Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (170)

Search Parameters:
Keywords = bifunctional electrocatalysts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2443 KB  
Article
Design of CoMoCe-Oxide Nanostructured Composites as Robust Bifunctional Electrocatalyst for Water Electrolysis Overall Efficiency
by Akbar I. Inamdar, Amol S. Salunke, Jyoti V. Patil, Sawanta S. Mali, Chang Kook Hong, Basit Ali, Supriya A. Patil, Nabeen K. Shrestha, Sejoon Lee and Sangeun Cho
Materials 2025, 18(17), 4052; https://doi.org/10.3390/ma18174052 - 29 Aug 2025
Viewed by 319
Abstract
The development of ternary metal oxide electrocatalysts with optimized electronic structures and surface morphologies has emerged as one of the effective strategies to improve the performance of electrochemical water splitting. In this work, ternary CoMoCe (CMC)-oxide electrocatalysts were successfully synthesized on nickel foam [...] Read more.
The development of ternary metal oxide electrocatalysts with optimized electronic structures and surface morphologies has emerged as one of the effective strategies to improve the performance of electrochemical water splitting. In this work, ternary CoMoCe (CMC)-oxide electrocatalysts were successfully synthesized on nickel foam substrates via a hydrothermal technique and employed for their catalytic activity in an alkaline electrolyte. For comparison, binary counterparts (CoMo, CoCe, and MoCe) were also fabricated under similar conditions. The synthesized catalysts’ electrodes exhibited diverse surface architectures, including microporous-flake hybrids, ultrathin flakes, nanoneedle-assembled microspheres, and randomly oriented hexagonal structures. Among them, the ternary CoMoCe-oxide electrode exhibited outstanding bifunctional electrocatalytic activity, delivering low overpotentials of 124 mV for the hydrogen evolution reaction (HER) at −10 mA cm−2, and 340 mV for the oxygen evolution reaction (OER) at 100 mA cm−2, along with excellent durability. Furthermore, in full water-splitting configuration, the CMC||CMC and RuO2||CMC electrolyzers required cell voltages of 1.69 V and 1.57 V, respectively, to reach a current density of 10 mA cm−2. Remarkably, the CMC-based electrolyzer reached an industrially relevant current density of 1000 mA cm−2 at a cell voltage of 2.18 V, maintaining excellent stability over 100 h of continuous operation. These findings underscore the impact of an optimized electronic structure and surface architecture on design strategies for high-performance ternary metal oxide electrocatalysts. Herein, a robust and straightforward approach is comprehensively presented for fabricating highly efficient ternary metal-oxide catalyst electrodes, offering significant potential for scalable water splitting. Full article
Show Figures

Figure 1

18 pages, 4250 KB  
Article
Highly Efficient Electrocatalyst of 2D–2D gC3N4–MoS2 Composites for Enhanced Overall Water Electrolysis
by Sankar Sekar, Atsaya Shanmugam, Youngmin Lee and Sejoon Lee
Materials 2025, 18(16), 3775; https://doi.org/10.3390/ma18163775 - 12 Aug 2025
Viewed by 543
Abstract
For future clean and renewable energy technology, designing highly efficient and robust electrocatalysts is of great importance. Particularly, creating efficient bifunctional electrocatalysts capable of effectively catalyzing both hydrogen- and oxygen-evolution reactions (HERs and OERs) is vital for overall water electrolysis. In this study, [...] Read more.
For future clean and renewable energy technology, designing highly efficient and robust electrocatalysts is of great importance. Particularly, creating efficient bifunctional electrocatalysts capable of effectively catalyzing both hydrogen- and oxygen-evolution reactions (HERs and OERs) is vital for overall water electrolysis. In this study, we employ 2D molybdenum disulfide (MoS2) nanosheets and pyrolytically fabricated 2D graphitic carbon nitride (gC3N4) nanosheets to create 2D gC3N4-decorated 2D MoS2 (2D–2D gC3N4–MoS2) nanocomposites using a facile sonochemical method. The 2D–2D gC3N4–MoS2 nanocomposites show an interconnected and agglomerated structure of 2D gC3N4 nanosheets decorated on 2D MoS2 nanosheets. For water electrolysis, the gC3N4–MoS2 nanocomposites exhibit low overpotentials (OER: 225 mV, HER: 156 mV), small Tafel slope values (OER: 49 mV/dec, HER: 101 mV/dec), and excellent durability (up to 100 h for both OER and HER) at 10 mA/cm2 in 1 M KOH. Furthermore, the gC3N4–MoS2 nanocomposites show excellent overall water electrolysis performance with a low full-cell voltage (1.52 V at 10 mA/cm2) and outstanding long-term cell stability. The superb bifunctional activities of the gC3N4–MoS2 nanocomposites are attributed to the synergistic effects of 2D gC3N4 (i.e., low charge-transfer resistance) and 2D MoS2 (i.e., a large electrochemically active surface area). These findings suggest that the 2D–2D gC3N4–MoS2 nanocomposites could serve as excellent bifunctional catalysts for overall water electrolysis. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Energy Storage and Conversion)
Show Figures

