Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,877)

Search Parameters:
Keywords = bearing current

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1888 KiB  
Article
Corrosion Performance and Post-Corrosion Evolution of Tensile Behaviors in Rebar Reinforced Ultra-High Performance Concrete
by Yuchen Zhang, Sumei Zhang, Xianzhi Luo and Chaofan Wang
Materials 2025, 18(11), 2661; https://doi.org/10.3390/ma18112661 (registering DOI) - 5 Jun 2025
Abstract
The application of rebar reinforced ultra-high-performance concrete (R-UHPC) has been increasingly adopted in engineering structures due to its exceptional mechanical performance and durability characteristics. Nevertheless, when subjected to combined saline and stray current conditions, R-UHPC remains vulnerable to severe corrosion degradation. This investigation [...] Read more.
The application of rebar reinforced ultra-high-performance concrete (R-UHPC) has been increasingly adopted in engineering structures due to its exceptional mechanical performance and durability characteristics. Nevertheless, when subjected to combined saline and stray current conditions, R-UHPC remains vulnerable to severe corrosion degradation. This investigation examined the corrosion performance and tensile behavior evolution of R-UHPC containing 2.0 vol% copper-coated steel fiber content and HRB400 steel rebar with a reinforcement ratio of 3.1%. The accelerated corrosion process was induced through an impressed current method, followed by direct tensile tests at varying exposure periods. The findings revealed that the embedding of rebar in UHPC led to the formation of fiber-to-rebar (F-R) conductive pathways, generating radial cracks besides laminar cracks. The bonding between rebar and UHPC degraded as corrosion progressed, leading to the loss of characteristic multiple-cracking behavior of R-UHPC in tension. Meanwhile, R-UHPC load-bearing capacity, transitioning from gradual to accelerated deterioration phases with prolonged corrosion, aligns with steel fibers temporally. During the initial 4 days of corrosion, the specimens displayed surface-level corrosion features with negligible steel fiber loss, showing less than 4.0% reduction in ultimate bearing capacity. At 8 days of corrosion, the steel fiber decreased by 22.6%, accompanied by an 18.3% reduction in bearing capacity. By 16 days of corrosion, the steel fiber loss reached 41.5%, with a corresponding bearing capacity reduction of 29.1%. During the corrosion process, corrosion cracks and load-bearing degradation in R-UHPC could be indicated by the ultrasonic damage factor. Full article
19 pages, 7600 KiB  
Article
Experimental Study on a Laterally Loaded Pile Under Scour Condition Using Particle Image Velocimetry Technology
by Feng Yu, Xiaofeng Yang, Zhaoming Yao and Yaoyao Meng
J. Mar. Sci. Eng. 2025, 13(6), 1125; https://doi.org/10.3390/jmse13061125 - 4 Jun 2025
Abstract
The monopile foundation is a popular foundation type for offshore wind turbines; due to the harsh marine environment, there are lateral loads applied on the monopile foundation from winds and currents, and scouring also often occurs around the pile, reducing the bearing capacity [...] Read more.
The monopile foundation is a popular foundation type for offshore wind turbines; due to the harsh marine environment, there are lateral loads applied on the monopile foundation from winds and currents, and scouring also often occurs around the pile, reducing the bearing capacity and impacting the normal operation of offshore wind turbines. A series of 1 g model tests is conducted to investigate the lateral load response and scouring response of the monopile in sand. Based on the experimental results, the characteristics of the pile’s load-displacement curves, bending moments, and p-y curves under the effects of scour were analyzed. Particle Image Velocimetry technology was adopted to analyze the deformation development rules of soil particles around the pile. It is found that under the same lateral load, the maximum bending moment of the pile increases and the bearing capacity is reduced as the scour depth increases, the scour width increases, or the scour slope decreases. The effects of scour depth, slope, and width on pile bearing stability decrease successively. Soil displacements and strains in the passive zone in front of the pile develop gradually in both radial and vertical directions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

