Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = azithromycin conjugates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2804 KiB  
Article
Hybrid Molecules of Azithromycin with Chloramphenicol and Metronidazole: Synthesis and Study of Antibacterial Properties
by Inna A. Volynkina, Elena N. Bychkova, Anastasiia O. Karakchieva, Alexander S. Tikhomirov, George V. Zatonsky, Svetlana E. Solovieva, Maksim M. Martynov, Natalia E. Grammatikova, Andrey G. Tereshchenkov, Alena Paleskava, Andrey L. Konevega, Petr V. Sergiev, Olga A. Dontsova, Ilya A. Osterman, Andrey E. Shchekotikhin and Anna N. Tevyashova
Pharmaceuticals 2024, 17(2), 187; https://doi.org/10.3390/ph17020187 - 31 Jan 2024
Viewed by 2404
Abstract
The sustained rise of antimicrobial resistance (AMR) causes a strong need to develop new antibacterial agents. One of the methods for addressing the problem of antibiotic resistance is through the design of hybrid antibiotics. In this work, we proposed a synthetic route for [...] Read more.
The sustained rise of antimicrobial resistance (AMR) causes a strong need to develop new antibacterial agents. One of the methods for addressing the problem of antibiotic resistance is through the design of hybrid antibiotics. In this work, we proposed a synthetic route for the conjugation of an azithromycin derivative with chloramphenicol and metronidazole hemisuccinates and synthesized two series of new hybrid molecules 4ag and 5ag. While a conjugation did not result in tangible synergy for wild-type bacterial strains, new compounds were able to overcome AMR associated with the inducible expression of the ermC gene on a model E. coli strain resistant to macrolide antibiotics. The newly developed hybrids demonstrated a tendency to induce premature ribosome stalling, which might be crucial since they will not induce a macrolide-resistant phenotype in a number of pathogenic bacterial strains. In summary, the designed structures are considered as a promising direction for the further development of hybrid molecules that can effectively circumvent AMR mechanisms to macrolide antibiotics. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

17 pages, 2075 KiB  
Article
Immunotechniques for the Group Determination of Macrolide Antibiotics Traces in the Environment Using a Volume-Mediated Sensitivity Enhancement Strategy
by Maksim A. Burkin, Anna N. Tevyashova, Elena N. Bychkova, Artem O. Melekhin and Inna A. Galvidis
Biosensors 2023, 13(10), 921; https://doi.org/10.3390/bios13100921 - 10 Oct 2023
Cited by 2 | Viewed by 1902
Abstract
Macrolide antibiotics, which are effective antimicrobial agents, are intensively used in human and veterinary medicine, as well as in agriculture. Consequently, they are found all over the world as environmental pollutants, causing harm to sensitive ecological communities and provoking a selection of resistant [...] Read more.
Macrolide antibiotics, which are effective antimicrobial agents, are intensively used in human and veterinary medicine, as well as in agriculture. Consequently, they are found all over the world as environmental pollutants, causing harm to sensitive ecological communities and provoking a selection of resistant forms. A novel azithromycin derivative, which was used as hapten conjugate, ensured the group immunorecognition of six major macrolide representatives (105–41%), namely erythromycin, erythromycin ethylsuccinate, clarithromycin, roxithromycin, azithromycin, and dirithromycin in a competitive immunoassay based on anti-clarithromycin antibodies. The heterologous hapten-based ELISA format resulted in a 5-fold increase in sensitivity, with an IC50 value of 0.04 ng/mL for erythromycin. In this study, we proposed an underexploited strategy in an immunoassay field to significantly improve the detectability of analytes in environmental samples. Unlike most approaches, it does not require special enhancers/amplifiers or additional concentration/extraction procedures; instead, it involves analyzing a larger volume of test samples. A gradual volume increase in the samples (from 0.025 to 10 mL) analyzed using a direct competitive ELISA, immunobeads, and immunofiltration assay formats based on the same reagents resulted in a significant improvement (more than 50-fold) in assay sensitivity and detection limit up to 5 and 1 pg/mL, respectively. The suitability of the test for detecting the macrolide contamination of natural water was confirmed by the recovery of macrolides from spiked blank samples (71.7–141.3%). During 2022–2023, a series of natural water samples from Lake Onega and its influents near Petrozavodsk were analyzed, using both the developed immunoassay and HPLC-MS/MS. The results revealed no contamination of macrolide antibiotic. Full article
(This article belongs to the Special Issue Novel Biosensors for Food Safety and Environmental Monitoring)
Show Figures

Figure 1

27 pages, 5189 KiB  
Article
Design, Synthesis and Biological Evaluation of Conjugates of 3-O-Descladinose-azithromycin and Nucleobases against rRNA A2058G- or A2059G-Mutated Strains
by Xiaotian Lian, Wentian Liu, Bingzhi Fan, Mingjia Yu and Jianhua Liang
Molecules 2023, 28(3), 1327; https://doi.org/10.3390/molecules28031327 - 30 Jan 2023
Cited by 1 | Viewed by 2216
Abstract
Structurally unrelated antibiotics MLSB (macrolide-lincosamide-streptogramin B) compromised with clinically resistant pathogens because of the cross-resistance resulting from the structural modification of rRNA A2058. The structure–activity relationships of a novel 3-O-descladinose azithromycin chemotype conjugating with nucleobases were fully explored with the [...] Read more.
Structurally unrelated antibiotics MLSB (macrolide-lincosamide-streptogramin B) compromised with clinically resistant pathogens because of the cross-resistance resulting from the structural modification of rRNA A2058. The structure–activity relationships of a novel 3-O-descladinose azithromycin chemotype conjugating with nucleobases were fully explored with the aid of engineered E. coli SQ110DTC and SQ110LPTD. The conjugates of macrolides with nucleobases, especially adenine, displayed antibacterial superiority over telithromycin, azithromycin and clindamycin against rRNA A2058/2059-mutated engineered E. coli strains at the cost of lowering permeability and increasing vulnerability to efflux proteins against clinical isolates. Full article
Show Figures

Graphical abstract

15 pages, 4275 KiB  
Article
Screening of Novel Antimicrobial Diastereomers of Azithromycin–Thiosemicarbazone Conjugates: A Combined LC-SPE/Cryo NMR, MS/MS and Molecular Modeling Approach
by Iva Habinovec, Ivana Mikulandra, Paula Pranjić, Saša Kazazić, Hana Čipčić Paljetak, Antun Barišić, Branimir Bertoša, Mirjana Bukvić and Predrag Novak
Antibiotics 2022, 11(12), 1738; https://doi.org/10.3390/antibiotics11121738 - 2 Dec 2022
Viewed by 1604
Abstract
A well-known class of antibacterials, 14- and 15-membered macrolides are widely prescribed to treat upper and lower respiratory tract infections. Azithromycin is a 15-membered macrolide antibiotic possessing a broad spectrum of antibacterial potency and favorable pharmacokinetics. Bacterial resistance to marketed antibiotics is growing [...] Read more.
A well-known class of antibacterials, 14- and 15-membered macrolides are widely prescribed to treat upper and lower respiratory tract infections. Azithromycin is a 15-membered macrolide antibiotic possessing a broad spectrum of antibacterial potency and favorable pharmacokinetics. Bacterial resistance to marketed antibiotics is growing rapidly and represents one of the major global hazards to human health. Today, there is a high need for discovery of new anti-infective agents to combat resistance. Recently discovered conjugates of azithromycin and thiosemicarbazones, the macrozones, represent one such class that exhibits promising activities against resistant pathogens. In this paper, we employed an approach which combined LC-SPE/cryo NMR, MS/MS and molecular modeling for rapid separation, identification and characterization of bioactive macrozones and their diastereomers. Multitrapping of the chromatographic peaks on SPE cartridges enabled sufficient sample quantities for structure elucidation and biological testing. Furthermore, two-dimensional NOESY NMR data and molecular dynamics simulations revealed stereogenic centers with inversion of chirality. Differences in biological activities among diastereomers were detected. These results should be considered in the process of designing new macrolide compounds with bioactivity. We have shown that this methodology can be used for a fast screening and identification of the macrolide reaction components, including stereoisomers, which can serve as a source of new antibacterials. Full article
Show Figures

Figure 1

11 pages, 1531 KiB  
Article
Rapid Structure Determination of Bioactive 4?-Tetrahydrofurfuryl Macrozone Reaction Mixture Components by LC-SPE/Cryo NMR and MS
by Iva Habinovec, Ivana Mikulandra, Lucia Ema Sekula, Jana Gašperov, Saša Kazazić and Predrag Novak
Molecules 2021, 26(20), 6316; https://doi.org/10.3390/molecules26206316 - 19 Oct 2021
Cited by 2 | Viewed by 2462
Abstract
LC-SPE/cryo NMR and MS methodologies have been developed and employed for a rapid structure determination of 4?-tetrahydrofurfuryl macrozone reaction mixture components. Macrozones, novel conjugates of azithromycin, and thiosemicarbazones have shown very good in vitro antibacterial activities against susceptible and some resistant bacterial strains [...] Read more.
LC-SPE/cryo NMR and MS methodologies have been developed and employed for a rapid structure determination of 4?-tetrahydrofurfuryl macrozone reaction mixture components. Macrozones, novel conjugates of azithromycin, and thiosemicarbazones have shown very good in vitro antibacterial activities against susceptible and some resistant bacterial strains and are promising agents for further development. The post-column multiple trapping of the chromatographically separated reaction mixture components on the SPE cartridges increased the sensitivity and together with cryogenically cooled NMR probe made it possible to identify and structurally characterize main 4?-tetrahydrofurfuryl macrozone reaction mixture compounds including those present at very low concentration level. This approach has several advantages over a classical off-line procedure, efficiency and low solvent consumption being the two most important ones. All identified components were process-related. It has been demonstrated that two different kinds of compounds with respect to structure were identified, i.e., macrolide-related and thiosemicarbazone-related ones. This methodology can serve as a platform for reliable and effective macrolides reaction components structure profiling, serving as both isolation and identification tools. Full article
(This article belongs to the Special Issue Spectroscopic and Spectrometric Techniques for Structural Analysis)
Show Figures

Figure 1

10 pages, 3999 KiB  
Article
Interactions of Aminopropyl–Azithromycin Derivatives, Precursors in the Synthesis of Bioactive Macrozones, with E. coli Ribosome: NMR and Docking Studies
by Ivana Mikulandra, Tomislav Jednačak, Branimir Bertoša, Jelena Parlov Vuković, Iva Kušec and Predrag Novak
Materials 2021, 14(19), 5561; https://doi.org/10.3390/ma14195561 - 25 Sep 2021
Cited by 3 | Viewed by 1996
Abstract
The structure and interactions of several aminopropyl–azithromycin derivatives (1ac) have been studied by using NMR spectroscopy and docking calculations. Compounds 1ac are precursors in the synthesis of macrozones, novel bioactive azithromycin–thiosemicarbazone conjugates active against some resistant bacterial [...] Read more.
The structure and interactions of several aminopropyl–azithromycin derivatives (1ac) have been studied by using NMR spectroscopy and docking calculations. Compounds 1ac are precursors in the synthesis of macrozones, novel bioactive azithromycin–thiosemicarbazone conjugates active against some resistant bacterial strains. Today, bacterial resistance is considered as one of the major threats to human health. Knowledge on drug binding mode and conformations is one of the key factors in the process of designing molecules to fight resistance. In solution state, compounds 1a and 1c exist in the 3-endo-folded-out conformation, while 1b adopts a classical folded-out conformation. 13C and 15N CPMAS NMR spectra pointed towards similar structures in the solid state. The transferred NOESY NMR spectra confirmed binding to the E. coli ribosome and suggest that dominant conformations in the bound state resemble those in the free one. STD experiments identified reactive groups of 1ac in close contact with the ribosome resembling binding epitopes observed for the related 15-membered macrolides. Docking studies revealed that the studied compounds bind to the same ribosome binding pocket similarly to erythromycin in the crystal state, and that the binding is achieved through H-bonds and van der Waals interactions. The bound conformation is the same as determined by NMR. STD enhancements observed for methylene protons in the aminopropyl side chain indicate additional interactions which contribute to the overall binding energy. Full article
(This article belongs to the Special Issue Novel Bioactive Macrolides: Design, Preparation, Properties)
Show Figures

Figure 1

15 pages, 2183 KiB  
Article
Erythromycin Modification That Improves Its Acidic Stability while Optimizing It for Local Drug Delivery
by Erika L. Cyphert, Jaqueline D. Wallat, Jonathan K. Pokorski and Horst A. Von Recum
Antibiotics 2017, 6(2), 11; https://doi.org/10.3390/antibiotics6020011 - 25 Apr 2017
Cited by 53 | Viewed by 12991
Abstract
The antibiotic erythromycin has limited efficacy and bioavailability due to its instability and conversion under acidic conditions via an intramolecular dehydration reaction. To improve the stability of erythromycin, several analogs have been developed—such as azithromycin and clarithromycin—which decrease the rate of intramolecular dehydration. [...] Read more.
The antibiotic erythromycin has limited efficacy and bioavailability due to its instability and conversion under acidic conditions via an intramolecular dehydration reaction. To improve the stability of erythromycin, several analogs have been developed—such as azithromycin and clarithromycin—which decrease the rate of intramolecular dehydration. We set out to build upon this prior work by developing a conjugate of erythromycin with improved pH stability, bioavailability, and preferential release from a drug delivery system directly at the low pH of an infection site. To develop this new drug conjugate, adamantane-1-carbohydrazide was covalently attached to erythromycin via a pH-degradable hydrazone bond. Since Staphylococcus aureus infection sites are slightly acidic, the hydrazone bond will undergo hydrolysis liberating erythromycin directly at the infection site. The adamantane group provides interaction with the drug delivery system. This local delivery strategy has the potential of reducing off-target and systemic side-effects. This work demonstrates the synthesis of a pH-cleavable, erythromycin conjugate that retains the inherent antimicrobial activity of erythromycin, has an increased hydrophobicity, and improved stability in acidic conditions; thereby enhancing erythromycin’s bioavailability while simultaneously reducing its toxicity. Full article
(This article belongs to the Special Issue Antibiotic Synthesis)
Show Figures

Figure 1

Back to TopTop