Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = basolateral amygdala

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3205 KB  
Article
Dissociating the Effects of Light at Night from Circadian Misalignment in a Neurodevelopmental Disorder Mouse Model Using Ultradian Light–Dark Cycles
by Sophia Anne Marie B. Villanueva, Huei-Bin Wang, Kyle Nguyen-Ngo, Caihan Tony Chen, Gemma Stark, Gene D. Block, Cristina A. Ghiani and Christopher S. Colwell
Clocks & Sleep 2025, 7(3), 48; https://doi.org/10.3390/clockssleep7030048 - 15 Sep 2025
Viewed by 487
Abstract
Individuals with neurodevelopmental disorders (NDDs) often experience sleep disturbances and are frequently exposed to light during nighttime hours. Our previous studies using the Contactin-associated protein-like 2 (Cntnap2) knockout (KO) mouse model of NDDs demonstrated that nighttime light exposure adversely affected behavioral [...] Read more.
Individuals with neurodevelopmental disorders (NDDs) often experience sleep disturbances and are frequently exposed to light during nighttime hours. Our previous studies using the Contactin-associated protein-like 2 (Cntnap2) knockout (KO) mouse model of NDDs demonstrated that nighttime light exposure adversely affected behavioral measures. In this study, we exposed wild-type (WT) and Cntnap2 KO mice to an ultradian lighting cycle (T7), which alternates 3.5 h of light and 3.5 h of darkness, hypothesizing that this lighting protocol would mimic the impact of nighttime light exposure seen in standard light–dark cycles with dim light at night (DLaN). However, adult WT and Cntnap2 KO mice held under the T7 cycle did not show the increased grooming behavior or reduced social interaction observed in Cntnap2 KO mice exposed to DLaN. The T7 cycle lengthened the circadian period and weakened the rhythm amplitude without abolishing rhythmicity in either genotype. Finally, opposite to DLaN, neither the T7 cycle nor constant darkness (DD) elicited an increase in cFos expression in the basolateral amygdala. These results demonstrate that the adverse effects of nighttime light exposure in an NDD model depend on the extent of the circadian disruption rather than light exposure alone, emphasizing the importance of circadian stability as a protective factor in NDDs. Full article
(This article belongs to the Section Impact of Light & other Zeitgebers)
Show Figures

Figure 1

17 pages, 2518 KB  
Article
Blockade of Dopamine D3 Receptors in the Ventral Tegmental Area Mitigates Fear Memory Generalization
by Xiangjun Fang, Xiaoyan Ding, Ning Wu, Jin Li and Rui Song
Int. J. Mol. Sci. 2025, 26(13), 6520; https://doi.org/10.3390/ijms26136520 - 7 Jul 2025
Viewed by 715
Abstract
The generalization of fear memories is an adaptive neurobiological process that promotes survival in complex and dynamic environments. While generalization has adaptive value, fear generalization is maladaptive and is a significant feature of stress-related disorders such as post-traumatic stress disorder (PTSD). The dopamine [...] Read more.
The generalization of fear memories is an adaptive neurobiological process that promotes survival in complex and dynamic environments. While generalization has adaptive value, fear generalization is maladaptive and is a significant feature of stress-related disorders such as post-traumatic stress disorder (PTSD). The dopamine system plays a crucial role in both reward- and fear-related processes; however, the contribution of dopamine D3 receptors (D3Rs) to fear generalization in intense foot-shock models remains unclear. In this study, we administered a highly selective D3R antagonist, YQA14 (1 μg/0.2 μL/side), in the ventral tegmental area (VTA), which significantly inhibited fear generalization in novel contexts within foot-shock models. This effect was mediated by reducing the neuronal activity in the basolateral amygdala (BLA). These findings enhance our understanding of the neurobiology of generalization, which is essential from a translational perspective and has broad implications for treating generalized fear disorders. Full article
(This article belongs to the Special Issue Development of Dopaminergic Neurons, 4th Edition)
Show Figures