15 pages, 5426 KiB  
Article
Mechanical Performance Enhancement of Self-Decoupling Magnetorheological Damper Enabled by Double-Graded High-Performance Magnetorheological Fluid
by Fei Guo, Hanbo Cui, Xiaojun Huang, Chengbin Du, Zongyun Mo and Xiaoguo Lin
Appl. Sci. 2025, 15(11), 6305; https://doi.org/10.3390/app15116305 - 4 Jun 2025
Abstract
Conventional magnetorheological fluids (MRFs) exhibit a constrained shear strength that restricts their deployment in high-performance damping systems. This study introduces a dual-axis innovation strategy combining material science and device physics to fundamentally redefine MRF capabilities. We develop a hierarchical particle architecture through the [...] Read more.
Conventional magnetorheological fluids (MRFs) exhibit a constrained shear strength that restricts their deployment in high-performance damping systems. This study introduces a dual-axis innovation strategy combining material science and device physics to fundamentally redefine MRF capabilities. We develop a hierarchical particle architecture through the controlled integration of micro/nano-sized carbonyl iron particles (CIPs), enhanced by polyethylene glycol/oleic acid surface engineering to optimize magnetic chain formation and interfacial bonding. The engineered MRF demonstrates a shear yield strength of 99.6 kPa at 0.757 T, surpassing conventional single-component MRFs by a significant margin. Integrated with a self-decoupling damper that isolates magnetic flux from mechanical motion, this synergistic design achieves exceptional force modulation: damping forces scale from 281.5 kN (5 mm stroke) to 300 kN (60 mm stroke), with current-regulated adjustability factors reaching 3.34. The system exhibits substantial improvements in both maximum damping force (93.9 kN enhancement) and energy dissipation efficiency compared to standard MRF dampers. Through co-optimization of the particle architecture and magnetic circuit design, this work establishes new performance benchmarks for smart fluid technology. The achieved force capacity and dynamic response characteristics directly address critical challenges in seismic engineering and industrial vibration control, where extreme load-bearing requirements demand simultaneous high strength and tunable damping capabilities. Full article
Show Figures

Figure 1

30 pages, 1614 KiB  
Review
Mapping the Role of Robot-Assisted Gait Training in Post-Stroke Recovery Among Elderly Patients: A Scoping Review
by Cinzia Marinaro, Lucia Muglia, Simona Squartecchia, Annalisa Cozza, Andrea Corsonello, Luigi Pranno, Maurizio Ferrarin and Tiziana Lencioni
J. Clin. Med. 2025, 14(11), 3922; https://doi.org/10.3390/jcm14113922 - 3 Jun 2025
Abstract
Background/Objective: Stroke is one of the leading causes of death and disability worldwide, with older survivors (aged > 65 years) bearing significant health and economic impacts, particularly in industrialized countries. While gait rehabilitation is a cornerstone in post-stroke recovery and robotic technologies offer [...] Read more.
Background/Objective: Stroke is one of the leading causes of death and disability worldwide, with older survivors (aged > 65 years) bearing significant health and economic impacts, particularly in industrialized countries. While gait rehabilitation is a cornerstone in post-stroke recovery and robotic technologies offer promising tools to enhance its effectiveness, the existing literature has largely overlooked elderly populations. Most studies on robot-assisted gait training (RAGT)—which uses exoskeleton or end-effector devices to support and guide movement—either exclude older adults or do not analyze their outcomes separately. This review aims to critically evaluate the current evidence on RAGT in elderly post-stroke patients, addressing a significant gap in the literature and providing novel insights into the effectiveness and adaptability of RAGT for this specific population. Methods: The search included databases such as PubMed, Scopus, Embase, Web of Science, and ClinicalTrials. The inclusion criteria covered studies published up to March 2025, focusing on post-stroke individuals aged >65 years, who underwent RAGT. Results: 25 studies were included in the review, 21 involving exoskeleton and 4 end-effector devices. The primary focus was on motor outcomes, such as gait independence, gait parameters, and balance control. Only a few studies examined non-motor aspects, including cognitive and emotional functions, fatigue, pain, and neuroplasticity. Moreover, data on the long-term effects on the elderly population remain scarce. Conclusions: RAGT is an effective strategy for promoting motor recovery and improving functional outcomes, from independence in daily activities to quality of life, in the post-stroke elderly population. Early and high-intensity interventions are particularly useful with positive effects on neuronal plasticity, cognitive function, and well-being. Full article
(This article belongs to the Special Issue Rehabilitation and Management of Stroke)
Show Figures

