Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = bio- and chemosensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
47 pages, 6423 KB  
Review
A Review on Bio- and Chemosensors for the Detection of Biogenic Amines in Food Safety Applications: The Status in 2022
by Stella Givanoudi, Marc Heyndrickx, Tom Depuydt, Mehran Khorshid, Johan Robbens and Patrick Wagner
Sensors 2023, 23(2), 613; https://doi.org/10.3390/s23020613 - 5 Jan 2023
Cited by 46 | Viewed by 10329
Abstract
This article provides an overview on the broad topic of biogenic amines (BAs) that are a persistent concern in the context of food quality and safety. They emerge mainly from the decomposition of amino acids in protein-rich food due to enzymes excreted by [...] Read more.
This article provides an overview on the broad topic of biogenic amines (BAs) that are a persistent concern in the context of food quality and safety. They emerge mainly from the decomposition of amino acids in protein-rich food due to enzymes excreted by pathogenic bacteria that infect food under inappropriate storage conditions. While there are food authority regulations on the maximum allowed amounts of, e.g., histamine in fish, sensitive individuals can still suffer from medical conditions triggered by biogenic amines, and mass outbreaks of scombroid poisoning are reported regularly. We review first the classical techniques used for selective BA detection and quantification in analytical laboratories and focus then on sensor-based solutions aiming at on-site BA detection throughout the food chain. There are receptor-free chemosensors for BA detection and a vastly growing range of bio- and biomimetic sensors that employ receptors to enable selective molecular recognition. Regarding the receptors, we address enzymes, antibodies, molecularly imprinted polymers (MIPs), and aptamers as the most recent class of BA receptors. Furthermore, we address the underlying transducer technologies, including optical, electrochemical, mass-sensitive, and thermal-based sensing principles. The review concludes with an assessment on the persistent limitations of BA sensors, a technological forecast, and thoughts on short-term solutions. Full article
(This article belongs to the Special Issue Feature Review Papers for Chemical Sensors and Biosensors in 2022)
Show Figures

Figure 1

59 pages, 49448 KB  
Review
Recent Developments in Rhodamine-Based Chemosensors: A Review of the Years 2018–2022
by Yujiao Wang, Xiaojun Wang, Wenyu Ma, Runhua Lu, Wenfeng Zhou and Haixiang Gao
Chemosensors 2022, 10(10), 399; https://doi.org/10.3390/chemosensors10100399 - 3 Oct 2022
Cited by 64 | Viewed by 7938
Abstract
Chemosensors based on traditional fluorescent dyes have always contributed to the development of chemical sensor areas. In this review, the rhodamine-based chemosensors’ improvements and applications from 2018 to 2022 are discussed, mainly focusing on cations (metal ions and H+), anions (CN [...] Read more.
Chemosensors based on traditional fluorescent dyes have always contributed to the development of chemical sensor areas. In this review, the rhodamine-based chemosensors’ improvements and applications from 2018 to 2022 are discussed, mainly focusing on cations (metal ions and H+), anions (CN, F, etc.), and small bio-functional molecules’ (thiols, amino acids, etc.) detection. Specifically, this review highlights the detection target, detection limit, detection solution system, detection mechanism, and performance of the rhodamine-based sensors. Although these rhodamine-based sensors are well developed, their repeatability and sensitivity still need significant improvement. This review is expected to bring new clues and bright ideas to researchers for further advances in rhodamine-based chemosensors in the future. Full article
(This article belongs to the Special Issue Chemosensors for Ion Detection)
Show Figures