Graphical abstract

16 pages, 8001 KB  
Article
Epitranscriptomic Analysis of the Ventral Hippocampus in a Mouse Model of Post-Traumatic Stress Disorder Following Deep Brain Stimulation Treatment of the Basolateral Amygdala
by Mingxi Ma, Hao Fan, Hui Zhang, Yao Yin, Yizheng Wang and Yan Gao
Brain Sci. 2025, 15(5), 473; https://doi.org/10.3390/brainsci15050473 - 29 Apr 2025
Viewed by 1065
Abstract
Background: Basolateral amygdala (BLA) deep brain stimulation (DBS) has been shown to alleviate the symptoms of post-traumatic stress disorder (PTSD), but the specific mechanisms remain incompletely understood. The hippocampus, a brain region closely connected to the amygdala, plays a key role in the [...] Read more.
Background: Basolateral amygdala (BLA) deep brain stimulation (DBS) has been shown to alleviate the symptoms of post-traumatic stress disorder (PTSD), but the specific mechanisms remain incompletely understood. The hippocampus, a brain region closely connected to the amygdala, plays a key role in the pathological processes of PTSD. The N6-methyladenosine (m6A) methylation of RNAs in the hippocampus is known to play a significant role in regulating the brain’s response to stress and emotional disorders. Methods: This study aimed to comprehensively analyze the roles of transcriptome-wide m6A modifications of the hippocampus in the BLA DBS treatment of a PTSD mouse model using m6A sequencing. Results: Significant alterations in functional connectivity between the ventral hippocampus (vHPC) and BLA were observed in foot shock (FS) mice through functional magnetic resonance imaging (fMRI) analysis. Furthermore, we observed that the expression of the key m6A methyltransferase enzyme, METTL3, in the FS and BLA DBS groups was higher than that in the control group. At the same time, both FS and BLA DBS induced the widespread m6A methylation of RNAs in the vHPC. Gene ontology (GO) enrichment analysis revealed that FS altered methylation in metabolic, developmental, and cytoskeletal pathways, while BLA DBS targeted metabolic, cell cycle, and neuroplasticity-related genes. Additionally, BLA DBS reversed the aberrant methylation of genes associated with multiple functional pathways induced by FS, including those related to cholinergic transmission, sodium and calcium ion homeostasis, and stress hormone responsiveness. We identified a set of RNAs with methylation changes that were reversed by BLA DBS in the FS vs. Ctrl (control) comparison, including those associated with cholinergic transmission, sodium and calcium ion balance, and stress hormone response. Additionally, we detected several specific BLA DBS-related genes through MeRIP-qPCR, indicating that DBS influences crucial genes linked to calcium signaling and synaptic plasticity. Conclusions: We draw two conclusions from these findings: BLA DBS may alleviate PTSD-like symptoms by reversing FS-induced methylation changes and by altering the methylation levels of crucial genes. These findings indicate that epigenetic m6A modifications in the vHPC may play an important role in the amelioration of PTSD using BLA DBS. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
Show Figures

Figure 1

20 pages, 2323 KB  
Review
Mapping of c-Fos Expression in Rat Brain Sub/Regions Following Chronic Social Isolation: Effective Treatments of Olanzapine, Clozapine or Fluoxetine
by Andrijana Stanisavljević Ilić and Dragana Filipović
Pharmaceuticals 2024, 17(11), 1527; https://doi.org/10.3390/ph17111527 - 13 Nov 2024
Cited by 3 | Viewed by 3295
Abstract
The c-Fos as a marker of cell activation is used to identify brain regions involved in stimuli processing. This review summarizes a pattern of c-Fos immunoreactivity and the overlapping brain sub/regions which may provide hints for the identification of neural circuits that underlie [...] Read more.
The c-Fos as a marker of cell activation is used to identify brain regions involved in stimuli processing. This review summarizes a pattern of c-Fos immunoreactivity and the overlapping brain sub/regions which may provide hints for the identification of neural circuits that underlie depressive- and anxiety-like behaviors of adult male rats following three and six weeks of chronic social isolation (CSIS), relative to controls, as well as the antipsychotic-like effects of olanzapine (Olz), and clozapine (Clz), and the antidepressant-like effect of fluoxetine (Flx) in CSIS relative to CSIS alone. Additionally, drug-treated controls relative to control rats were also characterized. The overlapping rat brain sub/regions with increased expression of c-Fos immunoreactivity following three or six weeks of CSIS were the retrosplenial granular cortex, c subregion, retrosplenial dysgranular cortex, dorsal dentate gyrus, paraventricular nucleus of the thalamus (posterior part, PVP), lateral/basolateral (LA/BL) complex of the amygdala, caudate putamen, and nucleus accumbens shell. Increased activity of the nucleus accumbens core following exposure of CSIS rats either to Olz, Clz, and Flx treatments was found, whereas these treatments in controls activated the LA/BL complex of the amygdala and PVP. We also outline sub/regions that might represent potential neuroanatomical targets for the aforementioned antipsychotics or antidepressant treatments. Full article
Show Figures