Figure 1

20 pages, 5630 KiB  
Review
A Roadmap for the Reliable Design of Aluminium Structures Fit for Future Requirements—The REAL-Fit Project
by Davor Skejić, Anđelo Valčić, Ivan Čudina, Ivica Garašić and Tihomir Dokšanović
Buildings 2025, 15(11), 1906; https://doi.org/10.3390/buildings15111906 - 1 Jun 2025
Viewed by 258
Abstract
Although structural aluminium alloys have many advantages (low self-weight, corrosion resistance, 100% recyclable), they are associated with some conservative design methods in Eurocode 9. Conservative reductions in aluminium’s mechanical properties in the welded connection zone and the limitations of extruded aluminium members (the [...] Read more.
Although structural aluminium alloys have many advantages (low self-weight, corrosion resistance, 100% recyclable), they are associated with some conservative design methods in Eurocode 9. Conservative reductions in aluminium’s mechanical properties in the welded connection zone and the limitations of extruded aluminium members (the relatively small dimensions and uniform shape of the profile over the length) significantly limit the use of aluminium in load-bearing structures. This paper summarises the background, planned activities, and preliminary results of the ongoing REAL-fit project. The aim of the project is to conduct comprehensive interdisciplinary research on the feasibility of applying innovative automated (robotic) welding technologies and reliable design methods for aluminium welded members, joints, and entire structural systems. In this paper, the shortcomings of the current design approach are identified, and experimental, numerical, and reliability-based methodology for possible improvements is proposed. Furthermore, the project considers the integration of the advanced direct design method (DDM) with the methods of life cycle assessment (LCA) and life cycle cost analysis (LCCA) as a possible direction for establishing a more holistic evaluation framework. This is precisely one of the project’s ultimate goals, which will assess the reliability and sustainability of economical aluminium structures throughout their life cycle. Full article
Show Figures

Figure 1

16 pages, 5023 KiB  
Article
Lepidium virginicum Water-Soluble Chlorophyll-Binding Protein with Chlorophyll A as a Novel Contrast Agent for Photoacoustic Imaging
by Victor T. C. Tsang, Hannah H. Kim, Bingxin Huang, Simon C. K. Chan and Terence T. W. Wong
Sensors 2025, 25(11), 3492; https://doi.org/10.3390/s25113492 - 31 May 2025
Viewed by 147
Abstract
Photoacoustic (PA) imaging (PAI) holds great promise for non-invasive biomedical diagnostics. However, the efficacy of current contrast agents is often limited by photobleaching, toxicity, and complex synthesis processes. In this study, we introduce a novel, biocompatible PAI contrast agent: a recombinant water-soluble chlorophyll-binding [...] Read more.
Photoacoustic (PA) imaging (PAI) holds great promise for non-invasive biomedical diagnostics. However, the efficacy of current contrast agents is often limited by photobleaching, toxicity, and complex synthesis processes. In this study, we introduce a novel, biocompatible PAI contrast agent: a recombinant water-soluble chlorophyll-binding protein (WSCP) from Lepidium virginicum (LvP) reconstituted with chlorophyll a (LvP-chla). LvP-chla exhibits a strong and narrow absorption peak at 665 nm, with a molar extinction coefficient substantially higher than oxyhemoglobin and deoxyhemoglobin, enabling robust signal generation orthogonal to endogenous chromophores. Phantom studies confirmed a linear relationship between PA signal amplitude and LvP-chla concentration, demonstrating its stability and reliability. In vitro cytotoxicity testing using 4T1 cells showed high cell viability at 5 mg/mL, justifying its use for in vivo studies. In vivo experiments with a 4T1 tumor-bearing mouse model demonstrated successful tumor localization following intratumoral injection of LvP-chla, with clear visualization via spectroscopic differentiation from endogenous absorbers at 665 nm and 685 nm. Toxicity assessments, both in vitro and in vivo, revealed no adverse effects, and clearance studies confirmed minimal retention after 96 h. These findings show that LvP-chla is a promising contrast agent that enhances PAI capabilities through its straightforward synthesis, stability, and biocompatibility. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