Figure 1

17 pages, 5826 KB  
Article
Fluorescent RET-Based Chemosensor Bearing 1,8-Naphthalimide and Styrylpyridine Chromophores for Ratiometric Detection of Hg2+ and Its Bio-Application
by Pavel A. Panchenko, Anastasija V. Efremenko, Anna S. Polyakova, Alexey V. Feofanov, Maria A. Ustimova, Yuri V. Fedorov and Olga A. Fedorova
Biosensors 2022, 12(9), 770; https://doi.org/10.3390/bios12090770 - 19 Sep 2022
Cited by 13 | Viewed by 3076
Abstract
Dyad compound NI-SP bearing 1,8-naphthalimide (NI) and styrylpyridine (SP) photoactive units, in which the N-phenylazadithia-15-crown-5 ether receptor is linked with the energy donor naphthalimide chromophore, has been evaluated as a ratiometric fluorescent chemosensor for mercury (II) ions in living cells. In an aqueous [...] Read more.
Dyad compound NI-SP bearing 1,8-naphthalimide (NI) and styrylpyridine (SP) photoactive units, in which the N-phenylazadithia-15-crown-5 ether receptor is linked with the energy donor naphthalimide chromophore, has been evaluated as a ratiometric fluorescent chemosensor for mercury (II) ions in living cells. In an aqueous solution, NI-SP selectively responds to the presence of Hg2+ via the enhancement in the emission intensity of NI due to the inhibition of the photoinduced electron transfer from the receptor to the NI fragment. At the same time, the long wavelength fluorescence band of SP, arising as a result of resonance energy transfer from the excited NI unit, appears to be virtually unchanged upon Hg2+ binding. This allows self-calibration of the optical response. The observed spectral behavior is consistent with the formation of the (NI-SP)·Hg2+ complex (dissociation constant 0.13 ± 0.04 µM). Bio-imaging studies showed that the ratio of fluorescence intensity in the 440–510 nm spectral region to that in the 590–650 nm region increases from 1.1 to 2.8 when cells are exposed to an increasing concentration of mercury (II) ions, thus enabling the detection of intracellular Hg2+ ions and their quantitative analysis in the 0.04–1.65 μM concentration range. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Graphical abstract

2 pages, 178 KB  
Abstract
Molecularly Imprinted Polymer Based Capacitive Chemosensor for Determination of Heterocyclic Aromatic Amines in Food Samples
by Viknasvarri Ayerdurai, Maciej Cieplak, Alvaro Garcia-Cruz, Joanna Piechowska, Krzysztof R. Noworyta, Agnieszka Pietrzyk-Le, Francis D’Souza, Wlodzimierz Kutner and Piyush Sindhu Sharma
Eng. Proc. 2022, 21(1), 51; https://doi.org/10.3390/engproc2022021051 - 6 Sep 2022
Viewed by 1347
Abstract
Quinoxaline heterocyclic aromatic amines (HAAs) are formed during meat and fish cooking, frying, or grilling at high temperatures. They are usually generated at very low concentrations (~ng per g of a food sample). However, HAAs are classified as potent hazardous carcinogens because they [...] Read more.
Quinoxaline heterocyclic aromatic amines (HAAs) are formed during meat and fish cooking, frying, or grilling at high temperatures. They are usually generated at very low concentrations (~ng per g of a food sample). However, HAAs are classified as potent hazardous carcinogens because they may effectively damage DNA because of intercalation or strand break. Hence, chronic exposure to HAAs, even in low doses, can lead to lung, stomach, and breast cancer. HPLC is commonly applied for HAA toxins’ determination in food matrices. However, this technique is expensive, tedious, and time-consuming. Therefore, fast, simple, inexpensive, and reliable HAA determination procedures are in demand. Molecularly imprinted polymers (MIPs) are excellent examples of bio-mimicking recognition materials. Therefore, they have been used in numerous applications in selective chemosensing. Within the present research, we synthesized a nucleobase-functionalized molecularly imprinted polymer (MIP) to be used as a recognition unit for an electrochemical sensor to selectively determine 2-amino-3,7,8-trimethyl-3H-imidazo[4,5-f]quinoxaline (7,8-DiMeIQx) HAA. MIP-(7,8-DiMeIQx) film-coated electrodes were highly sensitive and selective to 7, 8-DiMeIQx. The linear dynamic concentration range of the devised capacitive chemosensor extended from 47 to 400 µM of 7, 8-DiMeIQx, and the imprinting factor was high (IF = 8.5). The MIP-(7,8-DiMeIQx) film-coated electrodes were successfully applied for 7, 8-DiMeIQx determination in meat samples. Full article
(This article belongs to the Proceedings of The 9th International Symposium on Sensor Science)
23 pages, 4919 KB  
Review
Recent Progresses in NIR-II Luminescent Bio/Chemo Sensors Based on Lanthanide Nanocrystals
by Tingyu Yang, Jinglei Qin, Jinling Zhang, Lanying Guo, Mu Yang, Xi Wu, Mei You and Hongshang Peng
Chemosensors 2022, 10(6), 206; https://doi.org/10.3390/chemosensors10060206 - 30 May 2022
Cited by 8 | Viewed by 3398
Abstract
Fluorescent bio/chemosensors are widely used in the field of biological research and medical diagnosis, with the advantages of non-invasiveness, high sensitivity, and good selectivity. In particular, luminescent bio/chemosensors, based on lanthanide nanocrystals (LnNCs) with a second near-infrared (NIR-II) emission, have attracted much attention, [...] Read more.
Fluorescent bio/chemosensors are widely used in the field of biological research and medical diagnosis, with the advantages of non-invasiveness, high sensitivity, and good selectivity. In particular, luminescent bio/chemosensors, based on lanthanide nanocrystals (LnNCs) with a second near-infrared (NIR-II) emission, have attracted much attention, owing to greater penetration depth, aside from the merits of narrow emission band, abundant emission lines, and long lifetimes. In this review, NIR-II LnNCs-based bio/chemo sensors are summarized from the perspectives of the mechanisms of NIR-II luminescence, synthesis method of LnNCs, strategy of luminescence enhancement, sensing mechanism, and targeted bio/chemo category. Finally, the problems that exist in present LnNCs-based bio/chemosensors are discussed, and the future development trend is prospected. Full article
Show Figures

Graphical abstract

16 pages, 5670 KB  
Article
An FPGA-Based Machine Learning Tool for In-Situ Food Quality Tracking Using Sensor Fusion
by Daniel Enériz, Nicolas Medrano and Belen Calvo
Biosensors 2021, 11(10), 366; https://doi.org/10.3390/bios11100366 - 30 Sep 2021
Cited by 16 | Viewed by 4370
Abstract
The continuous development of more accurate and selective bio- and chemo-sensors has led to a growing use of sensor arrays in different fields, such as health monitoring, cell culture analysis, bio-signals processing, or food quality tracking. The analysis and information extraction from the [...] Read more.
The continuous development of more accurate and selective bio- and chemo-sensors has led to a growing use of sensor arrays in different fields, such as health monitoring, cell culture analysis, bio-signals processing, or food quality tracking. The analysis and information extraction from the amount of data provided by these sensor arrays is possible based on Machine Learning techniques applied to sensor fusion. However, most of these computing solutions are implemented on costly and bulky computers, limiting its use in in-situ scenarios outside complex laboratory facilities. This work presents the application of machine learning techniques in food quality assessment using a single Field Programmable Gate Array (FPGA) chip. The characteristics of low-cost, low power consumption as well as low-size allow the application of the proposed solution even in space constrained places, as in food manufacturing chains. As an example, the proposed system is tested on an e-nose developed for beef classification and microbial population prediction. Full article
(This article belongs to the Special Issue Feature Issue of Biosensors and Bioelectronic Devices Section)
Show Figures

Figure 1

10 pages, 2311 KB  
Communication
An Indole-Based Fluorescent Chemosensor for Detecting Zn2+ in Aqueous Media and Zebrafish
by Donghwan Choe, Haeri So, Soyoung Park, Hangyul Lee, Ju Byeong Chae, Jiwon Kim, Ki-Tae Kim and Cheal Kim
Sensors 2021, 21(16), 5591; https://doi.org/10.3390/s21165591 - 19 Aug 2021
Cited by 16 | Viewed by 3393
Abstract
An indole-based fluorescent chemosensor IH-Sal was synthesized to detect Zn2+. IH-Sal displayed a marked fluorescence increment with Zn2+. The detection limit (0.41 μM) of IH-Sal for Zn2+ was greatly below that suggested by the World Health Organization. IH-Sal [...] Read more.
An indole-based fluorescent chemosensor IH-Sal was synthesized to detect Zn2+. IH-Sal displayed a marked fluorescence increment with Zn2+. The detection limit (0.41 μM) of IH-Sal for Zn2+ was greatly below that suggested by the World Health Organization. IH-Sal can quantify Zn2+ in real water samples. More significantly, IH-Sal could determine and depict the presence of Zn2+ in zebrafish. The detecting mechanism of IH-Sal toward Zn2+ was illustrated by fluorescence and UV–visible spectroscopy, DFT calculations, 1H NMR titration and ESI mass. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

15 pages, 9178 KB  
Article
Ratiometric Detection of Mercury (II) Ions in Living Cells Using Fluorescent Probe Based on Bis(styryl) Dye and Azadithia-15-Crown-5 Ether Receptor
by Pavel A. Panchenko, Anastasija V. Efremenko, Alexey V. Feofanov, Mariya A. Ustimova, Yuri V. Fedorov and Olga A. Fedorova
Sensors 2021, 21(2), 470; https://doi.org/10.3390/s21020470 - 11 Jan 2021
Cited by 12 | Viewed by 3838
Abstract
Bis(styryl) dye 1 bearing N-phenylazadithia-15-crown-5 ether receptor has been evaluated as a ratiometric fluorescent chemosensor for mercury (II) ions in living cells. In aqueous solution, probe 1 selectively responds to the presence of Hg2+ via the changes in the emission intensity [...] Read more.
Bis(styryl) dye 1 bearing N-phenylazadithia-15-crown-5 ether receptor has been evaluated as a ratiometric fluorescent chemosensor for mercury (II) ions in living cells. In aqueous solution, probe 1 selectively responds to the presence of Hg2+ via the changes in the emission intensity as well as in the emission band shape, which is a result of formation of the complex with 1:1 metal to ligand ratio (dissociation constant 0.56 ± 0.15 µM). The sensing mechanism is based on the interplay between the RET (resonance energy transfer) and ICT (intramolecular charge transfer) interactions occurring upon the UV/Vis (380 or 405 nm) photoexcitation of both styryl chromophores in probe 1. Bio-imaging studies revealed that the yellow (500–600 nm) to red (600–730 nm) fluorescence intensity ratio decreased from 4.4 ± 0.2 to 1.43 ± 0.10 when cells were exposed to increasing concentration of mercury (II) ions enabling ratiometric quantification of intracellular Hg2+ concentration in the 37 nM–1 μM range. Full article
(This article belongs to the Special Issue Development and Application of Chemosensors)
Show Figures

Figure 1

29 pages, 4453 KB  
Review
The Role of 8-Amidoquinoline Derivatives as Fluorescent Probes for Zinc Ion Determination
by Nur Syamimi Mohamad, Nur Hanis Zakaria, Nurulhaidah Daud, Ling Ling Tan, Goh Choo Ta, Lee Yook Heng and Nurul Izzaty Hassan
Sensors 2021, 21(1), 311; https://doi.org/10.3390/s21010311 - 5 Jan 2021
Cited by 41 | Viewed by 6030
Abstract
Mass-spectrometry-based and X-ray fluorescence-based techniques have allowed the study of the distribution of Zn2+ ions at extracellular and intracellular levels over the past few years. However, there are some issues during purification steps, sample preparation, suitability for quantification, and the instruments’ availability. [...] Read more.
Mass-spectrometry-based and X-ray fluorescence-based techniques have allowed the study of the distribution of Zn2+ ions at extracellular and intracellular levels over the past few years. However, there are some issues during purification steps, sample preparation, suitability for quantification, and the instruments’ availability. Therefore, work on fluorescent sensors based on 8-aminoquinoline as tools to detect Zn2+ ions in environmental and biological applications has been popular. Introducing various carboxamide groups into an 8-aminoquinoline molecule to create 8-amidoquinoline derivatives to improve water solubility and cell membrane permeability is also a recent trend. This review aims to present a general overview of the fluorophore 8-aminoquinoline and its derivatives as Zn2+ receptors for zinc sensor probes. Various fluorescent chemosensor designs based on 8-amidoquinoline and their effectiveness and potential as a recognition probe for zinc analysis were discussed. Based on this review, it can be concluded that derivatives of 8-amidoquinoline have vast potential as functional receptors for zinc ions primarily because of their fast reactivity, good selectivity, and bio-compatibility, especially for biological applications. To better understand the Zn2+ ion fluorophores’ function, diversity of the coordination complex and geometries need further studies. This review provides information in elucidating, designing, and exploring new 8-amidoquinoline derivatives for future studies for the improvement of chemosensors that are selective and sensitive to Zn2+. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

12 pages, 2687 KB  
Letter
Label-Free and Reproducible Chemical Sensor Using the Vertical-Fluid-Array Induced Optical Fiber Long Period Grating (VIOLIN)
by Deming Hu, Zhiyuan Xu, Junqiu Long, Peng Xiao, Lili Liang, Lipeng Sun, Hao Liang, Yang Ran and Bai-Ou Guan
Sensors 2020, 20(12), 3415; https://doi.org/10.3390/s20123415 - 17 Jun 2020
Cited by 3 | Viewed by 3110
Abstract
Fiber optical refractometers have gained a substantial reputation in biological and chemical sensing domain regarding their label-free and remote-operation working mode. However, the practical breakthrough of the fiber optical bio/chemosensor is impeded by a lack of reconfigurability as well as the explicitness of [...] Read more.
Fiber optical refractometers have gained a substantial reputation in biological and chemical sensing domain regarding their label-free and remote-operation working mode. However, the practical breakthrough of the fiber optical bio/chemosensor is impeded by a lack of reconfigurability as well as the explicitness of the determination between bulk and surface refractive indices. In this letter, we further implement the highly flexible and reproducible long period grating called “VIOLIN” in chemical sensing area for the demonstration of moving those obstacles. In this configuration, the liquid is not only leveraged as the chemical carrier but also the periodic modulation of the optical fiber to facilitate the resonant signal. The thiol compound that is adsorbed by the fluidic substrate can be transduced to the pure alteration of the bulk refractive index of the liquid, which can be sensitively perceived by the resonant drift. Taking advantage of its freely dismantled feature, the VIOLIN sensor enables flexible reproduction and high throughput detection, yielding a new vision to the fiber optic biochemical sensing field. Full article
(This article belongs to the Special Issue Fiber Optic Sensors in Chemical and Biological Applications)
Show Figures

Graphical abstract

16 pages, 4225 KB  
Article
Gold Nanorod Assemblies: The Roles of Hot-Spot Positioning and Anisotropy in Plasmon Coupling and SERS
by Priyanka Dey, Verena Baumann and Jessica Rodríguez-Fernández
Nanomaterials 2020, 10(5), 942; https://doi.org/10.3390/nano10050942 - 14 May 2020
Cited by 33 | Viewed by 4805
Abstract
Plasmon-coupled colloidal nanoassemblies with carefully sculpted “hot-spots” and intense surface-enhanced Raman scattering (SERS) are in high demand as photostable and sensitive plasmonic nano-, bio-, and chemosensors. When maximizing SERS signals, it is particularly challenging to control the hot-spot density, precisely position the hot-spots [...] Read more.
Plasmon-coupled colloidal nanoassemblies with carefully sculpted “hot-spots” and intense surface-enhanced Raman scattering (SERS) are in high demand as photostable and sensitive plasmonic nano-, bio-, and chemosensors. When maximizing SERS signals, it is particularly challenging to control the hot-spot density, precisely position the hot-spots to intensify the plasmon coupling, and introduce the SERS molecule in those intense hot-spots. Here, we investigated the importance of these factors in nanoassemblies made of a gold nanorod (AuNR) core and spherical nanoparticle (AuNP) satellites with ssDNA oligomer linkers. Hot-spot positioning at the NR tips was made possible by selectively burying the ssDNA in the lateral facets via controlled Ag overgrowth while retaining their hybridization and assembly potential at the tips. This strategy, with slight alterations, allowed us to form nanoassemblies that only contained satellites at the NR tips, i.e., directional anisotropic nanoassemblies; or satellites randomly positioned around the NR, i.e., nondirectional nanoassemblies. Directional nanoassemblies featured strong plasmon coupling as compared to nondirectional ones, as a result of strategically placing the hot-spots at the most intense electric field position of the AuNR, i.e., retaining the inherent plasmon anisotropy. Furthermore, as the dsDNA was located in these anisotropic hot-spots, this allowed for the tag-free detection down to ~10 dsDNA and a dramatic SERS enhancement of ~1.6 × 108 for the SERS tag SYBR gold, which specifically intercalates into the dsDNA. This dramatic SERS performance was made possible by manipulating the anisotropy of the nanoassemblies, which allowed us to emphasize the critical role of hot-spot positioning and SERS molecule positioning in nanoassemblies. Full article
(This article belongs to the Special Issue Nanomaterials for Surface Enhanced Raman Spectroscopy)
Show Figures

Graphical abstract

13 pages, 2429 KB  
Article
Thermochemically Stable Liquid-Crystalline Gold(I) Complexes Showing Enhanced Room Temperature Phosphorescence
by Yuki Kuroda, Shin-ya Nakamura, Katam Srinivas, Arruri Sathyanarayana, Ganesan Prabusankar, Kyohei Hisano and Osamu Tsutsumi
Crystals 2019, 9(5), 227; https://doi.org/10.3390/cryst9050227 - 27 Apr 2019
Cited by 17 | Viewed by 5050
Abstract
Gold(I) complexes are some of the most attractive materials for generating aggregation-induced emission (AIE), enabling the realization of novel light-emitting applications such as chemo-sensors, bio-sensors, cell imaging, and organic light-emitting diodes (OLEDs). In this study, we propose a rational design of luminescent gold [...] Read more.
Gold(I) complexes are some of the most attractive materials for generating aggregation-induced emission (AIE), enabling the realization of novel light-emitting applications such as chemo-sensors, bio-sensors, cell imaging, and organic light-emitting diodes (OLEDs). In this study, we propose a rational design of luminescent gold complexes to achieve both high thermochemical stability and intense room temperature phosphorescence, which are desirable features in practical luminescent applications. Here, a series of gold(I) complexes with ligands of N-heterocyclic carbene (NHC) derivatives and/or acetylide were synthesized. Detailed characterization revealed that the incorporation of NHC ligands could increase the molecular thermochemical stability, as the decomposition temperature was increased to ~300 °C. We demonstrate that incorporation of both NHC and acetylide ligands enables us to generate gold(I) complexes exhibiting both high thermochemical stability and high room-temperature phosphorescence quantum yield (>40%) under ambient conditions. Furthermore, we modified the length of alkoxy chains at ligands, and succeeded in synthesizing a liquid crystalline gold(I) complex while maintaining the relatively high thermochemical stability and quantum yield. Full article
(This article belongs to the Special Issue Synthesis and Properties of Light-emitting Liquid Crystals)
Show Figures

Figure 1

16 pages, 4747 KB  
Article
Remote Microwave and Field-Effect Sensing Techniques for Monitoring Hydrogel Sensor Response
by Olutosin Charles Fawole, Subhashish Dolai, Hsuan-Yu Leu, Jules Magda and Massood Tabib-Azar
Micromachines 2018, 9(10), 526; https://doi.org/10.3390/mi9100526 - 17 Oct 2018
Cited by 5 | Viewed by 3893
Abstract
This paper presents two novel techniques for monitoring the response of smart hydrogels composed of synthetic organic materials that can be engineered to respond (swell or shrink, change conductivity and optical properties) to specific chemicals, biomolecules or external stimuli. The first technique uses [...] Read more.
This paper presents two novel techniques for monitoring the response of smart hydrogels composed of synthetic organic materials that can be engineered to respond (swell or shrink, change conductivity and optical properties) to specific chemicals, biomolecules or external stimuli. The first technique uses microwaves both in contact and remote monitoring of the hydrogel as it responds to chemicals. This method is of great interest because it can be used to non-invasively monitor the response of subcutaneously implanted hydrogels to blood chemicals such as oxygen and glucose. The second technique uses a metal-oxide-hydrogel field-effect transistor (MOHFET) and its associated current-voltage characteristics to monitor the hydrogel’s response to different chemicals. MOHFET can be easily integrated with on-board telemetry electronics for applications in implantable biosensors or it can be used as a transistor in an oscillator circuit where the oscillation frequency of the circuit depends on the analyte concentration. Full article
(This article belongs to the Special Issue MEMS Technology for Biomedical Imaging Applications)
Show Figures

Figure 1

31 pages, 5893 KB  
Review
Luminescent Metal Nanoclusters for Potential Chemosensor Applications
by Muthaiah Shellaiah and Kien Wen Sun
Chemosensors 2017, 5(4), 36; https://doi.org/10.3390/chemosensors5040036 - 19 Dec 2017
Cited by 47 | Viewed by 11382
Abstract
Studies of metal nanocluster (M-NCs)-based sensors for specific analyte detection have achieved significant progress in recent decades. Ultra-small-size (<2 nm) M-NCs consist of several to a few hundred metal atoms and exhibit extraordinary physical and chemical properties. Similar to organic molecules, M-NCs display [...] Read more.
Studies of metal nanocluster (M-NCs)-based sensors for specific analyte detection have achieved significant progress in recent decades. Ultra-small-size (<2 nm) M-NCs consist of several to a few hundred metal atoms and exhibit extraordinary physical and chemical properties. Similar to organic molecules, M-NCs display absorption and emission properties via electronic transitions between energy levels upon interaction with light. As such, researchers tend to apply M-NCs in diverse fields, such as in chemosensors, biological imaging, catalysis, and environmental and electronic devices. Chemo- and bio-sensory uses have been extensively explored with luminescent NCs of Au, Ag, Cu, and Pt as potential sensory materials. Luminescent bi-metallic NCs, such as Au-Ag, Au-Cu, Au-Pd, and Au-Pt have also been used as probes in chemosensory investigations. Both metallic and bi-metallic NCs have been utilized to detect various analytes, such as metal ions, anions, biomolecules, proteins, acidity or alkalinity of a solution (pH), and nucleic acids, at diverse detection ranges and limits. In this review, we have summarized the chemosensory applications of luminescent M-NCs and bi-metallic NCs. Full article
Show Figures

Figure 1

Back to TopTop