Graphical abstract

20 pages, 3918 KB  
Article
Engineered Cu0.5Ni0.5Al2O4/GCN Spinel Nanostructures for Dual-Functional Energy Storage and Electrocatalytic Water Splitting
by Abdus Sami, Sohail Ahmad, Ai-Dang Shan, Sijie Zhang, Liming Fu, Saima Farooq, Salam K. Al-Dawery, Hamed N. Harharah, Ramzi H. Harharah and Gasim Hayder
Processes 2025, 13(7), 2200; https://doi.org/10.3390/pr13072200 - 9 Jul 2025
Viewed by 423
Abstract
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, [...] Read more.
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, addressing environmental challenges while meeting rising energy needs. In this study, the fabrication of a novel bifunctional catalyst, copper nickel aluminum spinel (Cu0.5Ni0.5Al2O4) supported on graphitic carbon nitride (GCN), using a solid-state synthesis process is reported. Because of its effective interface design and spinel cubic structure, the Cu0.5Ni0.5Al2O4/GCN nanocomposite, as synthesized, performs exceptionally well in electrochemical energy conversion, such as the oxygen evolution reaction (OER), the hydrogen evolution reaction (HER), and energy storage. In particular, compared to noble metals, Pt/C- and IrO2-based water-splitting cells require higher voltages (1.70 V), while for the Cu0.5Ni0.5Al2O4/GCN nanocomposite, a voltage of 1.49 V is sufficient to generate a current density of 10 mA cm−2 in an alkaline solution. When used as supercapacitor electrode materials, Cu0.5Ni0.5Al2O4/GCN nanocomposites show a specific capacitance of 1290 F g−1 at a current density of 1 A g−1 and maintain a specific capacitance of 609 F g−1 even at a higher current density of 5 A g−1, suggesting exceptional rate performance and charge storage capacity. The electrode’s exceptional capacitive properties were further confirmed through the determination of the roughness factor (Rf), which represents surface heterogeneity and active area enhancement, with a value of 345.5. These distinctive characteristics render the Cu0.5Ni0.5Al2O4/GCN composite a compelling alternative to fossil fuels in the ongoing quest for a viable replacement. Undoubtedly, the creation of the Cu0.5Ni0.5Al2O4/GCN composite represents a significant breakthrough in addressing the energy crisis and environmental concerns. Owing to its unique composition and electrocatalytic characteristics, it is considered a feasible choice in the pursuit of ecologically sustainable alternatives to fossil fuels. Full article
Show Figures