20 pages, 608 KiB  
Systematic Review
The Metabolomic View of Systemic Sclerosis—A Systematic Literature Review
by Sebastian T. Jendrek, Franziska Schmelter, Christian Sina, Ulrich L. Günther and Gabriela Riemekasten
Sclerosis 2025, 3(2), 18; https://doi.org/10.3390/sclerosis3020018 - 29 May 2025
Viewed by 136
Abstract
The mortality risk in systemic sclerosis (SSc) is primarily determined by pulmonary involvement (interstitial lung disease (ILD), pulmonary fibrosis), pulmonary arterial hypertension (PAH), and cardiac involvement. With timely and intensive treatment, the disease can be halted or even improved. Therefore, early diagnosis remains [...] Read more.
The mortality risk in systemic sclerosis (SSc) is primarily determined by pulmonary involvement (interstitial lung disease (ILD), pulmonary fibrosis), pulmonary arterial hypertension (PAH), and cardiac involvement. With timely and intensive treatment, the disease can be halted or even improved. Therefore, early diagnosis remains crucial. Unfortunately, biomarkers currently available cannot meet this requirement. SSc is characterized by autoimmune inflammation, vasculopathy, and fibrosis. The immunometabolic characterization of autoimmune diseases contributes to a better understanding of the underlying inflammatory processes. In this narrative review, we included 13 studies on metabolomic patterns in SSc in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (PRISMA). Current studies indicate an altered metabolome in SSc. All documented significant differences between patients with SSc and healthy controls, although the observed metabolomic patterns in SSc were inconsistent between studies. Metabolome alterations include, in particular, energy-related metabolic pathways such as glycolysis/gluconeogenesis, including the synthesis and degradation of ketones, fatty acid oxidation, amino acid-related metabolic pathways, lipid metabolism, and the tricarboxylic acid (TCA) cycle, including pyruvate metabolism. The most frequently examined organ complications with reported significant aberrations of the metabolome were skin involvement, ILD, and PAH. Conclusion: The detailed characterization of the SSc-specific metabolome promises a more comprehensive understanding of the pathogenic mechanisms of the disease. Furthermore, the detection of associations between specific metabolic aberrations and disease phenotypes bears hope for new biomarkers and an improved personalized approach to diagnostics, therapy, and follow-up in the management of SSc. Full article
(This article belongs to the Special Issue Recent Advances in Understanding Systemic Sclerosis)
Show Figures

Figure 1

25 pages, 9816 KiB  
Article
Design and Basic Performance Analysis of a Bionic Finger Soft Actuator with a Dual-Chamber Composite Structure
by Yu Cai, Sheng Liu, Dazhong Wang, Shuai Huang, Dong Zhang, Mengyao Shi, Wenqing Dai and Shang Wang
Actuators 2025, 14(6), 268; https://doi.org/10.3390/act14060268 - 28 May 2025
Viewed by 141
Abstract
Pneumatic soft manipulators are one of the current development trends in the field of manipulators. The soft manipulator that has been developed at present still has problems with single function and poor load-bearing capacity. This paper designs a composite soft finger inspired by [...] Read more.
Pneumatic soft manipulators are one of the current development trends in the field of manipulators. The soft manipulator that has been developed at present still has problems with single function and poor load-bearing capacity. This paper designs a composite soft finger inspired by the human middle finger, featuring a dual-chamber pneumatic drive and embedded steel sheet structure. Utilizing the principles of moment equilibrium and virtual work, a theoretical model for the bending behavior of the soft finger is developed, and the correlation between the bending angle and driving air pressure is derived. The determination process of key parameters and their influence on bending deformation are explained in detail through simulation. The bending experiment confirmed the reliability of the theoretical model. The fingertip force test indicates that the composite finger exerts a greater force than the ordinary one, with the extra force equivalent to 42.57% of the composite finger’s own fingertip force. Subsequent tests on the soft robotic hand measured the hooking quality, gripping diameter, and gripping force. The hooking experiment confirmed that composite fingers have a stronger load-bearing capacity than ordinary fingers, with an extra capacity equivalent to 31.25% of the composite finger’s own load-bearing capacity. Finally, the grasping experiment demonstrates that the soft manipulator can grasp objects of varying shapes and weights, indicating its strong adaptability and promising applications. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

