Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = biodigestion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2224 KB  
Article
Enhanced Biogas Production and Pathogen Reduction from Pig Manure Through Anaerobic Digestion: A Sustainable Approach for Urban Waste Management in Abidjan, Côte d’Ivoire
by Alane Romaric N’guessan, Youan Charles Tra Bi, Edi Guy-Alain Serges Yapo, Akeyt Richmond Hervé Koffi, Franck Orlando Yebouet, Alessio Campitelli, Boko Aka and N’Dédé Théodore Djeni
Clean Technol. 2025, 7(4), 89; https://doi.org/10.3390/cleantechnol7040089 (registering DOI) - 11 Oct 2025
Abstract
In Abidjan, the treatment of pig waste is becoming a priority given the continued growth of pig farms, which readily reuse manure as organic fertilizer. This study evaluated the effectiveness of anaerobic digestion for simultaneous biogas production and pathogen reduction from pig farm [...] Read more.
In Abidjan, the treatment of pig waste is becoming a priority given the continued growth of pig farms, which readily reuse manure as organic fertilizer. This study evaluated the effectiveness of anaerobic digestion for simultaneous biogas production and pathogen reduction from pig farm residues. Two 1600 L biodigesters were installed at pig farms in Port Bouët (PBk) and Abobo (Ab). They were fed with pig manure and water (1:4 ratio) and monitored over 56 days. The total biogas production was 22.63 m3 and 16.31 m3 for the PBk and Ab digesters, respectively, with peak production occurring between days 14 and 28. Following biofilter treatment, the methane content increased to 80–82%, yielding potential energy outputs of 2.32–3.29 kWh/d, with optimal production occurring at a pH of 7.28–7.76. The COD, BOD5, organic acid, and total nitrogen levels decreased progressively in the biodigesters, while the mineral element content remained almost unchanged. Complete elimination was achieved for most of the bacteria tested (E. coli, Enterococcus, Salmonella, etc.). However, Bacillus and Clostridium were able to persist, albeit with significant reductions of between 3.11 and 5.79 log10. Anaerobic digestion is an effective method of combining waste treatment and energy recovery. It eliminates major pathogens while producing valuable biogas. This makes it a sustainable waste management solution for urban agricultural systems. Full article
(This article belongs to the Special Issue Biomass Valorization and Sustainable Biorefineries)
Show Figures

Graphical abstract

36 pages, 8903 KB  
Article
Sustainable Valorization of Bovine–Guinea Pig Waste: Co-Optimization of pH and EC in Biodigesters
by Daniela Geraldine Camacho Alvarez, Johann Alexis Chávez García, Yoisdel Castillo Alvarez and Reinier Jiménez Borges
Recycling 2025, 10(5), 190; https://doi.org/10.3390/recycling10050190 (registering DOI) - 10 Oct 2025
Abstract
The agro-industry is among the largest methane emitters, posing a critical challenge for sustainability. In rural areas, producers lack effective technologies to manage daily organic waste. Anaerobic digestion (AD) offers a circular pathway by converting waste into biogas and biofertilizers; however, its adoption [...] Read more.
The agro-industry is among the largest methane emitters, posing a critical challenge for sustainability. In rural areas, producers lack effective technologies to manage daily organic waste. Anaerobic digestion (AD) offers a circular pathway by converting waste into biogas and biofertilizers; however, its adoption is limited by inappropriate designs and insufficient operational control. Theoretical-applied research addresses these barriers by improving the design and operation of small-scale biodigesters, elevating pH and Electrical Conductivity (EC) from passive indicators to first-order control variables. Based on the design of a compact biodigester previously validated in the Chillón Valley and replicated in Huaycán under a utility model patent process (INDECOPI, Exp. 001087-2025/DIN), a stoichiometric NaHCO3 strategy with joint pH–EC monitoring was formalized, defining operational windows (pH 6.92–6.97; EC 6200–6300 μS/cm and dose–response curves (0.3–0.4 kg/day for 3–4 day) to buffer VFA shocks and preserve methanogenic ionic strength. The system achieved stable productions of 370–462 L/day, surpassing the theoretical potential of 352.88 L/day calculated by Buswell’s equation. A multivariable predictive model (linear, quadratic, interaction terms pH × EC, temperature, and loading rate) was developed and validated with field data: R2 = 0.78; MAPE = 2.7%; MAE = 11.2 L/day; RMSE = 13.8 L/day; r = 0.89; residuals normally distributed (Shapiro–Wilk p = 0.79). The proposed approach enables daily decision-making in low-instrumentation environments and provides a replicable and scalable pathway for the safe valorization of organic waste in rural areas. The design consolidates the shift from reactive to proactive and co-optimized pH–EC control, laying the foundation not only for standardized protocols and training in rural systems but also for improved environmental sustainability. Full article
Show Figures