Graphical abstract

32 pages, 4753 KB  
Review
Prospective Obstacles and Improvement Strategies of Manganese-Based Materials in Achieving High-Performance Rechargeable Zinc–Air Batteries
by Zhangli Ye, Tianjing Wu, Lanhua Yi and Mingjun Jing
Batteries 2025, 11(7), 255; https://doi.org/10.3390/batteries11070255 - 8 Jul 2025
Viewed by 1199
Abstract
Zinc–air batteries (ZABs) are crucial for renewable energy conversion and storage due to their cost-effectiveness, excellent safety, and superior cycling stability. However, developing efficient and affordable bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) at the air [...] Read more.
Zinc–air batteries (ZABs) are crucial for renewable energy conversion and storage due to their cost-effectiveness, excellent safety, and superior cycling stability. However, developing efficient and affordable bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) at the air cathode remains a significant challenge. Manganese (Mn)-based materials, known for their tunable oxidation states, adaptable crystal structures, and environmental friendliness, are regarded as the most promising candidates. This review systematically summarizes recent advances in Mn-based bifunctional catalysts, concentrating on four primary categories: Mn–N–C electrocatalysts, manganese oxides, manganates, and other Mn-based compounds. By examining the intrinsic merits and limitations of each category, we provide a comprehensive discussion of optimization strategies, which include morphological modulation, structural engineering, carbon hybridization, heterointerface construction, heteroatom doping, and defect engineering, aimed at enhancing catalytic performance. Additionally, we critically address existing challenges and propose future research directions for Mn-based materials in rechargeable ZABs, offering theoretical insights and design principles to advance the development of next-generation energy storage systems. Full article
Show Figures

Graphical abstract

20 pages, 4449 KB  
Article
Boosting Dual Hydrogen Electrocatalysis with Pt/NiMo Catalysts: Tuning the Ni/Mo Ratio and Minimizing Pt Usage
by Luis Fernando Cabanillas-Esparza, Edgar Alonso Reynoso-Soto, Balter Trujillo-Navarrete, Brenda Alcántar-Vázquez, Carolina Silva-Carrillo and Rosa María Félix-Navarro
Catalysts 2025, 15(7), 633; https://doi.org/10.3390/catal15070633 - 28 Jun 2025
Viewed by 733
Abstract
The development of efficient platinum group metal-free (PGM-free) catalysts for the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR) is essential for advancing hydrogen-based energy technologies. In this study, NixMo100−x composites supported on Carbon Ketjenblack EC-300J (CK) were [...] Read more.
The development of efficient platinum group metal-free (PGM-free) catalysts for the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR) is essential for advancing hydrogen-based energy technologies. In this study, NixMo100−x composites supported on Carbon Ketjenblack EC-300J (CK) were synthesized via thermal reduction under a controlled Ar/H2 (95:5) atmosphere to investigate the effect of the Ni/Mo molar ratio on electrocatalytic performance. Structural and morphological analyses by XRD and TEM confirmed the formation of the NiMo alloys and carbide phases with controlled particle size distributions (~18 nm), while BET measurements revealed specific surface areas up to 124.69 m2 g−1 for the Pt-loaded samples. Notably, the 3% Pt/Ni90Mo10-CK catalyst exhibited outstanding bifunctional activity in a half-cell configuration, achieving an overpotential of 65.2 mV and a Tafel slope of 41.6 mV dec−1 for the HER, and a Tafel slope of 32.9 mV dec−1 with an exchange current density of 1.03 mA cm−2 for the HOR. These results demonstrate that compositional tuning and minimal Pt incorporation synergistically enhance the catalytic efficiency, providing a promising platform for next-generation hydrogen electrocatalysts. Full article
(This article belongs to the Special Issue Electrocatalytic Hydrogen and Oxygen Evolution Reaction)
Show Figures

Graphical abstract

14 pages, 6399 KB  
Article
Core–Shell CoS2/FeS2 Heterojunction Encapsulated in N-Doped Carbon Nanocubes Derived from Coordination Polymers for Electrocatalytic Alkaline Water/Seawater Splitting
by Xiaoyin Zhang, Yan Liu, Zihan Zeng, Yan Zou, Wanzhen Wang, Jing Zhang, Jing Wang, Xiangfeng Kong and Xiangmin Meng
Polymers 2025, 17(12), 1701; https://doi.org/10.3390/polym17121701 - 19 Jun 2025
Viewed by 518
Abstract
Utilizing renewable energy for green hydrogen production via electrolyzed seawater is a promising technology for the future. However, undesired chlorine evolution and the corrosive nature of seawater are crucial challenges for direct seawater splitting technology. In this work, heterojunctions of CoS2/FeS [...] Read more.
Utilizing renewable energy for green hydrogen production via electrolyzed seawater is a promising technology for the future. However, undesired chlorine evolution and the corrosive nature of seawater are crucial challenges for direct seawater splitting technology. In this work, heterojunctions of CoS2/FeS2 encapsulated in N-doped carbon nanocubes (denoted as CoS2/FeS2@NC) were designed by proposing the synchronous pyrolysis and vulcanization of polydopamine-coated coordination polymers. Such a synthetic strategy was demonstrated to be effective in increasing the favorable exposure of active sites, moderately regulating electronic structure, and remarkably facilitating charge transfer due to the controllable generation of unique core–shell structures with suitable carbon shells, leading to the excellent bifunctional electrocatalytic performance and enhanced stability of electrocatalysts. As a result, CoS2/FeS2@NC can be revealed as a superior water splitting catalyst, possessing a small voltage of 1.75 V and requiring 100.0 mA cm−2 in 1 M KOH alkaline solution and 1.80 V for alkaline seawater media, with satisfactory long-term stability. This work presents fresh strategies for designing core–shell heterostructures and developing green technology for hydrogen production. Full article
Show Figures