Figure 1

17 pages, 1124 KB  
Article
Examining the Role of Oxytocinergic Signaling and Neuroinflammatory Markers in the Therapeutic Effects of MDMA in a Rat Model for PTSD
by Haron Avgana, Roni Shira Toledano and Irit Akirav
Pharmaceuticals 2024, 17(7), 846; https://doi.org/10.3390/ph17070846 - 27 Jun 2024
Cited by 4 | Viewed by 3465
Abstract
MDMA-assisted psychotherapy has shown potential as an effective treatment for post-traumatic stress disorder (PTSD). Preclinical studies involving rodents have demonstrated that MDMA can facilitate the extinction of fear memories. It has been noted that MDMA impacts oxytocin neurons and pro-inflammatory cytokines. Thus, the [...] Read more.
MDMA-assisted psychotherapy has shown potential as an effective treatment for post-traumatic stress disorder (PTSD). Preclinical studies involving rodents have demonstrated that MDMA can facilitate the extinction of fear memories. It has been noted that MDMA impacts oxytocin neurons and pro-inflammatory cytokines. Thus, the aim of this study was to explore the role of oxytocinergic signaling and neuroinflammatory markers in the therapeutic effects of MDMA. To achieve this, male rats were subjected to a model of PTSD involving exposure to shock and situational reminders. MDMA was microinjected into the medial prefrontal cortex (mPFC) before extinction training, followed by behavioral tests assessing activity levels, anxiety, and social function. Our findings indicate that MDMA treatment facilitated fear extinction and mitigated the shock-induced increase in freezing, as well as deficits in social behavior. Shock exposure led to altered expression of the gene coding for OXT-R and neuroinflammation in the mPFC and basolateral amygdala (BLA), which were restored by MDMA treatment. Importantly, the OXT-R antagonist L-368,899 prevented MDMA’s therapeutic effects on extinction and freezing behavior. In conclusion, MDMA’s therapeutic effects in the PTSD model are associated with alterations in OXT-R expression and neuroinflammation, and MDMA’s effects on extinction and anxiety may be mediated by oxytocinergic signaling. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

15 pages, 2032 KB  
Article
Predatory Odor Exposure as a Potential Paradigm for Studying Emotional Modulation of Memory Consolidation—The Role of the Noradrenergic Transmission in the Basolateral Amygdala
by Bogomil Peshev, Petya Ivanova, Desislava Krushovlieva, Lidia Kortenska, Dimitrinka Atanasova, Pavel Rashev, Nikolai Lazarov and Jana Tchekalarova
Int. J. Mol. Sci. 2024, 25(12), 6576; https://doi.org/10.3390/ijms25126576 - 14 Jun 2024
Cited by 1 | Viewed by 1839
Abstract
The pivotal role of the basolateral amygdala (BLA) in the emotional modulation of hippocampal plasticity and memory consolidation is well-established. Specifically, multiple studies have demonstrated that the activation of the noradrenergic (NA) system within the BLA governs these modulatory effects. However, most current [...] Read more.
The pivotal role of the basolateral amygdala (BLA) in the emotional modulation of hippocampal plasticity and memory consolidation is well-established. Specifically, multiple studies have demonstrated that the activation of the noradrenergic (NA) system within the BLA governs these modulatory effects. However, most current evidence has been obtained by direct infusion of synthetic NA or beta-adrenergic agonists. In the present study, we aimed to investigate the effect of endogenous NA release in the BLA, induced by a natural aversive stimulus (coyote urine), on memory consolidation for a low-arousing, hippocampal-dependent task. Our experiments combined a weak object location task (OLT) version with subsequent mild predator odor exposure (POE). To investigate the role of endogenous NA in the BLA in memory modulation, a subset of the animals (Wistar rats) was treated with the non-selective beta-blocker propranolol at the end of the behavioral procedures. Hippocampal tissue was collected 90 min after drug infusion or after the OLT test, which was performed 24 h later. We used the obtained samples to estimate the levels of phosphorylated CREB (pCREB) and activity-regulated cytoskeleton-associated protein (Arc)—two molecular markers of experience-dependent changes in neuronal activity. The result suggests that POE has the potential to become a valuable behavioral paradigm for studying the interaction between BLA and the hippocampus in memory prioritization and selectivity. Full article
Show Figures