Figure 1

18 pages, 2167 KB  
Article
Turning Organic Waste into Energy and Food: Household-Scale Water–Energy–Food Systems
by Seneshaw Tsegaye, Terence Wise, Gabriel Alford, Peter R. Michael, Mewcha Amha Gebremedhin, Ankit Kumar Singh, Thomas H. Culhane, Osman Karatum and Thomas M. Missimer
Sustainability 2025, 17(19), 8942; https://doi.org/10.3390/su17198942 - 9 Oct 2025
Viewed by 221
Abstract
Population growth drives increasing energy demands, agricultural production, and organic waste generation. The organic waste contributes to greenhouse gas emissions and increasing landfill burdens, highlighting the need for novel closed-loop technologies that integrate water, energy, and food resources. Within the context of the [...] Read more.
Population growth drives increasing energy demands, agricultural production, and organic waste generation. The organic waste contributes to greenhouse gas emissions and increasing landfill burdens, highlighting the need for novel closed-loop technologies that integrate water, energy, and food resources. Within the context of the Water–energy–food Nexus (WEF), wastewater can be recycled for food production and food waste can be converted into clean energy, both contributing to environmental impact reduction and resource sustainability. A novel household-scale, closed-loop WEF system was designed, installed and operated to manage organic waste while retrieving water for irrigation, nutrients for plant growth, and biogas for energy generation. The system included a biodigester for energy production, a sand filter system to regulate nutrient levels in the effluent, and a hydroponic setup for growing food crops using the nutrient-rich effluent. These components are operated with a daily batch feeder coupled with automated sensors to monitor effluent flow from the biodigester, sand filter system, and the feeder to the hydroponic system. This novel system was operated continuously for two months using typical household waste composition. Controlled experimental tests were conducted weekly to measure the nutrient content of the effluent at four locations and to analyze the composition of biogas. Gas chromatography was used to analyze biogas composition, while test strips and In-Situ Aqua Troll Multi-Parameter Water Quality Sonde were employed for water quality measurements during the experimental study. Experimental results showed that the system consistently produced biogas with 76.7% (±5.2%) methane, while effluent analysis confirmed its potential as a nutrient source with average concentrations of phosphate (20 mg/L), nitrate (26 mg/L), and nitrite (5 mg/L). These nutrient values indicate suitability for hydroponic crop growth and reduced reliance on synthetic fertilizers. This novel system represents a significant step toward integrating waste management, energy production, and food cultivation at the source, in this case, the household. Full article
Show Figures

Figure 1

37 pages, 964 KB  
Article
Linear Optimization Model with Nonlinear Constraints to Maximize Biogas Production from Organic Waste: A Practical Approach
by Juan Carlos Vesga Ferreira, Alexander Florez Martinez and Jhon Erickson Barbosa Jaimes
Appl. Sci. 2025, 15(19), 10453; https://doi.org/10.3390/app151910453 - 26 Sep 2025
Viewed by 294
Abstract
The excessive use of fossil fuels and the increasing generation of solid waste, driven by population growth, industrialization, and economic development, have led to serious environmental, energy, and public health issues. In light of this problem, it is crucial to adopt sustainable solutions [...] Read more.
The excessive use of fossil fuels and the increasing generation of solid waste, driven by population growth, industrialization, and economic development, have led to serious environmental, energy, and public health issues. In light of this problem, it is crucial to adopt sustainable solutions that promote the transition to renewable energy sources, such as biogas. Although progress has been made in optimizing biogas production, there is still no adaptable model for various environments that allows for the determination of optimal quantities of different organic wastes, simultaneously considering their composition, moisture content, and control of critical factors for biogas production, as well as the biodigester’s capacity and other relevant elements. In practice, the dosing of waste is conducted empirically, leading to inefficiencies that limit the potential for biogas production in real scenarios. The objective of this article is to propose a linear optimization model with nonlinear constraints that maximizes biogas production, considering fundamental parameters such as the moisture percentage, pH, carbon/nitrogen ratio (C/N), substrate volume, organic matter, volatile solids (VS), and biogas production potential from different wastes. The model estimates the optimal waste composition based on the biodigester capacity to ensure balanced substrates. The results for the proposed scenarios demonstrate its effectiveness: Scenario 1 achieved 3.42 m3 (3418.67 L) of biogas, while Scenario 2, with a greater diversity of waste, reached 8.06 m3 (8061.43 L). The model maintained pH (6.49–6.50), C/N ratio (20.00), and moisture (60.00%) within optimal ranges. Additionally, a Monte Carlo sensitivity analysis (1000 simulations) validated its robustness with a 95% confidence level. This model provides an efficient tool for optimizing biogas production and waste dosing in rural contexts, promoting clean and sustainable technologies for renewable energy generation. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

20 pages, 1298 KB  
Article
Eco-Efficiency of Rural Biodigesters: Mono- and Co-Digestion of Agricultural Waste
by Vanessa Souza, Juliana Dias de Oliveira, Régio Marcio Toesca Gimenes, Ana Carolina Amorim Orrico and Moacir Cardoso Santos Júnior
AgriEngineering 2025, 7(9), 311; https://doi.org/10.3390/agriengineering7090311 - 22 Sep 2025
Viewed by 443
Abstract
The increasing generation of agricultural waste poses both environmental and economic challenges, particularly in rural areas with limited infrastructure. Anaerobic digestion has emerged as a sustainable alternative, enabling the valorization of waste and the production of biogas and biofertilizer. This study evaluated the [...] Read more.
The increasing generation of agricultural waste poses both environmental and economic challenges, particularly in rural areas with limited infrastructure. Anaerobic digestion has emerged as a sustainable alternative, enabling the valorization of waste and the production of biogas and biofertilizer. This study evaluated the economic and environmental gains of mono- and co-digestion of equine manure and vegetable waste using biodigesters of different capacities across four simulated projects—Project 1 (15 m2 biodigester with monodigestion), Project 2 (15 m2 biodigester with co-digestion), Project 3 (20 m2 biodigester with monodigestion), and Project 4 (20 m2 biodigester with co-digestion). Economic feasibility was assessed through indicators such as Net Present Value (NPV), Internal Rate of Return (IRR), Modified IRR (MIRR), Profitability Index (PI), Benefit-Cost Ratio (B/C), Discounted Payback Period, sensitivity analysis, and Monte Carlo simulation, adopting a Minimum Attractiveness Rate (MAR) of 6.43% per year. Environmental benefits were estimated based on the annual reduction of CO2 equivalent emissions. The results showed that all projects were economically viable and had the potential to mitigate up to 36 tons of CO2eq per year. Additionally, an eco-efficiency indicator (NPV per CO2eq avoided) was calculated to enable an integrated assessment of economic performance and environmental impact. Projects using 20 m3 biodigesters achieved the best results, with Project 3 being the most eco-efficient (USD256.05/tCO2eq), while Project 4 yielded the highest absolute return in all economic analysis tools: NPV (USD 9063.81), IRR (25.10%), MIRR (10.95%), PI (USD 1.65), B/C (USD 1.65) and DPP (4.56 years). The integrated analysis underscores the significance of co-digestion and economies of scale in encouraging the adoption of this technology by small rural producers. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Graphical abstract

