polymers-logo

Journal Browser

Journal Browser

Engineering and Medical Polymer Additive Manufacturing: Current and Future Trends

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Processing and Engineering".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 1069

Special Issue Editors


E-Mail Website
Guest Editor
Department of Mechanical Engineering, University of Coimbra, 3030-788 Coimbra, Portugal
Interests: fatigue behavior; additive manufacturing; multiaxial fatigue; damage accumulation; notch effect; low-cycle fatigue
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Polymer additive manufacturing (AM) is transforming the engineering and medical industries by enabling rapid prototyping, product customisation, and the production of very complex geometries. Therefore, current trends focus on enhancing material properties, scalability, automation, recycling, sustainability, biocompatibility, and multi-material printing, to name a few, driving advancements in aerospace, aeronautical, automotive, and biomedical applications.

In engineering, for instance, high-performance polymers are currently being designed to improve strength, thermal resistance, and chemical stability to fit specific environmental conditions. Meanwhile, medical AM is revolutionising patient care with 3D-printed implants, prosthetics, and bio-printed tissues, utilising biopolymers and hydrogels for better integration and functionality. These scientific and technological improvements are sure to challenge quality and safety, demanding new regulations and standardisation.

As a result, polymer AM is no longer just an emerging technology but a consolidated field with a broader range of ongoing improvements and applications. Therefore, the Guest Editors of this Special Issue are thrilled to invite researchers, entrepreneurs, and specialists, either academic or from industry and services, to contribute to the advancement of this field.

Dr. Rui F. Martins
Dr. Ricardo Branco
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • additive manufacturing
  • polymers
  • engineering and medical applications
  • quality and safety
  • sustainability

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

28 pages, 15740 KiB  
Article
Enhancing Mechanical Energy Absorption of Honeycomb and Triply Periodic Minimal Surface Lattice Structures Produced by Fused Deposition Modelling in Reusable Polymers
by Alin Bustihan, Ioan Botiz, Ricardo Branco and Rui F. Martins
Polymers 2025, 17(8), 1111; https://doi.org/10.3390/polym17081111 - 19 Apr 2025
Viewed by 790
Abstract
This study investigated the mechanical energy absorption properties of polymeric lattice structures fabricated using additive manufacturing. Existing studies have primarily focused on rigid or single-use materials, with limited attention given to flexible polymers and their behaviour under repeated compressive loading. Addressing this gap, [...] Read more.
This study investigated the mechanical energy absorption properties of polymeric lattice structures fabricated using additive manufacturing. Existing studies have primarily focused on rigid or single-use materials, with limited attention given to flexible polymers and their behaviour under repeated compressive loading. Addressing this gap, the structures investigated in this study are manufactured using three flexible polymers—polyether block amide, thermoplastic polyurethane, and thermoplastic copolyester elastomer—to enhance the reusability performance. Two high-performance designs were analysed, namely honeycomb structures (inspired by pomelo peel and simply hexagonal arrangements) and 3D triply periodic minimal surface structure of the type FRD. The primary objective was to evaluate their energy absorption capacity and reusability using three repeated compression tests. These tests revealed that thermoplastic copolyester elastomer exhibited the highest energy absorption in initial impact conditions, but lower values for the following compressions. However, polyether block amide demonstrated superior reusability, maintaining a consistent energy absorption efficiency of 56.1% over multiple compression cycles. The study confirms that modifying triply periodic minimal surface structures along the z-axis enhances their absorption efficiency, with even-numbered z-parameter structures outperforming odd-numbered ones due to their complete cell structure. These findings highlight the critical role of structural geometry and material selection to optimise polymeric lattice structures for lightweight reusable energy absorption applications, such as automotive safety and impact protection. Full article
Show Figures

Figure 1

Review

Jump to: Research

73 pages, 1156 KiB  
Review
Lattice Structures in Additive Manufacturing for Biomedical Applications: A Systematic Review
by Samuel Polo, Amabel García-Domínguez, Eva María Rubio and Juan Claver
Polymers 2025, 17(17), 2285; https://doi.org/10.3390/polym17172285 - 23 Aug 2025
Abstract
The present study offers a systematic review of the current state of research on lattice structures manufactured by additive technologies for biomedical applications, with the aim of identifying common patterns, such as the use of triply periodic minimal surfaces (TPMS) for bone scaffolds, [...] Read more.
The present study offers a systematic review of the current state of research on lattice structures manufactured by additive technologies for biomedical applications, with the aim of identifying common patterns, such as the use of triply periodic minimal surfaces (TPMS) for bone scaffolds, as well as technological gaps and future research opportunities. Employing the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology, the review process ensures methodological rigor and replicability across the identification, screening, eligibility, and inclusion phases. Additionally, PRISMA was tailored by prioritizing technical databases and engineering-specific inclusion criteria, thereby aligning the methodology with the scope of this field. In recent years, a substantial surge in interdisciplinary research has underscored the promise of architected porous structures in enhancing mechanical compatibility, fostering osseointegration, and facilitating personalized medicine. A growing body of literature has emerged that explores the optimization of geometric features to replicate the behavior of biological tissues, particularly bone. Additive manufacturing (AM) has played a pivotal role in enabling the fabrication of complex geometries that are otherwise unachievable by conventional methods. The applications of lattice structures range from permanent load-bearing implants, commonly manufactured through selective laser melting (SLM), to temporary scaffolds for tissue regeneration, often produced with extrusion-based processes such as fused filament fabrication (FFF) or direct ink writing (DIW). Notwithstanding these advances, challenges persist in areas such as long-term in vivo validation, standardization of mechanical and biological testing, such as ISO standards for fatigue testing, and integration into clinical workflows. Full article
Back to TopTop