Figure 1

13 pages, 2936 KB  
Article
Effects of Aging and Nerve Growth Factor on Neuropeptide Expression and Cholinergic Innervation of the Rat Basolateral Amygdala
by Pedro A. Pereira, Marta Tavares, Miguel Laires, Bárbara Mota, Maria Dulce Madeira, Manuel M. Paula-Barbosa and Armando Cardoso
Biology 2024, 13(3), 155; https://doi.org/10.3390/biology13030155 - 28 Feb 2024
Viewed by 2148
Abstract
The basolateral amygdala (BLA) contains interneurons that express neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP), both of which are involved in the regulation of functions and behaviors that undergo deterioration with aging. There is considerable evidence that, in some brain areas, the [...] Read more.
The basolateral amygdala (BLA) contains interneurons that express neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP), both of which are involved in the regulation of functions and behaviors that undergo deterioration with aging. There is considerable evidence that, in some brain areas, the expression of NPY and VIP might be modulated by acetylcholine. Importantly, the BLA is one of the brain regions that has one of the densest cholinergic innervations, which arise mainly from the basal forebrain cholinergic neurons. These cholinergic neurons depend on nerve growth factor (NGF) for their survival, connectivity, and function. Thus, in this study, we sought to determine if aging alters the densities of NPY- and VIP-positive neurons and cholinergic varicosities in the BLA and, in the affirmative, if those changes might rely on insufficient trophic support provided by NGF. The number of NPY-positive neurons was significantly reduced in aged rats, whereas the number of VIP-immunoreactive neurons was unaltered. The decreased NPY expression was fully reversed by the infusion of NGF in the lateral ventricle. The density of cholinergic varicosities was similar in adult and old rats. On the other hand, the density of cholinergic varicosities is significantly higher in old rats treated with NGF than in adult and old rats. Our results indicate a dissimilar resistance of different populations of BLA interneurons to aging. Furthermore, the present data also show that the BLA cholinergic innervation is particularly resistant to aging effects. Finally, our results also show that the reduced NPY expression in the BLA of aged rats can be related to changes in the NGF neurotrophic support. Full article
(This article belongs to the Special Issue Roles and Functions of Neurotrophins and Their Receptors in the Brain)
Show Figures