Graphical abstract

15 pages, 3620 KB  
Article
ZIF-L/PBA-Derived Self-Supporting Ni-Doped CoFeP Electrocatalysts for Bifunctional Water Splitting
by Lanqi Wang, Hui Ni, Jianing Yu, Jingyuan Zhang and Bin Zhao
Catalysts 2025, 15(6), 576; https://doi.org/10.3390/catal15060576 - 10 Jun 2025
Viewed by 1122
Abstract
In recent years, transition metal-based catalytic materials have garnered considerable attention, particularly those exhibiting high catalytic efficiency toward both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In this work, a self-supporting ternary transition metal phosphide (CoFeNi0.2P) with a [...] Read more.
In recent years, transition metal-based catalytic materials have garnered considerable attention, particularly those exhibiting high catalytic efficiency toward both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In this work, a self-supporting ternary transition metal phosphide (CoFeNi0.2P) with a hierarchical structure was synthesized using the Prussian blue analogue (PBA)/zeolitic imidazolate framework-L (ZIF-L) template. Benefiting from the hierarchical structure of the PBA/ZIF-L precursor and the electronic structure modulation induced by Ni doping, the resulting CoFeNi0.2P demonstrates impressive bifunctional electrocatalytic activity. Specifically, in 1 M KOH electrolyte, the CoFeNi0.2P catalyst requires an overpotential of only 88 mV to deliver 10 mA cm−2 for the HER and 248 mV to achieve 50 mA cm−2 for the OER. Moreover, it demonstrates satisfactory stability toward both the HER and OER. When integrated into a two-electrode electrolyzer, CoFeNi0.2P enables a current density of 10 mA cm−2 at a cell voltage of 1.59 V, maintaining robust performance for over 25 h. This study provides a feasible strategy for the rational design of hierarchical electrocatalysts for efficient overall water splitting. Full article
(This article belongs to the Special Issue Two-Dimensional (2D) Materials in Catalysis)
Show Figures

Graphical abstract

14 pages, 5171 KB  
Article
Cobalt-Decorated Carbonized Wood as an Efficient Electrocatalyst for Water Splitting
by Zichen Cheng, Zekun Li, Shou Huang, Junfan Pan, Jiaxian Mei, Siqi Zhang, Xingyu Peng, Wen Lu and Lei Yan
Catalysts 2025, 15(5), 503; https://doi.org/10.3390/catal15050503 - 21 May 2025
Viewed by 825
Abstract
The efficient mass transport and enhanced accessibility of active sites are crucial for high-performance electrocatalysts in water splitting. Inspired by the hierarchical structure of natural wood, we engineered a monolithic electrocatalyst, cobalt nanoparticles encapsulated in nitrogen-doped carbon layers on carbonized wood (Co@NC/CW), by [...] Read more.
The efficient mass transport and enhanced accessibility of active sites are crucial for high-performance electrocatalysts in water splitting. Inspired by the hierarchical structure of natural wood, we engineered a monolithic electrocatalyst, cobalt nanoparticles encapsulated in nitrogen-doped carbon layers on carbonized wood (Co@NC/CW), by carbonizing wood to create a three-dimensional framework with vertically aligned macropores. The unique architecture encapsulates cobalt nanoparticles within in situ-grown nitrogen-doped graphene layers on wood-derived microchannels, facilitating ultrafast electrolyte infusion and anisotropic electron transport. As a result, the optimized freestanding Co@NC/CW electrode exhibits remarkable bifunctional activity, achieving overpotentials of 403 mV and 227 mV for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively, at a current density of 50 mA cm−2. Furthermore, the integrated hybrid electrolyzer combining the HER and the OER delivers an impressive 50 A cm−2 at a cell voltage of 1.72 V while maintaining a Faradaic efficiency near 99.5% and sustaining long-term stability over 120 h of continuous operation. Co@NC/CW also demonstrates performance in the complete decomposition of alkaline seawater, underscoring its potential for scalable applications. This wood-derived catalyst design not only leverages the natural hierarchical porosity of wood but also offers a sustainable platform for advanced electrochemical systems. Full article
(This article belongs to the Special Issue Recent Progress on Electrocatalytic Hydrogen Evolution Reaction)
Show Figures

Graphical abstract

15 pages, 3410 KB  
Article
CeO2-Modified Ni2P/Fe2P as Efficient Bifunctional Electrocatalyst for Water Splitting
by Xinyang Wu, Dandan Wang, Yongpeng Ren, Haiwen Zhang, Shengyu Yin, Ming Yan, Yaru Li and Shizhong Wei
Materials 2025, 18(10), 2221; https://doi.org/10.3390/ma18102221 - 11 May 2025
Viewed by 1030
Abstract
Developing efficient bifunctional electrocatalysts with excellent stability at high current densities for overall water splitting is a challenging yet essential objective. However, transition metal phosphides encounter issues such as poor dispersibility, low specific surface area, and limited electronic conductivity, which hinder the achievement [...] Read more.
Developing efficient bifunctional electrocatalysts with excellent stability at high current densities for overall water splitting is a challenging yet essential objective. However, transition metal phosphides encounter issues such as poor dispersibility, low specific surface area, and limited electronic conductivity, which hinder the achievement of satisfactory performance. Therefore, this study presents the highly efficient bifunctional electrocatalyst of CeO2-modified NiFe phosphide on nickel foam (CeO2/Ni2P/Fe2P/NF). Ni2P/Fe2P coupled with CeO2 was deposited on nickel foam through hydrothermal synthesis and sequential calcination processes. The electrocatalytic performance of the catalyst was evaluated in an alkaline solution, and it exhibited an HER overpotential of 87 mV at the current density of 10 mA cm−2 and an OER overpotential of 228 mV at the current density of 150 mA cm−2. Furthermore, the catalyst demonstrated good stability, with a retention rate of 91.2% for the HER and 97.3% for the OER after 160 h of stability tests. The excellent electrochemical performance can be attributed to the following factors: (1) The interface between Ni2P/Fe2P and CeO2 facilitates electron transfer and reactant adsorption, thereby improving catalytic activity. (2) The three-dimensional porous structure of nickel foam provides an ideal substrate for the uniform distribution of Ni2P, Fe2P, and CeO2 nanoparticles, while its high conductivity facilitates electron transport. (3) The incorporation of larger Ce3⁺ ions in place of smaller Fe3⁺ ions leads to lattice distortion and an increase in defects within the NiFe-layered double hydroxide structure, significantly enhancing its catalytic performance. This research finding offers an effective strategy for the design and synthesis of low-cost, high-potential catalysts for water electrolysis. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

15 pages, 3210 KB  
Article
Electrocatalyst of PdNi Particles on Carbon Black for Hydrogen Oxidation Reaction in Alkaline Membrane Fuel Cell
by Carolina Silva-Carrillo, Edgar Alonso Reynoso-Soto, Ivan Cruz-Reyes, Moisés Israel Salazar-Gastélum, Balter Trujillo-Navarrete, Sergio Pérez-Sicairos, José Roberto Flores-Hernández, Tatiana Romero-Castañón, Francisco Paraguay-Delgado and Rosa María Félix-Navarro
Nanomaterials 2025, 15(9), 664; https://doi.org/10.3390/nano15090664 - 27 Apr 2025
Viewed by 617
Abstract
This work reports the synthesis of PdNi bimetallic particles and Pd on Carbon black (Vulcan XC-72) by reverse microemulsion and the chemical reduction of metallic complexes. The physicochemical characterization techniques used for the bimetallic and metallic materials were TGA, STEM, ICP-OES, and XRD. [...] Read more.
This work reports the synthesis of PdNi bimetallic particles and Pd on Carbon black (Vulcan XC-72) by reverse microemulsion and the chemical reduction of metallic complexes. The physicochemical characterization techniques used for the bimetallic and metallic materials were TGA, STEM, ICP-OES, and XRD. Also, the electrocatalysts were studied by electrochemical techniques such as anodic CO stripping and β-NiOOH reduction to elucidate the Pd and Ni surface sites participation in the reactions. The electrocatalysts were evaluated in the anodic reaction in anion-exchange membrane fuel cells (AEMFC) and the hydrogen oxidation reaction (HOR) in alkaline media. The results indicate that PdNi/C electrocatalysts exhibited higher electrocatalytic activity than Pd/C electrocatalysts in both the half-cell test and in the AEMFC, even with the same Pd loading, which is attributed to the bifunctional mechanism that provides OH- groups in oxophilic sites associated to Ni, that can facilitate the desorption of Hads in the Pd sites for the bimetallic material. Full article
Show Figures

Graphical abstract

13 pages, 5840 KB  
Article
CrS2 Supported Transition Metal Single Atoms as Efficient Bifunctional Electrocatalysts: A Density Functional Theory Study
by Ying Wang
ChemEngineering 2025, 9(3), 43; https://doi.org/10.3390/chemengineering9030043 - 23 Apr 2025
Viewed by 992
Abstract
Transition metal dichalcogenides (TMDs) are recognized for their exceptional energy storage capabilities and electrochemical potential, stemming from their unique electronic structures and physicochemical properties. In this study, we focus on chromium disulfide (CrS2) as the primary research subject and employ a [...] Read more.
Transition metal dichalcogenides (TMDs) are recognized for their exceptional energy storage capabilities and electrochemical potential, stemming from their unique electronic structures and physicochemical properties. In this study, we focus on chromium disulfide (CrS2) as the primary research subject and employ a combination of density functional theory (DFT) and first-principle calculations to investigate the effects of incorporating transition metal elements onto the surface of CrS2. This approach aims to develop a class of bifunctional single-atom catalysts with high efficiency and to analyze their catalytic performance in detail. Theoretical calculations reveal that the Au@CrS2 single-atom catalyst demonstrates outstanding catalytic activity, with a low overpotential of 0.34 V for the oxygen evolution reaction (OER) and 0.37 V for the oxygen reduction reaction (ORR). These results establish Au@CrS2 as a highly effective bifunctional catalyst. Moreover, the catalytic performance of Au@CrS2 surpasses that of traditional commercial catalysts, such as Pt (0.45 V) and IrO2 (0.56 V), suggesting its potential to replace these materials in fuel cells and other energy applications. This study provides a novel approach to the design and development of advanced transition metal-based catalytic materials. Full article
Show Figures

Figure 1

18 pages, 3885 KB  
Article
A Pathway to Circular Economy-Converting Li-Ion Battery Recycling Waste into Graphite/rGO Composite Electrocatalysts for Zinc–Air Batteries
by Reio Praats, Jani Sainio, Milla Vikberg, Lassi Klemettinen, Benjamin P. Wilson, Mari Lundström, Ivar Kruusenberg and Kerli Liivand
Batteries 2025, 11(4), 165; https://doi.org/10.3390/batteries11040165 - 21 Apr 2025
Viewed by 1249
Abstract
Li-ion batteries (LIBs) are one of the most deployed energy storage technologies worldwide, providing power for a wide range of applications—from portable electronic devices to electric vehicles (EVs). The growing demand for LIBs, coupled with a shortage of critical battery materials, has prompted [...] Read more.
Li-ion batteries (LIBs) are one of the most deployed energy storage technologies worldwide, providing power for a wide range of applications—from portable electronic devices to electric vehicles (EVs). The growing demand for LIBs, coupled with a shortage of critical battery materials, has prompted the scientific community to seek ways to improve material utilization through the recycling of end-of-life LIBs. While valuable battery metals are already being recycled on an industrial scale, graphite—a material classified as a critical resource—continues to be discarded. In this study, graphite waste recovered from the recycling of LIBs was successfully upcycled into an active graphite/rGO (reduced graphene oxide) composite oxygen electrocatalyst. The precursor graphite for rGO synthesis was also extracted from LIBs. Incorporating rGO into the graphite significantly enhanced the specific surface area and porosity of the resulting composite, facilitating effective doping with residual metals during subsequent nitrogen doping via pyrolysis. These composite catalysts enhanced both the oxygen reduction and oxygen evolution reactions, enabling their use as air electrode catalyst materials in zinc–air batteries (ZABs). The best-performing composite catalyst demonstrated an impressive power density of 100 mW cm−2 and exceptional cycling stability for 137 h. This research further demonstrates the utilization of waste fractions from LIB recycling to drive advancements in energy conversion technologies. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Battery Applications)
Show Figures

Graphical abstract

20 pages, 15674 KB  
Article
Binder-Free Fe-N-C-O Bifunctional Electrocatalyst in Nickel Foam for Aqueous Zinc–Air Batteries
by Jorge González-Morales, Jadra Mosa and Mario Aparicio
Batteries 2025, 11(4), 159; https://doi.org/10.3390/batteries11040159 - 17 Apr 2025
Cited by 1 | Viewed by 1088
Abstract
The development of efficient, sustainable, and cost-effective catalysts is crucial for energy storage technologies, such as zinc–air batteries (ZABs). These batteries require bifunctional catalysts capable of efficiently and selectively catalyzing oxygen redox reactions. However, the high cost and low selectivity of conventional catalysts [...] Read more.
The development of efficient, sustainable, and cost-effective catalysts is crucial for energy storage technologies, such as zinc–air batteries (ZABs). These batteries require bifunctional catalysts capable of efficiently and selectively catalyzing oxygen redox reactions. However, the high cost and low selectivity of conventional catalysts hinder the large-scale integration of ZABs into the electric grid. This study presents binder-free Fe-based bifunctional electrocatalysts synthesized via a sol–gel method, followed by thermal treatment under ammonia flow. Supported on nickel foam, the catalyst exhibits enhanced activity for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), essential for ZAB operation. This work addresses two critical challenges in the development of ZABs: first, the replacement of costly cobalt or platinum-group-metal (PGM)-based catalysts with an efficient alternative; second, the achievement of prolonged battery performance under real conditions without passivation. Structural analysis confirms the integration of iron nitrides, oxides, and carbon, resulting in high conductivity and catalytic stability without relying on precious or cobalt-based metals. Electrochemical tests reveal that the catalyst calcined at 800 °C delivers superior performance, achieving a four-electron ORR mechanism and prolonged operational life compared to its 900 °C counterpart. Both catalysts outperform conventional Pt/C-RuO2 systems in stability and selective bifunctionality, offering a more sustainable and cost-effective alternative. The innovative combination of nitrogen, carbon, and iron compounds overcomes limitations associated with traditional materials, paving the way for scalable, high-performance applications in renewable energy storage. This work underscores the potential of transition metal-based catalysts in advancing the commercial viability of ZABs. Full article
Show Figures

Graphical abstract

17 pages, 5019 KB  
Article
Carbon-Encapsulated Ni Nanoparticles Catalysts Derived from Ni-Hexamine Coordination Frameworks for Oxygen Reduction Reaction and Oxygen Evolution Reaction
by Huoxing Huang, Jiaxing Huang, Guoyu Zhong, Shurui Xu, Hongwei Chen, Xiaobo Fu, Shimin Kang, Junling Tu, Yongxiao Tuo, Wenbo Liao and Baizeng Fang
Catalysts 2025, 15(4), 338; https://doi.org/10.3390/catal15040338 - 31 Mar 2025
Viewed by 711
Abstract
Developing efficient bifunctional oxygen reduction (ORR) and oxygen evolution (OER) electrocatalysts is critical for renewable energy technologies. Noble metal catalysts face limitations in cost, scarcity, and bifunctional compatibility. Herein, we report the synthesis of nickel nanoparticles encapsulated in nitrogen-doped carbon nanosheets (Ni@NC-T) via [...] Read more.
Developing efficient bifunctional oxygen reduction (ORR) and oxygen evolution (OER) electrocatalysts is critical for renewable energy technologies. Noble metal catalysts face limitations in cost, scarcity, and bifunctional compatibility. Herein, we report the synthesis of nickel nanoparticles encapsulated in nitrogen-doped carbon nanosheets (Ni@NC-T) via a solvothermal polymerization and pyrolysis process using a Ni-hexamine coordination framework (NiHMT) as a precursor. The Ni@NC-900 catalyst exhibits superior ORR and OER activity under alkaline conditions, with an ORR performance (half-wave potential = 0.86 V) comparable to commercial Pt/C and an OER overpotential of only 430 mV at 10 mA cm−2. Structural analysis indicates that the hierarchical porous structure and high specific surface area (409 m2 g−1) of Ni@NC-900 facilitate the exposure of active sites and enhance mass transport. The surface-doped nitrogen species, predominantly in the form of pyridinic N and graphitic N, promote electron transfer during the ORR. Furthermore, its application as a bifunctional cathode in rechargeable zinc-air batteries results in a high power density of 137 mW cm−2, surpassing the performance levels of many existing carbon-based bifunctional catalysts. This work highlights a facile strategy for the fabrication of transition metal-based catalysts encapsulated in MOF-derived carbon matrices, with promising potential for energy storage and conversion devices. Full article
Show Figures

Graphical abstract

14 pages, 5324 KB  
Article
Electrocatalytic CO2 Reduction Coupled with Water Oxidation by bi- and Tetranuclear Copper Complexes Based on di-2-pyridyl Ketone Ligand
by Siyuan Yang, Tian Liu, Wenbo Huang, Chengwen Zhang and Mei Wang
Molecules 2025, 30(7), 1544; https://doi.org/10.3390/molecules30071544 - 31 Mar 2025
Viewed by 717
Abstract
In the field of sustainable energy conversion and storage technologies, copper-based complexes have become a research hotspot due to their efficient and stable catalytic performance. The development of bifunctional catalysts that can simplify catalytic steps, enhance efficiency, and reduce catalyst usage has become [...] Read more.
In the field of sustainable energy conversion and storage technologies, copper-based complexes have become a research hotspot due to their efficient and stable catalytic performance. The development of bifunctional catalysts that can simplify catalytic steps, enhance efficiency, and reduce catalyst usage has become an important research area. In this study, we successfully synthesized two copper complexes with different geometries utilizing di(2-pyridyl) ketone as the ligand, [CuII2L2Cl2]·0.5H2O (1) and [Cu4IIL4(OCH3)2](NO3)2 (2) (L = deprotonated methoxy-di-pyridin-2-yl-methanol), which can serve as homogeneous electrocatalysts for water oxidation and CO2 reduction simultaneously. The turnover frequency (TOF) of complexes 1 and 2 for electrocatalytic water oxidation are 7.23 s−1 and 0.31 s−1 under almost neutral condition (pH = 8.22), respectively. Meanwhile, the TOF of complexes 1 and 2 for the catalytic reduction of CO2 to CO are 4.27 s−1 and 8.9 s−1, respectively. In addition, both complexes remain essentially unchanged during the electrocatalytic water oxidation and electrocatalytic CO2 reduction processes, demonstrating good stability. Structural analysis reveals that the distinct catalytic efficiencies originate from their geometric configurations: the binuclear structure of complex 1 facilitates proton-coupled electron transfer during water oxidation, whereas the tetranuclear architecture of complex 2 enhances CO2 activation. Complexes 1 and 2 represent the first two copper molecular electrocatalysts capable of catalyzing both water oxidation and CO2 reduction. The findings in this work can open up new avenues for the advancement of artificial photosynthesis simulation and the development of bifunctional catalysts for water oxidation and CO2 reduction. Full article
(This article belongs to the Special Issue Design, Synthesis, and Catalytic Applications of Metal Complexes)
Show Figures

Figure 1

Back to TopTop