16 pages, 433 KB  
Article
Anaerobic Co-Digestion of Brewers’ Spent Grain from Craft Beer and Cattle Manure for Biogas Production
by Héctor Alfredo López-Aguilar, Antonino Pérez-Hernández, Humberto Alejandro Monreal-Romero, Claudia López Meléndez, María del Rosario Peralta-Pérez and Francisco Javier Zavala-Díaz de la Serna
World 2025, 6(3), 118; https://doi.org/10.3390/world6030118 - 1 Sep 2025
Viewed by 1390
Abstract
The brewing industry generates significant organic waste, much of which remains underutilized despite its potential for energy recovery. This study assesses the feasibility of anaerobic co-digestion (AcoD) using brewers’ spent grain (BSG) from the craft beer production process and cattle manure from feedlots. [...] Read more.
The brewing industry generates significant organic waste, much of which remains underutilized despite its potential for energy recovery. This study assesses the feasibility of anaerobic co-digestion (AcoD) using brewers’ spent grain (BSG) from the craft beer production process and cattle manure from feedlots. Thermogravimetric analysis confirmed similar volatile solids content in both substrates, validating BSG as a viable feedstock. AcoD trials were conducted in 20 L biodigesters under dry and ambient conditions over 40 days. Methane yields reached 25 mL CH4 gVS−1 at a 1:1 inoculum–substrate ratio fresh matter basis and 67.33 mL CH4 gVS−1 at 2.5:1, indicating that higher inoculum levels enhance methane production. Kinetic modeling using Modified Gompertz, Logistic, and other microbial growth-based models showed that the Logistic model best represented the methane production trends. The detection of hydrogen sulfide in the biogas emphasizes the need for effective filtration. Overall, this work highlights AcoD as a promising approach for organic waste valorization and renewable energy generation in the craft brewing sector, supporting circular economy practices and contributing to environmental and economic sustainability. Full article
Show Figures

Graphical abstract

16 pages, 2459 KB  
Article
Technoeconomic Assessment of Biogas Production from Organic Waste via Anaerobic Digestion in Subtropical Central Queensland, Australia
by H. M. Mahmudul, M. G. Rasul, R. Narayanan, D. Akbar and M. M. Hasan
Energies 2025, 18(17), 4505; https://doi.org/10.3390/en18174505 - 25 Aug 2025
Viewed by 736
Abstract
This study evaluates biogas production through the anaerobic digestion of food waste (FW), cow dung (CD), and green waste (GW), with the primary objective of determining the efficacy of co-digesting these organic wastes commonly generated by households and small farms in Central Queensland, [...] Read more.
This study evaluates biogas production through the anaerobic digestion of food waste (FW), cow dung (CD), and green waste (GW), with the primary objective of determining the efficacy of co-digesting these organic wastes commonly generated by households and small farms in Central Queensland, Australia. The investigation focuses on both experimental and technoeconomic aspects to support the development of accessible and sustainable energy solutions. A batch anaerobic digestion process was employed using a 1 L jacketed glass digester, simulating small-scale conditions, while technoeconomic feasibility was projected onto a 500 L digester operated without temperature control, reflecting realistic constraints for decentralized rural or residential systems. Three feedstock mixtures (100% FW, 50:50 FW:CD, and 50:25:25 FW:CD:GW) were tested to determine their impact on biogas yield and methane concentration. Experiments were conducted over 14 days, during which biogas production and methane content were monitored. The results showed that FW alone produced the highest biogas volume, but with a low methane concentration of 25%. Co-digestion with CD and GW enhanced methane quality, achieving a methane yield of 48% while stabilizing the digestion process. A technoeconomic analysis was conducted based on the experimental results to estimate the viability of a 500 L biodigester for small-scale use. The evaluation considered costs, benefits, and financial metrics, including Net Present Value (NPV), Internal Rate of Return (IRR), and Dynamic Payback Period (DPP). The biodigester demonstrated strong economic potential, with an NPV of AUD 2834, an IRR of 13.5%, and a payback period of 3.2 years. This study highlights the significance of optimizing feedstock composition and integrating economic assessments with experimental findings to support the adoption of biogas systems as a sustainable energy solution for small-scale, off-grid, or rural applications. Full article
(This article belongs to the Special Issue Biomass and Bio-Energy—2nd Edition)
Show Figures

Figure 1

18 pages, 5991 KB  
Article
Sustainability Assessment of Rural Biogas Production and Use Through a Multi-Criteria Approach: A Case Study in Colombia
by Franco Hernan Gomez, Nelson Javier Vasquez, Kelly Cristina Torres, Carlos Mauricio Meza and Mentore Vaccari
Sustainability 2025, 17(15), 6806; https://doi.org/10.3390/su17156806 - 26 Jul 2025
Viewed by 1767
Abstract
There is still a need to develop scenarios and models aimed at substituting fuelwood and reducing the use of fossil fuels such as liquefied petroleum gas (LPG), on which low-income rural households in the Global South often depend. The use of these fuels [...] Read more.
There is still a need to develop scenarios and models aimed at substituting fuelwood and reducing the use of fossil fuels such as liquefied petroleum gas (LPG), on which low-income rural households in the Global South often depend. The use of these fuels for cooking and heating in domestic and productive activities poses significant health and environmental risks. This study validated, in three different phases, the sustainability of a model for the production and use of biogas from the treatment of swine-rearing wastewater (WWs) on a community farm: (i) A Multi-Criteria Analysis (MCA), incorporating environmental, social/health, technical, and economic criteria, identified the main weighted criterion to C8 (use of small-scale technologies and low-cost access), with a score of 0.44 points, as well as the Tubular biodigester (Tb) as the most suitable option for the study area, scoring 8.1 points. (ii) Monitoring of the Tb over 90 days showed an average biogas production of 2.6 m3 d−1, with average correlation 0.21 m3 Biogas kg Biomass−1. Using the experimental biogas production rate (k = 0.0512 d−1), the process was simulated with the BgMod model, achieving an average deviation of only 10.4% during the final production phase. (iii) The quantification of benefits demonstrated significant reductions in firewood use: in Scenario S1 (kitchen energy needs), biogas replaced 83.1% of firewood, while in Scenario S2 (citronella essential oil production), the substitution rate was 24.1%. In both cases, the avoided emissions amounted to 0.52 tons of CO2eq per month. Finally, this study proposes a synthesised, community-based rural biogas framework designed for replication in regions with similar socio-environmental, technical, and economic conditions. Full article
Show Figures

Figure 1

21 pages, 2552 KB  
Article
Technical, Economic, and Environmental Optimization of the Renewable Hydrogen Production Chain for Use in Ammonia Production: A Case Study
by Halima Khalid, Victor Fernandes Garcia, Jorge Eduardo Infante Cuan, Elias Horácio Zavala, Tainara Mendes Ribeiro, Dimas José Rua Orozco and Adriano Viana Ensinas
Processes 2025, 13(7), 2211; https://doi.org/10.3390/pr13072211 - 10 Jul 2025
Viewed by 640
Abstract
Conventional ammonia production uses fossil-based hydrogen, resulting in high greenhouse gas emissions. Given the growing demand for sustainable solutions, it is essential to replace fossil hydrogen with renewable alternatives. This study assessed the technical, economic, and environmental viability of renewable ammonia production in [...] Read more.
Conventional ammonia production uses fossil-based hydrogen, resulting in high greenhouse gas emissions. Given the growing demand for sustainable solutions, it is essential to replace fossil hydrogen with renewable alternatives. This study assessed the technical, economic, and environmental viability of renewable ammonia production in Minas Gerais. To this end, an optimization model based on mixed integer linear programming (MILP) was developed and implemented in LINGO 20® software. The model incorporated investment costs; raw materials; transportation; emissions; and indicators such as NPV, payback, and minimum sale price. Hydrogen production routes integrated into the Haber–Bosch process were analyzed: biomass gasification (GS_WGS), anaerobic digestion of vinasse (Vinasse_BD_SMR), ethanol reforming (Ethanol_ESR), and electrolysis (PEM_electrolysis). Vinasse_BD_SMR showed the lowest costs and the greatest economic viability, with a payback of just 2 years, due to the use of vinasse waste as a raw material. In contrast, the electrolysis-based route had the longest payback time (8 years), mainly due to the high cost of the electrolyzers. The substitution of conventional hydrogen made it possible to avoid 580,000 t CO2 eq/year for a plant capacity of 200,000 t NH3/year, which represents 13% of the Brazilian emissions from the nitrogenated fertilizer sector. It can be concluded that the viability of renewable ammonia depends on the choice of hydrogen source and logistical optimization and is essential for reducing emissions at large scale. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

20 pages, 875 KB  
Article
Preparation and Characterization of Liquid Fertilizers Produced by Anaerobic Fermentation
by Juan Francisco López-Rubio, Cristina Cebrián-Tarancón, Gonzalo L. Alonso, Maria Rosario Salinas and Rosario Sánchez-Gómez
Agriculture 2025, 15(11), 1225; https://doi.org/10.3390/agriculture15111225 - 4 Jun 2025
Viewed by 2772
Abstract
Biol is a liquid product, obtained by anaerobic fermentation of local inputs, which improves the health of agroecosystems, which is an emerging area in agronomy. The aim of this study consists of the preparation of two biols from inoculums of cow dung (BCD) [...] Read more.
Biol is a liquid product, obtained by anaerobic fermentation of local inputs, which improves the health of agroecosystems, which is an emerging area in agronomy. The aim of this study consists of the preparation of two biols from inoculums of cow dung (BCD) and native forest duff (BNF) by using specific biodigesters and commercial inputs. The biol characterization was made in terms of mineral (ionic and complex forms), amino acids, hormones and volatile compounds, along with Pfeiffer circular chromatography during fermentation monitoring. The results showed a pH acidic in both biols (4.5–5.5), which is higher for BCD. Also, this biol had higher content in several macro- and micronutrients in ionic (nitrates, phosphates, calcium, iron and sodium) and complex forms (calcium, iron and potassium). Both have interesting content in amino acids and hormones. The absence of microorganisms in the final products could be due to the presence of volatile compounds such as pyrazines and sulfoxides. Along with this, other volatile compounds such as esters were identified, which can be responsible for their pleasant odor. The novelty of this work is to provide a protocol for obtaining biols and to demonstrate their potential to be used as biofertilizers. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

13 pages, 2916 KB  
Proceeding Paper
Biogas Production Using Flexible Biodigester to Foster Sustainable Livelihood Improvement in Rural Households
by Charles David, Venkata Krishna Kishore Kolli and Karpagaraj Anbalagan
Eng. Proc. 2025, 95(1), 3; https://doi.org/10.3390/engproc2025095003 - 28 May 2025
Viewed by 758
Abstract
With the global emphasis on sustainable growth and development, the depletion of natural energy reserves due to reliance on fossil fuels and non-renewable sources remains a critical concern. Despite strides in transitioning to electrical mobility, rural and agricultural communities depend heavily on liquefied [...] Read more.
With the global emphasis on sustainable growth and development, the depletion of natural energy reserves due to reliance on fossil fuels and non-renewable sources remains a critical concern. Despite strides in transitioning to electrical mobility, rural and agricultural communities depend heavily on liquefied petroleum gas and firewood for cooking, lacking viable, sustainable alternatives. This study focuses on community-led efforts to advance biogas adoption, providing an eco-friendly and reliable energy alternative for rural and farming households. By designing and developing balloon-type anaerobic biodigesters, this initiative provides a robust, cost-effective, and scalable method to convert farm waste into biogas for household cooking. This approach reduces reliance on traditional fuels, mitigating deforestation and improving air quality, and generates organic biofertilizer as a byproduct, enhancing agricultural productivity through organic farming. The study focuses on optimizing critical parameters, including the input feed rate, gas production patterns, holding time, biodigester health, gas quality, and liquid manure yield. Statistical tools, such as descriptive analysis, regression analysis, and ANOVA, were employed to validate and predict biogas output data based on experimental and industrial-scale data. Artificial neural networks (ANNs) were also utilized to model and predict outputs, inspired by the information processing mechanisms of biological neural systems. A comprehensive database was developed from experimental and literary data to enhance model accuracy. The results demonstrate significant improvements in cooking practices, health outcomes, economic stability, and solid waste management among beneficiaries. The integration of statistical analysis and ANN modeling validated the biodigester system’s effectiveness and scalability. This research highlights the potential to harness renewable energy to address socio-economic challenges in rural areas, paving the way for a sustainable, equitable future by fostering environmentally conscious practices, clean energy access, and enhanced agricultural productivity. Full article
Show Figures

Figure 1

17 pages, 1850 KB  
Article
Application of a Multicriteria Decision Model for the Selection of Conversion Pathways for Biofuel Production and Management in a Medium-Sized Municipality in the State of Paraná
by Cláudia Abe Gargel Luengo, Saulo Fabiano Amâncio-Vieira, Reginaldo Fidelis and Eduardo Augusto do Rosário Contani
Energies 2025, 18(9), 2367; https://doi.org/10.3390/en18092367 - 6 May 2025
Viewed by 641
Abstract
Biogas and biofuels have emerged as viable alternatives to meet the targets established by the Paris Agreement. Considering the numerous variables involved in biogas production and the need to understand growth opportunities, technological improvements, and policies aimed at stabilizing the sector, a bibliographic [...] Read more.
Biogas and biofuels have emerged as viable alternatives to meet the targets established by the Paris Agreement. Considering the numerous variables involved in biogas production and the need to understand growth opportunities, technological improvements, and policies aimed at stabilizing the sector, a bibliographic review was conducted, analyzing 145 scientific articles. This analysis revealed a research gap related to biogas, energy generation, and the application of multicriteria decision-making methods. This study aims to contribute to filling this gap through the application of a multicriteria model designed to assist public decision-makers in selecting among three conversion pathways for biogas and biofuel production: pyrolysis, covered lagoon biodigester, and continuous stirred-tank reactor (CSTR) biodigester. These alternatives were evaluated based on environmental, social, economic, and technical criteria, applying the AHP (Analytic Hierarchy Process) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) methods. The AHP method was used to rank the criteria and their respective sub-criteria, while the TOPSIS method helped select the alternative closest to the “ideal positive solution” among the conversion routes analyzed. The ranking results showed that environmental and social criteria received the highest scores compared to technical and economic criteria. Full article
(This article belongs to the Special Issue New Challenges in Biogas Production from Organic Waste)
Show Figures

Figure 1

14 pages, 847 KB  
Review
A Brief Review of Climate-Smart Technologies in the Beef Sector: Potentials and Development Status
by Binod Khanal and Sunil P. Dhoubhadel
Sustainability 2025, 17(9), 3852; https://doi.org/10.3390/su17093852 - 24 Apr 2025
Viewed by 1070
Abstract
Livestock-focused climate-smart (CS) technologies aim to reduce emissions, increase productivity, and improve resilience to climate change. This study reviews CS practices and technologies for cattle production and discusses economic feasibility by exploring the likelihood of consumers’ acceptance of CS beef products and producers [...] Read more.
Livestock-focused climate-smart (CS) technologies aim to reduce emissions, increase productivity, and improve resilience to climate change. This study reviews CS practices and technologies for cattle production and discusses economic feasibility by exploring the likelihood of consumers’ acceptance of CS beef products and producers adopting these novel technologies on their farms. We identify four key CS technologies and practices cattle farms can adopt: CS farm management (grazing and manure management), methane-reducing feed additives, selective breeding, and genetic engineering. While all these technologies have the potential to reduce methane emissions, practices such as grazing management and using on-farm bio-digesters that do not seemingly alter the animal products are more likely to be accepted by consumers and producers than technologies such as genetic engineering. Although consumers’ willingness to pay for CS beef would be the biggest driver of the on-farm adoption of CS technologies, employing several other market and non-market approaches, such as carbon credits, labeling, tax rebates, subsidies, etc., could help more producers adopt CS technologies. Future studies should focus on understanding the determinants of CS technology adoption and consumer acceptance of CS meat/milk products. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

16 pages, 2031 KB  
Article
Circularity Between Aquaponics and Anaerobic Digestion for Energy Generation
by Juliana Lobo Paes, Cirlene Gomes Guimarães, Alexia de Sousa Gomes, Romulo Cardoso Valadão, Daiane Cecchin and Regina Menino
AgriEngineering 2025, 7(5), 129; https://doi.org/10.3390/agriengineering7050129 - 23 Apr 2025
Cited by 2 | Viewed by 1827
Abstract
Aquaponics integrates aquaculture and hydroponics, promoting circularity through the recirculation of water and nutrients. However, waste management remains a challenge. This study aimed to evaluate the anaerobic digestion (AD) of aquaponic effluent (AE) combined with cattle manure (CM) for biogas production. An Indian [...] Read more.
Aquaponics integrates aquaculture and hydroponics, promoting circularity through the recirculation of water and nutrients. However, waste management remains a challenge. This study aimed to evaluate the anaerobic digestion (AD) of aquaponic effluent (AE) combined with cattle manure (CM) for biogas production. An Indian model biodigester was fed with AE, CM and 1:1, 1:3, and 3:1 W (Water):CM, under anaerobic mono-digestion (MoAD) and 1:1, 1:3, and 3:1 AE:CM under anaerobic co-digestion (CoAD) conditions. The chemical characteristics of the substrates and digestates were assessed, as well as the potential for biogas production over 19 weeks. Overall, CoAD provided better results regarding the chemical characterization of the substrates aimed at biogas production. Notably, the 1:3 AE:CM ratio resulted in the most promising outcomes among the tested conditions. This ratio demonstrated higher efficiency, initiating biogas production by the third week and reaching the highest accumulated volume. It is probable that AE increased the dissolved organic load, optimizing the conversion of organic matter and eliminating the need for additional water in the process. Thus, the CoAD of AE and CM emerged as a promising alternative for waste valorization in aquaponics, contributing to renewable energy generation, agricultural sustainability, and the promotion of the circular economy. Full article
Show Figures

Graphical abstract

13 pages, 2184 KB  
Article
Anaerobic Digestion of Broiler Litter from Different Commercial Farm Flocks
by Ana Carolina Amorim Orrico, Brenda Kelly Viana Leite, Juliana Dias de Oliveira, Karina Fidelis Blans, Isabella da Silva Menezes, Vanessa Souza, Régio Marcio Toesca Gimenes, Rusbel Raul Aspilcueta Borquis and Marco Antônio Previdelli Orrico Junior
Poultry 2025, 4(2), 19; https://doi.org/10.3390/poultry4020019 - 10 Apr 2025
Cited by 1 | Viewed by 1191
Abstract
Rearing broiler chickens generates large quantities of waste material in the form of bedding. Anaerobic digestion (AD) is a technology that can be applied to this waste. This study aimed to evaluate the AD of broiler litter, either screened (S) or unscreened (US), [...] Read more.
Rearing broiler chickens generates large quantities of waste material in the form of bedding. Anaerobic digestion (AD) is a technology that can be applied to this waste. This study aimed to evaluate the AD of broiler litter, either screened (S) or unscreened (US), from different flocks, collected from each production batch, totaling nine, from a commercial farm. Anaerobic digestion was conducted in batch biodigesters, and fraction separation was performed through screening prior to loading. The S substrate from the second and fifth flocks did not produce biogas. Reductions in total (TS) and volatile solids were highest for S substrates from the third flock (50.5% and 58.3%, respectively). Only the third flock’s S substrates showed greater reductions in solids than the US substrates. Potential biogas and methane production were also highest in the third flock’s bedding for both the S substrate (336.8 and 218.2 L/kg of TS, respectively) and the US substrate (296.8 and 213.4 L/kg of TS, respectively). The methane concentration in the S substrate was highest in the third flock (64.8%), while in the US substrate, it was highest in the third and fourth flocks (70.3%). Screening the litter reduced the process efficiency. We conclude that fraction separation is inadvisable for broiler litter. Full article
Show Figures

Figure 1

Back to TopTop