18 pages, 3112 KiB  
Article
Structural Load Optimization of 15 MW Offshore Wind Turbine Using LHS-Based Design Space
by Sajid Ali, Muhammad Waleed and Daeyong Lee
J. Mar. Sci. Eng. 2025, 13(6), 1066; https://doi.org/10.3390/jmse13061066 - 28 May 2025
Viewed by 63
Abstract
The structural integrity of next-generation offshore wind turbines is highly sensitive to inflow variability, yet current standards often simplify wind conditions without capturing their combined effects on dynamic loads. To address this, we analyzed the NREL IEA 15 MW offshore wind turbine using [...] Read more.
The structural integrity of next-generation offshore wind turbines is highly sensitive to inflow variability, yet current standards often simplify wind conditions without capturing their combined effects on dynamic loads. To address this, we analyzed the NREL IEA 15 MW offshore wind turbine using 27 simulation cases strategically selected through Latin Hypercube Sampling (LHS) from a design space of over 14 million combinations. Four key environmental variables—Extreme Wind Speed (30–40 m/s), turbulence intensity (12–16%), Shear Exponent (0.1–0.3), and Flow Inclination Angle (−8° to +8°)—were varied to assess their influence on structural response using BLADED simulations. Results showed that the combined structural moment (Mxyz) ranged from 159,502.5 kNm (minimum) to 189,829.2 kNm (maximum), indicating a 19% increase due to inflow conditions. Maximum-moment case exhibited a 2.6× higher drag coefficient, a 13% rise in pitch bearing moment, and dominant frequency content near 0.175 Hz, closely matching the first tower side-side natural mode (0.17593 Hz), confirming potential resonance. These findings highlight the importance of multidimensional inflow modeling for identifying worst-case load scenarios and establishing a foundation for future load prediction models and support structure optimization. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

14 pages, 4846 KiB  
Article
Study of Corrosion, Power Consumption, and Wear Characteristics of Herringbone-Grooved Fan Bearings in High-Temperature and High-Humidity Environments
by Jim-Chwen Yeh, Yu-Chang Lee, Chun-Hsiang Huang, Ming-Yuan Li and Chin-Chung Wei
Lubricants 2025, 13(6), 245; https://doi.org/10.3390/lubricants13060245 - 28 May 2025
Viewed by 159
Abstract
Fans are essential electronic components for heat dissipation in electronic systems, with fan bearings being critical parts that determine fan performance and lifespan. This paper investigates the corrosion, wear, power consumption, temperature, and vibration characteristics of a newly designed and manufactured powder metallurgy [...] Read more.
Fans are essential electronic components for heat dissipation in electronic systems, with fan bearings being critical parts that determine fan performance and lifespan. This paper investigates the corrosion, wear, power consumption, temperature, and vibration characteristics of a newly designed and manufactured powder metallurgy bearing with herringbone oil grooves for fans under high-humidity and high-temperature conditions. Corrosion experiments on iron–copper powder metallurgy bearings show that a higher environmental temperature and humidity result in greater corrosion current and reduced corrosion resistance. Bearings operated under high humidity (85% RH) and a high temperature (80 °C) for 0, 3, and 8 days, respectively, revealed that wear and corrosion occur simultaneously. The longer the operating time, the more significant the wear and corrosion. After 3 and 8 days, the lubricating oil flow in the oil grooves decreased by 9.8% and 51.5%, respectively. When bearings subjected to varying degrees of corrosion were tested under the same standard operating conditions, it was found that the bearings corroded for 3 and 8 days, resulting in a significant increase in the number of wear debris particles, higher RMS vibration values, and a power consumption increase of 6.9% and 7.8%, respectively. The percentage of iron elements on the surface gradually decreased, with the copper elements being the primary wear particles during the wear process. However, due to the increased clearance between the rotating shaft and the bearing caused by wear, the fan temperature slightly decreased with increased surface wear. Full article
(This article belongs to the Special Issue Recent Advances in Tribological Properties of Machine Tools)
Show Figures