Figure 1

17 pages, 25464 KB  
Article
Norepinephrine-Activated p38 MAPK Pathway Mediates Stress-Induced Cytotoxic Edema of Basolateral Amygdala Astrocytes
by Zhaoling Sun, Xiaojing Zhang, Yiming Dong, Yichang Liu, Chuan Wang, Yingmin Li, Chunling Ma, Guangming Xu, Songjun Wang, Chenteng Yang, Guozhong Zhang and Bin Cong
Brain Sci. 2024, 14(2), 161; https://doi.org/10.3390/brainsci14020161 - 4 Feb 2024
Cited by 1 | Viewed by 2330
Abstract
The amygdala is a core region in the limbic system that is highly sensitive to stress. Astrocytes are key players in stress disorders such as anxiety and depression. However, the effects of stress on the morphology and function of amygdala astrocytes and its [...] Read more.
The amygdala is a core region in the limbic system that is highly sensitive to stress. Astrocytes are key players in stress disorders such as anxiety and depression. However, the effects of stress on the morphology and function of amygdala astrocytes and its potential mechanisms remain largely unknown. Hence, we performed in vivo and in vitro experiments using a restraint stress (RS) rat model and stress-induced astrocyte culture, respectively. Our data show that norepinephrine (NE) content increased, cytotoxic edema occurred, and aquaporin-4 (AQP4) expression was up-regulated in the basolateral amygdala (BLA) obtained from RS rats. Additionally, the p38 mitogen-activated protein kinase (MAPK) pathway was also observed to be significantly activated in the BLA of rats subjected to RS. The administration of NE to in vitro astrocytes increased the AQP4 level and induced cell edema. Furthermore, p38 MAPK signaling was activated. The NE inhibitor alpha-methyl-p-tyrosine (AMPT) alleviated cytotoxic edema in astrocytes, inhibited AQP4 expression, and inactivated the p38 MAPK pathway in RS rats. Meanwhile, in the in vitro experiment, the p38 MAPK signaling inhibitor SB203580 reversed NE-induced cytotoxic edema and down-regulated the expression of AQP4 in astrocytes. Briefly, NE-induced activation of the p38 MAPK pathway mediated cytotoxic edema in BLA astrocytes from RS rats. Thus, our data provide novel evidence that NE-induced p38 MAPK pathway activation may be one of the mechanisms leading to cytotoxic edema in BLA under stress conditions, which also could enable the development of an effective therapeutic strategy against cytotoxic edema in BLA under stress and provide new ideas for the treatment of neuropsychiatric diseases. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
Show Figures

Figure 1

14 pages, 3611 KB  
Article
Cannabidiol Modulates Emotional Function and Brain-Derived Neurotrophic Factor Expression in Middle-Aged Female Rats Exposed to Social Isolation
by Nadya Saad, Danielle Raviv, Tomer Mizrachi Zer-Aviv and Irit Akirav
Int. J. Mol. Sci. 2023, 24(20), 15492; https://doi.org/10.3390/ijms242015492 - 23 Oct 2023
Cited by 10 | Viewed by 2463
Abstract
Aging is associated with changes in cognitive and emotional function. Cannabidiol (CBD) has been reported to attenuate stress and anxiety in human and animal studies. In this study, we aimed to assess the therapeutic potential of CBD among middle-aged female rats exposed to [...] Read more.
Aging is associated with changes in cognitive and emotional function. Cannabidiol (CBD) has been reported to attenuate stress and anxiety in human and animal studies. In this study, we aimed to assess the therapeutic potential of CBD among middle-aged female rats exposed to social isolation (SI) and the potential involvement of brain-derived neurotrophic factor (BDNF) in these effects. Thirteen-month-old female rats were group-housed (GH) or exposed to social isolation (SI) and treated with vehicle or CBD (10 mg/kg). CBD restored the SI-induced immobility in the forced swim test and the SI-induced decrease in the expression of BDNF protein levels in the nucleus accumbens (NAc). CBD also increased the time that rats spent in the center in an open field, improved spatial training, and increased BDNF expression in the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA). BDNF expression was found to be correlated with an antidepressant (in the NAc) and an anxiolytic (in the mPFC, BLA, NAc) phenotype, and with learning improvement in the PFC. Together, our results suggest that CBD may serve as a beneficial agent for wellbeing in old age and may help with age-related cognitive decline. Full article
(This article belongs to the Special Issue State of the Art of Brain-Derived Neurotrophic Factor)
Show Figures

Figure 1

16 pages, 4711 KB  
Article
K252a Prevents Microglial Activation Induced by Anoxic Stimulation of Carotid Bodies in Rats
by Ricardo Cuéllar-Pérez, Fernando Jauregui-Huerta, Yaveth Ruvalcaba-Delgadillo, Sergio Montero, Mónica Lemus, Elena Roces de Álvarez-Buylla, Joaquín García-Estrada and Sonia Luquín
Toxics 2023, 11(10), 871; https://doi.org/10.3390/toxics11100871 - 20 Oct 2023
Cited by 1 | Viewed by 2034
Abstract
Inducing carotid body anoxia through the administration of cyanide can result in oxygen deprivation. The lack of oxygen activates cellular responses in specific regions of the central nervous system, including the Nucleus Tractus Solitarius, hypothalamus, hippocampus, and amygdala, which are regulated by afferent [...] Read more.
Inducing carotid body anoxia through the administration of cyanide can result in oxygen deprivation. The lack of oxygen activates cellular responses in specific regions of the central nervous system, including the Nucleus Tractus Solitarius, hypothalamus, hippocampus, and amygdala, which are regulated by afferent pathways from chemosensitive receptors. These receptors are modulated by the brain-derived neurotrophic factor receptor TrkB. Oxygen deprivation can cause neuroinflammation in the brain regions that are activated by the afferent pathways from the chemosensitive carotid body. To investigate how microglia, a type of immune cell in the brain, respond to an anoxic environment resulting from the administration of NaCN, we studied the effects of blocking the TrkB receptor on this cell-type response. Male Wistar rats were anesthetized, and a dose of NaCN was injected into their carotid sinus to induce anoxia. Prior to the anoxic stimulus, the rats were given an intracerebroventricular (icv) infusion of either K252a, a TrkB receptor inhibitor, BDNF, or an artificial cerebrospinal fluid (aCSF). After the anoxic stimulus, the rats were perfused with paraformaldehyde, and their brains were processed for microglia immunohistochemistry. The results indicated that the anoxic stimulation caused an increase in the number of reactive microglial cells in the hypothalamic arcuate, basolateral amygdala, and dentate gyrus of the hippocampus. However, the infusion of the K252a TrkB receptor inhibitor prevented microglial activation in these regions. Full article
Show Figures

Figure 1

18 pages, 6935 KB  
Article
Sex Differences in Brain Region-Specific Activation of c-Fos following Kappa Opioid Receptor Stimulation or Acute Stress in Mice
by Qianhan Ma, Susan Wonnacott, Sarah J. Bailey and Christopher P. Bailey
Int. J. Mol. Sci. 2023, 24(20), 15098; https://doi.org/10.3390/ijms242015098 - 11 Oct 2023
Cited by 5 | Viewed by 2803
Abstract
Kappa opioid receptors (KOPr) are involved in the response to stress. KOPr are also targets for the treatment of stress-related psychiatric disorders including depression, anxiety, and addiction although effects of KOPr are often sex-dependent. Here we investigated c-Fos expression in a range of [...] Read more.
Kappa opioid receptors (KOPr) are involved in the response to stress. KOPr are also targets for the treatment of stress-related psychiatric disorders including depression, anxiety, and addiction although effects of KOPr are often sex-dependent. Here we investigated c-Fos expression in a range of brain regions in male and female mice following an acute stressor, and a single injection of KOPr agonist. Using adult C57BL/6 c-Fos-GFP transgenic mice and quantitative fluorescence microscopy, we identified brain regions activated in response to a challenge with the KOPr agonist U50,488 (20 mg/kg) or an acute stress (15 min forced swim stress, FSS). In male mice, U50,488 increased expression of c-Fos in the prelimbic area of the prefrontal cortex (PFCx), nucleus accumbens (NAcc), and basolateral nuclei of the amygdala (BLA). In contrast, in female mice U50,488 only activated the BLA but not the PFCx or the NAcc. FSS increased activation of PFCx, NAcc, and BLA in males while there was no activation of the PFCx in female mice. In both sexes, the KOPr antagonist norBNI significantly blocked U50,488-induced, but not stress-induced activation of brain regions. In separate experiments, activated cells were confirmed as non-GABAergic neurons in the PFCx and NAcc. Together these data demonstrate sex differences in activation of brain regions that are key components of the ‘reward’ circuitry. These differential responses may contribute to sex differences in stress-related psychiatric disorders and in the treatment of depression, anxiety, and addiction. Full article
Show Figures

Figure 1

20 pages, 1126 KB  
Review
The Basolateral Amygdala: The Core of a Network for Threat Conditioning, Extinction, and Second-Order Threat Conditioning
by Tayebeh Sepahvand, Kyron D. Power, Tian Qin and Qi Yuan
Biology 2023, 12(10), 1274; https://doi.org/10.3390/biology12101274 - 22 Sep 2023
Cited by 7 | Viewed by 5300
Abstract
Threat conditioning, extinction, and second-order threat conditioning studied in animal models provide insight into the brain-based mechanisms of fear- and anxiety-related disorders and their treatment. Much attention has been paid to the role of the basolateral amygdala (BLA) in such processes, an overview [...] Read more.
Threat conditioning, extinction, and second-order threat conditioning studied in animal models provide insight into the brain-based mechanisms of fear- and anxiety-related disorders and their treatment. Much attention has been paid to the role of the basolateral amygdala (BLA) in such processes, an overview of which is presented in this review. More recent evidence suggests that the BLA serves as the core of a greater network of structures in these forms of learning, including associative and sensory cortices. The BLA is importantly regulated by hippocampal and prefrontal inputs, as well as by the catecholaminergic neuromodulators, norepinephrine and dopamine, that may provide important prediction-error or learning signals for these forms of learning. The sensory cortices may be required for the long-term storage of threat memories. As such, future research may further investigate the potential of the sensory cortices for the long-term storage of extinction and second-order conditioning memories. Full article
Show Figures

Figure 1

17 pages, 2171 KB  
Article
Quantifying the Neural and Behavioral Correlates of Repeated Social Competition in the Fighting Fish Betta splendens
by Solanch Dupeyron and Kelly J. Wallace
Fishes 2023, 8(8), 384; https://doi.org/10.3390/fishes8080384 - 25 Jul 2023
Cited by 2 | Viewed by 5097
Abstract
The fighting fish Betta splendens, long studied for its aggressive territorial competitions, has the potential to be a tractable and relevant model for studying the intersection of cognitive ecology and social neuroscience. Yet, few studies have comprehensively assessed Betta behavior across both [...] Read more.
The fighting fish Betta splendens, long studied for its aggressive territorial competitions, has the potential to be a tractable and relevant model for studying the intersection of cognitive ecology and social neuroscience. Yet, few studies have comprehensively assessed Betta behavior across both social and nonsocial contexts. Furthermore, the present study is the first to quantify the expression of phosphorylated ribosomal protein S6 (PS6), a proxy for neural response, in the Betta telencephalon. Here, we assessed male Betta behavior across a suite of tasks and found that response to a mirror, but not neophilia (a novel object) nor anxiety (scototaxis), predicted behavior in a social competition. To then explore the cognitive aspects of social competition, we exposed Betta to either a familiar or novel opponent and compared their competitive behavior as well as their neural responses in the teleost homologs of the hippocampus, basolateral amygdala, and lateral septum. We did not detect any differences between familiar-exposed and novel-exposed individuals, but by implementing the first use of a habituation–dishabituation competition design in a study of Betta, we were able to observe remarkable consistency in competitive outcomes across repeated exposures. Taken together, the present study lays the groundwork for expanding the use of Betta to explore integrative and multidimensional questions of social cognition. Full article
(This article belongs to the Special Issue Causes and Consequences of Cognitive Variation in Fishes)
Show Figures

Graphical abstract

22 pages, 5106 KB  
Article
Dopamine D3 Receptor Modulates Akt/mTOR and ERK1/2 Pathways Differently during the Reinstatement of Cocaine-Seeking Behavior Induced by Psychological versus Physiological Stress
by Aurelio Franco-García, Rocío Guerrero-Bautista, Juana María Hidalgo, Victoria Gómez-Murcia, María Victoria Milanés and Cristina Núñez
Int. J. Mol. Sci. 2023, 24(13), 11214; https://doi.org/10.3390/ijms241311214 - 7 Jul 2023
Cited by 1 | Viewed by 1943
Abstract
Stress triggers relapses in cocaine use that engage the activity of memory-related nuclei, such as the basolateral amygdala (BLA) and dentate gyrus (DG). Preclinical research suggests that D3 receptor (D3R) antagonists may be a promising means to attenuate cocaine reward and relapse. As [...] Read more.
Stress triggers relapses in cocaine use that engage the activity of memory-related nuclei, such as the basolateral amygdala (BLA) and dentate gyrus (DG). Preclinical research suggests that D3 receptor (D3R) antagonists may be a promising means to attenuate cocaine reward and relapse. As D3R regulates the activity of the Akt/mTOR and MEK/ERK1/2 pathways, we assessed the effects of SB-277011-A, a D3R antagonist, on the activity of these kinases during the reinstatement of cocaine-induced conditioned place preference (CPP) induced by psychological (restraint) and physiological (tail pinch) stress. Both stimuli reactivated an extinguished cocaine-CPP, but only restrained animals decreased their locomotor activity during reinstatement. Cocaine-seeking behavior reactivation was correlated with decreased p-Akt, p-mTOR, and p-ERK1/2 activation in both nuclei of restrained animals. While a D3R blockade prevented stress-induced CPP reinstatement and plasma corticosterone enhancement, SB-277011-A distinctly modulated Akt, mTOR, and ERK1/2 activation depending on the stressor and the dose used. Our data support the involvement of corticosterone in the SB-277011-A effects in restrained animals. Additionally, the ratios p-mTOR/mTOR and/or p-ERK1/2 /ERK1/2 in the BLA during stress-induced relapse seem to be related to the locomotor activity of animals receiving 48 mg/kg of the antagonist. Hence, our study indicates the D3R antagonist’s efficacy to prevent stress-induced relapses in drug use through distinct modulation of Akt/mTOR and MEK/ERK1/2 pathways in memory-processing nuclei. Full article
(This article belongs to the Special Issue Role of Dopamine in Health and Disease: Biological Aspect 2.0)
Show Figures

Figure 1

24 pages, 2809 KB  
Article
Effects of a True Prophylactic Treatment on Hippocampal and Amygdala Synaptic Plasticity and Gene Expression in a Rodent Chronic Stress Model of Social Defeat
by Eric T. Winzenried, Anna C. Everett, Erin R. Saito, Roxanne M. Miller, Taylor Johnson, Eliza Neal, Zachary Boyce, Calvin Smith, Chloe Jensen, Spencer Kimball, Adam Brantley, Gabriel Melendez, Devin Moffat, Erin Davis, Lyndsey Aponik, Tyler Crofts, Bryson Dabney and Jeffrey G. Edwards
Int. J. Mol. Sci. 2023, 24(13), 11193; https://doi.org/10.3390/ijms241311193 - 7 Jul 2023
Cited by 13 | Viewed by 4265
Abstract
Post-traumatic stress disorder (PTSD) is a complex stress-related disorder induced by exposure to traumatic stress that is characterized by symptoms of re-experiencing, avoidance, and hyper-arousal. While it is widely accepted that brain regions involved in emotional regulation and memory—e.g., the amygdala and hippocampus—are [...] Read more.
Post-traumatic stress disorder (PTSD) is a complex stress-related disorder induced by exposure to traumatic stress that is characterized by symptoms of re-experiencing, avoidance, and hyper-arousal. While it is widely accepted that brain regions involved in emotional regulation and memory—e.g., the amygdala and hippocampus—are dysregulated in PTSD, the pathophysiology of the disorder is not well defined and therefore, pharmacological interventions are extremely limited. Because stress hormones norepinephrine and cortisol (corticosterone in rats) are heavily implicated in the disorder, we explored whether preemptively and systemically antagonizing β-adrenergic and glucocorticoid receptors with propranolol and mifepristone are sufficient to mitigate pathological changes in synaptic plasticity, gene expression, and anxiety induced by a modified social defeat (SD) stress protocol. Young adult, male Sprague Dawley rats were initially pre-screened for anxiety. The rats were then exposed to SD and chronic light stress to induce anxiety-like symptoms. Drug-treated rats were administered propranolol and mifepristone injections prior to and continuing throughout SD stress. Using competitive ELISAs on plasma, field electrophysiology at CA1 of the ventral hippocampus (VH) and the basolateral amygdala (BLA), quantitative RT-PCR, and behavior assays, we demonstrate that our SD stress increased anxiety-like behavior, elevated long-term potentiation (LTP) in the VH and BLA, and altered the expression of mineralocorticoid, glucocorticoid, and glutamate receptors. These measures largely reverted to control levels with the administration of propranolol and mifepristone. Our findings indicate that SD stress increases LTP in the VH and BLA and that prophylactic treatment with propranolol and mifepristone may have the potential in mitigating these and other stress-induced effects. Full article
Show Figures

Figure 1

Back to TopTop