume that the positive and negative sequence separation [...] Read more.
As large-scale renewable energy sources are increasingly integrated into AC grids via voltage source converters (VSCs), the transient synchronization stability of phase-locked loop (PLL)-based VSCs during fault ride-through is gaining more attention. Most existing studies assume that the positive and negative sequence separation and current control dynamics are much faster than the PLL dynamics, thereby neglecting their impact on the transient synchronization stability of the system. However, when the PLL bandwidth is relatively large, ignoring the positive and negative sequence separation and current control dynamics may result in incorrect stability assessments. To address this issue, this paper first considers the multiple control loop coupling, including positive and negative sequence separation, current control, and PLL, to construct a full-order nonlinear mathematical model of the VSC grid-connected system under asymmetric fault conditions. Based on this, the phase trajectory method is employed to analyze the transient synchronization stability of the system. Additionally, this full-order mathematical model is used to determine the PLL bandwidth boundary beyond which the effects of positive and negative sequence separation and current control dynamics cannot be neglected. Finally, PSCAD/EMTDC simulation results validate the effectiveness of the theoretical analysis presented in this paper. Full article
(This article belongs to the Special Issue Advanced Technologies and Applications of Microgrids)
Show Figures

Figure 1

19 pages, 8204 KB  
Article
Transient Synchronous Stability Analysis of Grid-Forming Photovoltaic Grid-Connected Inverters during Asymmetrical Grid Faults
by Wenwen He, Jun Yao, Hao Xu, Qinmin Zhong, Ruilin Xu, Yuming Liu and Xiaoju Li
Energies 2024, 17(6), 1399; https://doi.org/10.3390/en17061399 - 14 Mar 2024
Cited by 5 | Viewed by 1912
Abstract
Compared with the traditional grid-following photovoltaic grid-connected converter (GFL-PGC), the grid-forming photovoltaic grid-connected converter (GFM-PGC) can provide voltage and frequency support for power systems, which can effectively enhance the stability of power electronic power systems. Consequently, GFM-PGCs have attracted great attention in recent [...] Read more.
Compared with the traditional grid-following photovoltaic grid-connected converter (GFL-PGC), the grid-forming photovoltaic grid-connected converter (GFM-PGC) can provide voltage and frequency support for power systems, which can effectively enhance the stability of power electronic power systems. Consequently, GFM-PGCs have attracted great attention in recent years. When an asymmetrical short-circuit fault occurs in the power grid, GFM-PGC systems may experience transient instability, which has been less studied so far. In this paper, a GFM-PGC system is investigated under asymmetrical short-circuit fault conditions. A novel Q-V droop control structure is proposed by improving the traditional droop control. The proposed control structure enables the system to accurately control the positive- and negative-sequence reactive current without switching the control strategy during the low-voltage ride-through (LVRT) period so that it can meet the requirements of the renewable energy grid code. In addition, a dual-loop control structure model of positive- and negative-sequence voltage and current is established for the GFM-PGC system under asymmetrical short-circuit fault conditions. Based on the symmetrical component method, the composite sequence network of the system is obtained under asymmetrical short-circuit fault conditions, and positive- and negative-sequence power-angle characteristic curves are analyzed. The influence law of system parameters on the transient synchronous stability of positive- and negative-sequence systems is quantitatively analyzed through the equal area criterion. Finally, the correctness of the theoretical analysis is verified by simulation and hardware-in-the-loop experiments. Full article
(This article belongs to the Special Issue Grid-Forming Technologies for Renewable Energy Integration)
Show Figures

Figure 1

Back to TopTop