Figure 1

16 pages, 1943 KiB  
Article
An Improvement of the Load Transfer Method for Energy Piles Under Thermo-Mechanical Loads
by Haofan Yang, Haowen Pan, Chenfeng Zong, Ziyi Wang and Gang Jiang
Appl. Sci. 2025, 15(11), 6046; https://doi.org/10.3390/app15116046 - 28 May 2025
Viewed by 59
Abstract
The energy pile integrates shallow geothermal energy extraction with underground structural engineering, thereby expanding the functional applications and scope of pile foundations. Due to its widespread adoption, research on energy pile analysis theory has advanced significantly. Among existing analytical methods, the load transfer [...] Read more.
The energy pile integrates shallow geothermal energy extraction with underground structural engineering, thereby expanding the functional applications and scope of pile foundations. Due to its widespread adoption, research on energy pile analysis theory has advanced significantly. Among existing analytical methods, the load transfer method is widely employed owing to its computational simplicity and readily obtainable parameters. However, current load transfer models for energy piles remain imperfect, primarily because their results often fail to accurately reflect real-world loading conditions. This study investigates the underlying causes of this discrepancy and proposes an iterative method to eliminate unbalanced forces at the pile head, based on the displacement coordination algorithm for energy pile load transfer. The calculated results at the pile head show an 18% reduction in error compared to previous studies. The average error compared with field test results is within 20%, with consistent trend patterns, confirming the feasibility of the proposed method. Computational results demonstrate that the proposed method effectively captures the combined effects of mechanical load and temperature variations on the bearing behavior of energy piles. It should be noted that this paper focuses specifically on improving the temperature-dependent load transfer method for energy piles. Consequently, the conventional load transfer method and results under purely mechanical loading are not discussed herein. Full article
Show Figures

Figure 1

20 pages, 10062 KiB  
Article
Experimental Study on Vibration Characteristics of Journal Bearing-Rotor System Under Base Roll and Pitch Motions
by Fangcheng Xu, Jiyu Wang, Kaidi Zhu, Guilong Wang, Jingwei Yi and Zhongliang Xie
Lubricants 2025, 13(6), 242; https://doi.org/10.3390/lubricants13060242 - 27 May 2025
Viewed by 245
Abstract
Currently, there is limited experimental research on the stability of journal bearing-rotor systems under base motion, and the influence of rocking motion on the stability of such systems remains unclear. This study develops an experimental test rig for a journal bearing-rotor system and [...] Read more.
Currently, there is limited experimental research on the stability of journal bearing-rotor systems under base motion, and the influence of rocking motion on the stability of such systems remains unclear. This study develops an experimental test rig for a journal bearing-rotor system and employs a six-degrees-of-freedom shaking table to apply complex alternating loads, with the aim of investigating the effects of rocking amplitude and frequency on the vibration characteristics of the shaft system. The experimental results show that, under the excitation of base roll and pitch motions, the critical speed of the sliding bearing-rotor system remains nearly unchanged, while the resonance amplitude increases significantly, and the instability speed occurs earlier. In addition, base rocking motion not only induces periodic and uniform changes in the vibration amplitude of the shaft system but also demonstrates a strong positive correlation between the amplitude of system vibration and the amplitude of base rocking. Full article
Show Figures

Figure 1

19 pages, 3834 KiB  
Article
The Effects of Iron-Bearing Minerals on the Community Diversity and Physiological Activity of Prokaryotic Microorganisms in Pit Mud Used for Strong-Flavor baijiu Production
by Kairui Jiao, Bo Deng, Ping Song, Liwei Wang and Bin Lian
Foods 2025, 14(11), 1883; https://doi.org/10.3390/foods14111883 - 26 May 2025
Viewed by 206
Abstract
The quality of strong-flavor baijiu largely depends on the physicochemical properties and prokaryotic microbial activities of pit mud. However, the impact of the iron-bearing minerals in pit mud on its prokaryotic microbial communities remains unknown. This study examined the differences in the prokaryotic [...] Read more.
The quality of strong-flavor baijiu largely depends on the physicochemical properties and prokaryotic microbial activities of pit mud. However, the impact of the iron-bearing minerals in pit mud on its prokaryotic microbial communities remains unknown. This study examined the differences in the prokaryotic communities between 2-year, 40-year, and 100-year pit mud and yellow soil (the raw material for pit mud), as well as the impacts of environmental factors, particularly iron-bearing minerals, on the structure and diversity of these prokaryotic communities. The results indicated that there were significant differences in the composition of prokaryotic microorganisms between yellow soil and pit mud. As the fermentation pit aged, the relative abundance of dominant fermentation bacteria (including Petrimonas, Syntrophomonas, Clostridium, etc.) and hydrogenotrophic methanogens in the pit mud increased. The relative abundance of Lactobacillus in the 2-year pit mud was low (0.33%). Under laboratory conditions, goethite (a typical crystalline iron mineral, denoted as Fec) reduced the physiological and metabolic activity of Lacticaseibacillus paracasei JN01 in a concentration-dependent manner. The results of the physicochemical analysis showed that the contents of total iron (TFe) and Fec significantly decreased, while the contents of Fe(II) and amorphous iron (hydr)oxides (Feo) significantly increased with an increasing fermentation pit age. TFe and Fec were significantly negatively correlated with both the Chao1 and Shannon indexes and functional microorganisms such as Clostridium_sensu_stricto_12, Sedimentibacter, and hydrogenotrophic methanogens. The current results contribute to our understanding of the aging process of pit mud from the perspective of the interaction between iron-bearing minerals and prokaryotic microorganisms. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

20 pages, 14743 KiB  
Article
Seismic Prediction of Shallow Unconsolidated Sand in Deepwater Areas
by Jiale Chen, Yingfeng Xie, Tong Wang, Haoyi Zhou, Zhen Zhang, Yonghang Li, Shi Zhang and Wei Deng
J. Mar. Sci. Eng. 2025, 13(6), 1044; https://doi.org/10.3390/jmse13061044 - 26 May 2025
Viewed by 172
Abstract
Recently, shallow gas fields and hydrate-bearing sand in the deepwater area of the northern South China Sea have been successively discovered, and the accurate prediction of shallow sands is an important foundation. However, most of the current prediction methods are mainly for deep [...] Read more.
Recently, shallow gas fields and hydrate-bearing sand in the deepwater area of the northern South China Sea have been successively discovered, and the accurate prediction of shallow sands is an important foundation. However, most of the current prediction methods are mainly for deep oil and gas reservoirs. Compared with those reservoirs with high degree of consolidation, shallow sandy reservoirs are loose and unconsolidated, whose geophysical characteristics are not well understood. This paper analyzes the logging data of shallow sandy reservoirs recovered in the South China Sea recently, which show that the sand content has a significant influence on Young’s modulus and Poisson’s ratio of the sediments. Therefore, this paper firstly constructs a new petrophysical model of unconsolidated strata targeting sandy content and qualitatively links the mineral composition and the elastic parameters of the shallow marine sediments and defines a new indicator for sandy content: the modified brittleness index (MBI). The effectiveness of MBI in predicting sandy content is then verified by measured well data. Based on pre-stack seismic inversion, the MBI is then inverted, which will identify the sandy deposits. The method proposed provides technical support for the subsequent shallow gas and hydrate exploration in the South China Sea. Full article
Show Figures

Figure 1

15 pages, 2134 KiB  
Article
Method for Extracting Impact Signals in Falling Weight Deflectometer Calibration Based on Frequency Filtering and Gradient Detection
by Jiacheng Cai, Yingchao Luo, Bing Zhang, Lei Chen and Lu Liu
Sensors 2025, 25(11), 3317; https://doi.org/10.3390/s25113317 - 24 May 2025
Viewed by 276
Abstract
FWD is an important non-destructive testing instrument in the field of highways. It evaluates the pavement bearing capacity by continuously hammering the ground. However, due to noise interference, the current identification and extraction of the impact signals generated by the hammering are not [...] Read more.
FWD is an important non-destructive testing instrument in the field of highways. It evaluates the pavement bearing capacity by continuously hammering the ground. However, due to noise interference, the current identification and extraction of the impact signals generated by the hammering are not accurate enough, which affects the calibration accuracy of the FWD results. To address this issue, this work proposes a novel method for impact point identification. The method integrates frequency domain filtering with gradient detection. Firstly, by analyzing the frequency domain characteristics of FWD impact signals using fast Fourier transform (FFT) and short-time Fourier transform (STFT), the primary response frequency band of the impact was identified. Subsequently, the impact signal segment was reconstructed using inverse fast Fourier transform (IFFT) to effectively suppress noise interference. Furthermore, gradient detection was employed to precisely determine the initiation moment of the impact. To validate the proposed method, a simulated acceleration signal incorporating interference noise was constructed. Comparative experiments were also conducted between traditional identification methods and the proposed method under high-noise conditions. The results demonstrate that the proposed method can accurately identify the impact point even under strong noise, thereby providing reliable data support for FWD measurements. This method exhibits strong environmental adaptability and can be extended to other engineering tests involving impact events and impact point identification. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop