Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (17,414)

Search Parameters:
Keywords = biological application

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1035 KB  
Review
A Guide to Recognizing Your Electrochemical Impedance Spectra: Revisions of the Randles Circuit in (Bio)sensing
by Alexandros Lazanas and Beatriz Prieto Simón
Sensors 2025, 25(19), 6260; https://doi.org/10.3390/s25196260 (registering DOI) - 9 Oct 2025
Abstract
Electrochemical impedance spectroscopy (EIS) is a highly versatile electrochemical technique capable of discretizing each electrochemical parameter in complex systems by employing a broad frequency spectrum. When EIS is employed in (bio)sensing applications, the electrochemical parameters are usually fitted into a relatively limited equivalent [...] Read more.
Electrochemical impedance spectroscopy (EIS) is a highly versatile electrochemical technique capable of discretizing each electrochemical parameter in complex systems by employing a broad frequency spectrum. When EIS is employed in (bio)sensing applications, the electrochemical parameters are usually fitted into a relatively limited equivalent circuit model regardless of the system at hand. This work thoroughly discusses the meaning of each physical parameter in the Randles circuit, the most common equivalent circuit to model (bio)sensing systems based on EIS transduction. Additionally, it pinpoints the most suitable modifications to the Randles circuit for modern-day electrodes, where coatings of non-biological and/or biological materials can radically impact the measured impedance compared to that of unmodified electrodes. The discussion is supported by simulations that clearly exhibit the effect of each examined parameter, providing guidance for experimentalists to improve the accuracy of their work. Full article
21 pages, 2709 KB  
Article
Evaluating the Response to Cryopreservation of Ovine Fibroblast Spheroids
by Davide Piras, Federico Olia, Chiara Cosseddu, Daniela Bebbere and Sergio Ledda
Biology 2025, 14(10), 1381; https://doi.org/10.3390/biology14101381 - 9 Oct 2025
Abstract
Cell spheroids are widely studied for their potential applications in tissue engineering and regenerative medicine. The present work investigated the effects of cryopreservation on spheroids derived from ovine fibroblasts, depending on spheroid size (140 or 220 µm). Specifically, it explored how cryopreservation impacted [...] Read more.
Cell spheroids are widely studied for their potential applications in tissue engineering and regenerative medicine. The present work investigated the effects of cryopreservation on spheroids derived from ovine fibroblasts, depending on spheroid size (140 or 220 µm). Specifically, it explored how cryopreservation impacted several biological and physical parameters including cell damage, viability, metabolism, adhesion, proliferation, and spheroid mass density, weight, and diameter at three time points after thawing. A Live/Dead assay provided a visual assessment of cell damage, cell viability and metabolic activity were assessed by an Alamar Blue assay, and a replating assay evaluated cell adhesion and proliferation capabilities. Spheroid mass density, weight, and diameter were quantified by the W8 Biophysical Analyzer, creating accurate biophysical profiles. Real-time PCR (RT-PCR) analysis was employed to uncover gene expression changes following cryopreservation. Our findings indicate that spheroids measuring 140 µm in diameter largely maintained their biophysical features and cell viability post-cryopreservation, whereas those at 220 µm exhibited a decline in both vitality and mass density. The reduced vitality of 220 µm spheroids likely reflects size-related limitations in cryoprotectant diffusion and stress within the core. Overall, this study provides a comprehensive understanding of how cryopreservation affects ovine fibroblast spheroid biophysics and cellular integrity, laying the groundwork for improved preservation techniques for cell spheroids. Full article
35 pages, 819 KB  
Review
Polymer-Based Scaffolds Incorporating Selected Essential Oil Components for Wound Healing: A Review
by Vuyolwethu Khwaza and Opeoluwa O. Oyedeji
Pharmaceutics 2025, 17(10), 1313; https://doi.org/10.3390/pharmaceutics17101313 - 9 Oct 2025
Abstract
Background: The treatment of wounds remains a significant clinical challenge, particularly in chronic and infected wounds, where delayed healing often results in complications. Recent advances in biomaterials have highlighted the potential of polymer-based scaffolds as promising platforms for wound management due to their [...] Read more.
Background: The treatment of wounds remains a significant clinical challenge, particularly in chronic and infected wounds, where delayed healing often results in complications. Recent advances in biomaterials have highlighted the potential of polymer-based scaffolds as promising platforms for wound management due to their ability to mimic the extracellular matrix, support tissue regeneration, and provide a moist environment conducive to healing. Objectives: This review aims to provide a comprehensive overview of the recent progress in the design and application of polymer-based scaffolds loaded with essential oil (EO) components, emphasizing their role in promoting effective wound healing. Methods: Relevant literature on polymeric scaffolds and EO-based bioactive agents was systematically reviewed, focusing on studies that investigated the biological activities, fabrication techniques, and therapeutic performance of EO-loaded scaffolds in wound management. Results: Findings from recent studies indicate that EO components, particularly monoterpenoids such as thymol, carvacrol, and eugenol, exhibit remarkable antimicrobial, anti-inflammatory, antioxidant, and analgesic properties that accelerate wound healing. When incorporated into polymer matrices, these components enhance scaffold biocompatibility, antimicrobial efficacy, and tissue regeneration capacity through synergistic interactions. Conclusion: The integration of essential oil components into polymeric scaffolds represents a promising strategy for developing multifunctional wound dressings. Such systems combine the structural advantages of polymers with the therapeutic benefits of EOs, offering an effective platform for accelerating healing and preventing wound infections. Full article
12 pages, 2670 KB  
Article
Interfacial Mechanism of Biological Property Enhancement in Irradiated MAO Coatings by HIPIB
by Yi Wei, Yujie Shao, Yongxin Jiao and Xiaoguang Han
Coatings 2025, 15(10), 1184; https://doi.org/10.3390/coatings15101184 - 9 Oct 2025
Abstract
Magnesium alloy micro-arc oxidation (MAO) coatings are limited in biomedical applications due to their poor corrosion resistance. High-intensity pulsed ion beam (HIPIB) treatment enhances corrosion resistance as well as biocompatibility, but the underlying mechanisms are not well understood. In this study, CCK-8 assays, [...] Read more.
Magnesium alloy micro-arc oxidation (MAO) coatings are limited in biomedical applications due to their poor corrosion resistance. High-intensity pulsed ion beam (HIPIB) treatment enhances corrosion resistance as well as biocompatibility, but the underlying mechanisms are not well understood. In this study, CCK-8 assays, flow cytometry, and ALP activity tests were employed to investigate the bioactivity of the MAO coatings, and the surface properties of the coatings were characterized by SEM observation. Compared with pristine coating, the porosity of the MAO coating decreased by 9.44%, calcium content increased by 0.23%, and surface roughness and hydrophobicity increased to 7.57 and 102.11, respectively, with HIPIB irradiation. CCK-8 assays showed that the HIPIB-modified coating significantly improved cell proliferation, with a growth rate increase to 61.29% on Day 3. Flow cytometry analysis revealed accelerated cell cycle progression, especially a faster transition from the G1 to S and G2 phases, indicative of enhanced proliferation. Increased ALP activity further indicated that the irradiated coatings promoted osteogenic differentiation. The formed remelted dense layer with an increase in Ca content and high roughness induced by HIPIB irradiation not only acts as a corrosion barrier but also promotes the adhesion and differentiation of osteoblasts, which is mainly responsible for the enhancement of biological properties. Full article
(This article belongs to the Special Issue Advanced Surface Engineering of Alloys: Coatings and Thin Films)
Show Figures

Figure 1

22 pages, 968 KB  
Article
Fractal–Fractional Coupled Systems with Constant and State- Dependent Delays: Existence Theory and Ecological Applications
by Faten H. Damag, Ashraf A. Qurtam, Arshad Ali, Abdelaziz Elsayed, Alawia Adam, Khaled Aldwoah and Salahedden Omer Ali
Fractal Fract. 2025, 9(10), 652; https://doi.org/10.3390/fractalfract9100652 - 9 Oct 2025
Abstract
This study introduces a new class of coupled differential systems described by fractal–fractional Caputo derivatives with both constant and state-dependent delays. In contrast to traditional delay differential equations, the proposed framework integrates memory effects and geometric complexity while capturing adaptive feedback delays that [...] Read more.
This study introduces a new class of coupled differential systems described by fractal–fractional Caputo derivatives with both constant and state-dependent delays. In contrast to traditional delay differential equations, the proposed framework integrates memory effects and geometric complexity while capturing adaptive feedback delays that vary with the system’s state. Such a formulation provides a closer representation of biological and physical processes in which delays are not fixed but evolve dynamically. Sufficient conditions for the existence and uniqueness of solutions are established using fixed-point theory, while the stability of the solution is investigated via the Hyers–Ulam (HU) stability approach. To demonstrate applicability, the approach is applied to two illustrative examples, including a predator–prey interaction model. The findings advance the theory of fractional-order systems with mixed delays and offer a rigorous foundation for developing realistic, application-driven dynamical models. Full article
(This article belongs to the Special Issue Fractional Calculus Applied in Environmental Biosystems)
Show Figures

Figure 1

21 pages, 2925 KB  
Review
Tree Endotherapy: A Comprehensive Review of the Benefits and Drawbacks of Trunk Injection Treatments in Tree Care and Protection
by Alessandra Benigno, Chiara Aglietti, Viola Papini, Mario Riolo, Santa Olga Cacciola and Salvatore Moricca
Plants 2025, 14(19), 3108; https://doi.org/10.3390/plants14193108 - 9 Oct 2025
Abstract
Tree endotherapy has risen to prominence in the field of precision agriculture as an innovative and sustainable method of tree care, being respectful of both environmental protection and consumer health needs. A comprehensive review of the state of the art of research in [...] Read more.
Tree endotherapy has risen to prominence in the field of precision agriculture as an innovative and sustainable method of tree care, being respectful of both environmental protection and consumer health needs. A comprehensive review of the state of the art of research in this field has made it possible to spotlight the main advantages of tree infusion, which has undergone significant progress in step with technological innovation and an increased understanding of tree anatomy and physiology. The major criticalities associated with this technique, as well as the biological and technical–operational obstacles that still hinder its wider use, are also highlighted. What emerges is an innovative and rapidly expanding technique in tree care, in both the cultivation and phytosanitary management of fruit and ornamental trees. Some of the strengths of the endotherapy technique, such as the next-to-no water consumption, the strong reduction in the use of fertilizers and pesticides, the possibility of using biological control agents (BCAs) or other products of natural origin, the precision administration of the product inside the xylem of the tree, and the efficacy (20–90%) and persistence (1–2 years) of treatments, make it one of the cornerstones of sustainable tree protection at present. With a very low consumption of the “active ingredient”, endotherapy has a negligible impact on the external environment, minimizing the drift and dispersal of the active ingredient and thus limiting the exposure of non-target organisms such as beneficial insects, birds, and wildlife. The large-scale application of the technique would therefore also help to achieve an important goal in “climate-smart agriculture”, the saving of water resources, significantly contributing to climate change mitigation, especially in those areas of the planet where water is a precious resource. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

26 pages, 1029 KB  
Review
Exploring Fungal Communication Mechanisms in the Rhizosphere Microbiome for a Sustainable Green Agriculture
by Jing Gao, Anqi Dong, Jiayi Li, Jiayu Xu, Zhihong Liang and Antonio Francesco Logrieco
J. Fungi 2025, 11(10), 726; https://doi.org/10.3390/jof11100726 - 9 Oct 2025
Abstract
In the long-term evolutionary process, species maintain a natural balance within certain limits through communication. As plants grow and function as producers, root enrichment fosters a dynamic rhizosphere microbiome, which serves not only as a disintegrator within the ecological niche but also as [...] Read more.
In the long-term evolutionary process, species maintain a natural balance within certain limits through communication. As plants grow and function as producers, root enrichment fosters a dynamic rhizosphere microbiome, which serves not only as a disintegrator within the ecological niche but also as a medium for interaction between the host and the soil environment. The life cycle of fungi within the microbiome alternates between single-cell resting spores and multicellular trophic mycelia. This cycle not only establishes a stable rhizosphere environment but also plays a crucial role in regulating both intra- and interspecific information transmission, significantly impacting the environment and plant health. The rhizosphere microbiome, particularly the fungi it contains, can be harnessed to repair environmental damage and either promote the growth of the plant host or inhibit pathogens. However, the mechanisms underlying these actions remain inadequately understood, hindering the advancement of artificial regulation. Additionally, the variability of influencing factors, along with unstable genes and traits, poses challenges to industrial development. In conclusion, this paper focuses on the fungal components of the rhizosphere microbiome, introduces the mechanisms of communication and current applications, and further analyzes existing bottlenecks and potential solutions. The aim is to provide theoretical support for achieving green, sustainable agriculture through biological means. Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
Show Figures

Figure 1

28 pages, 1420 KB  
Review
Ethnoveterinary Potential of Acacia (Vachellia and Senegalia) Species for Managing Livestock Health in Africa: From Traditional Uses to Therapeutic Applications
by Nokwethemba N. P. Msimango, Adeyemi O. Aremu, Stephen O. Amoo and Nqobile A. Masondo
Plants 2025, 14(19), 3107; https://doi.org/10.3390/plants14193107 - 9 Oct 2025
Abstract
In Africa, the folkloric practices involving plant-based remedies play a crucial role in livestock farming, often attributed to the limited access to modern veterinary services. The use of Acacia species (including those reclassified as Vachellia species) in ethnoveterinary medicine has garnered increasing interest [...] Read more.
In Africa, the folkloric practices involving plant-based remedies play a crucial role in livestock farming, often attributed to the limited access to modern veterinary services. The use of Acacia species (including those reclassified as Vachellia species) in ethnoveterinary medicine has garnered increasing interest due to their high protein content and medicinal (including anti-parasitic) properties, offering a sustainable source of fodder particularly in arid and semi-arid regions. However, scientific assessment of their efficacy and safety remains limited. This systematic review examines the ethnoveterinary uses, biological efficacy and safety of Acacia species across Africa. A literature search was conducted using PubMed, Google Scholar and Scopus, yielding 519 relevant studies published between 2001 and 2024. After applying the inclusion and exclusion criteria, 43 eligible studies were analyzed based on their relevance, geographical location and livestock disease applications. Plants of the World online database was used to validate the names of the species and authority. Ethiopia had the highest usage of Acacia species (25%), then Nigeria (20%) followed by both South Africa (15%) and Namibia (15%). Vachellia nilotica (Acacia nilotica) was the most frequently cited species (26.3%), followed by Vachellia karroo (Acacia karroo) (15.8%). Ethnobotanical records indicate that the different Acacia species have been traditionally used to treat conditions such as diarrhea, wound infections and complications such as retained placenta. Pharmacological studies corroborate the therapeutic benefits of Acacia species with evidence of their antimicrobial, anti-inflammatory, antioxidant and anthelmintic effects, though some toxicity concerns exist at high dosages. The systematic review revealed the efficacy and safety (to some extent) of Acacia species in livestock disease management, emphasizing their potential integration into veterinary medicine. However, the dearth of in vivo studies underscores the need for pre-clinical and clinical trials to establish safe and effective dosages for use in livestock. Full article
Show Figures

Figure 1

36 pages, 1058 KB  
Systematic Review
Functionalization Strategies of Chitosan-Based Scaffolds with Growth Factors for Bone Regeneration: A Systematic Review
by Jan Kiryk, Mateusz Michalak, Zuzanna Majchrzak, Marzena Laszczyńska, Sylwia Kiryk, Sylwia Szotek, Hanna Gerber, Izabela Nawrot-Hadzik, Jacek Matys and Maciej Dobrzyński
Mar. Drugs 2025, 23(10), 396; https://doi.org/10.3390/md23100396 - 9 Oct 2025
Abstract
Bioactive agents can stimulate osteogenesis, angiogenesis, and cell proliferation; therefore, their application in bone regeneration offers significant therapeutic potential. The aim of this systematic review was to evaluate strategies for applying chitosan-based scaffolds with growth factors in bone regeneration. A structured literature search [...] Read more.
Bioactive agents can stimulate osteogenesis, angiogenesis, and cell proliferation; therefore, their application in bone regeneration offers significant therapeutic potential. The aim of this systematic review was to evaluate strategies for applying chitosan-based scaffolds with growth factors in bone regeneration. A structured literature search was conducted in July 2025 across the PubMed, Scopus, and Web of Science databases. Search terms included combinations of (chitosan scaffold) AND (growth factor OR BMP-2 OR VEGF OR FGF OR TGF-beta OR periostin OR PDGF OR IGF-1 OR EGF OR ANG-1 OR ANG-2 OR GDF-5 OR SDF-1 OR osteopontin). The study selection process followed PRISMA 2020 guidelines and the PICO framework. Out of 367 records, 226 were screened, and 17 studies met the eligibility criteria for qualitative analysis. BMP-2 was the most frequently investigated growth factor, studied in both in vitro and in vivo models, with rats and rabbits as the most common animal models. Scaffold compositions varied, incorporating hydroxyapatite, heparin, polyethylene glycol diacrylate, octacalcium phosphate-mineralized graphene, silk fibroin, and aloe vera. Growth factors were introduced using diverse methods, including microspheres, chemical grafting, covalent coupling, protein carriers, and nanohydroxyapatite mesopores. Most studies reported enhanced bone regeneration, although differences in models, scaffold composition, and delivery methods preclude definitive conclusions. The addition of growth factors generally improved osteoblast proliferation, angiogenesis, bone density, and expression of osteogenic markers (RunX2, COL1, OPN, OCN). Combining two bioactive agents further amplified osteoinduction and vascularization. Sustained-release systems, particularly those using heparin or hydroxyapatite, prolonged biological activity and improved regenerative outcomes. In conclusion, functionalization of chitosan-based scaffolds with growth factors shows promising potential for bone regeneration. Controlled-release systems and combinations of different bioactive molecules may offer synergistic effects on osteogenesis and angiogenesis. Further research should focus on optimizing scaffold compositions and delivery methods to tailor bioactive agent release for specific clinical applications. Full article
(This article belongs to the Section Biomaterials of Marine Origin)
Show Figures

Graphical abstract

24 pages, 2566 KB  
Review
Valorization of Second Cheese Whey Through Microalgae-Based Treatments: Advantages, Limits, and Opportunities
by Gloria Sciuto, Nunziatina Russo, Cinzia L. Randazzo and Cinzia Caggia
BioTech 2025, 14(4), 79; https://doi.org/10.3390/biotech14040079 - 9 Oct 2025
Abstract
The dairy sector produces considerable amounts of nutrient-rich effluents, which are frequently undervalued as simple by-products or waste. In particular, Second Cheese Whey (SCW), also known as scotta, exhausted whey, or deproteinized whey, represents the liquid fraction from ricotta cheese production. Despite its [...] Read more.
The dairy sector produces considerable amounts of nutrient-rich effluents, which are frequently undervalued as simple by-products or waste. In particular, Second Cheese Whey (SCW), also known as scotta, exhausted whey, or deproteinized whey, represents the liquid fraction from ricotta cheese production. Despite its abundance and high organic and saline content, SCW is often improperly discharged into terrestrial and aquatic ecosystems, causing both environmental impact and resource waste. The available purification methods are expensive for dairy companies, and, at best, SCW is reused as feed or fertilizer. In recent years, increasing awareness of sustainability and circular economy principles has increased interest in the valorization of SCW. Biological treatment of SCW using microalgae represents an attractive strategy, as it simultaneously reduces the organic load and converts waste into algal biomass. This biomass can be further valorized as a source of proteins, pigments, and bioactive compounds with industrial relevance, supporting applications in food, nutraceuticals, biofuels, and cosmetics. This review, starting from analyzing the characteristics, production volumes, and environmental issues associated with SCW, focused on the potential of microalgae application for their valorization. In addition, the broader regulatory and sustainability aspects related to biomass utilization and treated SCW are considered, highlighting both the promises and limitations of microalgae-based strategies by integrating technological prospects with policy considerations. Full article
Show Figures

Graphical abstract

18 pages, 1224 KB  
Review
Targeting CRABP1 Signalosomes in Managing Neurodegeneration
by Jennifer Nhieu and Li-Na Wei
Biomolecules 2025, 15(10), 1428; https://doi.org/10.3390/biom15101428 - 9 Oct 2025
Abstract
Retinoic acid (RA) binds RA (RAR) and Retinoid X (RXR) receptors to elicit biological effects by regulating transcription. RA is also known to have non-canonical activities mediated, primarily, by cellular retinoic acid-binding protein 1 (CRABP1) which forms protein complexes named “CRABP1 signalosomes” to [...] Read more.
Retinoic acid (RA) binds RA (RAR) and Retinoid X (RXR) receptors to elicit biological effects by regulating transcription. RA is also known to have non-canonical activities mediated, primarily, by cellular retinoic acid-binding protein 1 (CRABP1) which forms protein complexes named “CRABP1 signalosomes” to regulate cytosolic signaling independent of RARs/RXRs. This review focuses on therapeutic applications in neurodegeneration by targeting CRABP1 signalosomes including CRABP1–MAPK, CRABP1–CaMKII, CRABP1–eIF2α, and others recently identified from our proteomic studies. The mouse Crabp1 gene is regulated by various epigenetic factors and is important for the health of multiple cell types including motor neurons (MNs). In humans, CRABP1 gene expression is reduced in ALS- and SMA-patient MNs. RA is a therapeutic agent for leukemias and dermatological disorders and is being investigated for managing neurodegenerative diseases, but its therapeutic effects are accompanied by RAR-mediated toxic effects. We have uncovered a novel class of synthetic retinoids that bind CRABP1 without acting on RARs, circumventing RAR-mediated toxic effects. These first-generation CRABP1-selective compounds C3, C4, and C32 target CRABP1–MAPK and/or CRABP1–CaMKII signalosomes. This knowledge, together with emerging structural information, sheds lights on the strategies in designing next-generation CRABP1-signalosome-selective retinoids for the management of neurodegenerative diseases. Full article
Show Figures

Figure 1

16 pages, 3298 KB  
Article
A Comparative Study of Stainless Steel and PEEK TiO2 Composite: Effects on Cell Behavior and Bacterial Adhesion in Pediatric Crowns
by Helena Pereira, Flávio Rodrigues, Ana Arieira, Filipe Silva and João Pinto
Appl. Sci. 2025, 15(19), 10809; https://doi.org/10.3390/app151910809 - 8 Oct 2025
Abstract
Dental materials are well-established, with stainless steel 316L (SS) still being a common choice for components such as pediatric crowns and abutments. However, SS has some drawbacks, particularly in terms of mechanical properties and, more importantly, aesthetics, due to its metallic gray color. [...] Read more.
Dental materials are well-established, with stainless steel 316L (SS) still being a common choice for components such as pediatric crowns and abutments. However, SS has some drawbacks, particularly in terms of mechanical properties and, more importantly, aesthetics, due to its metallic gray color. In this sense, PEEK (polyetheretherketone) has emerged as a promising material for dental applications, combining good mechanical properties with improved aesthetic features. This study compared the cytocompatibility of PEEK TiO2 composite and SS using human fetal osteoblasts (hFOB) and human gingival fibroblasts (HGF). Cytocompatibility was evaluated over 1–7 days through metabolic activity and alkaline phosphatase (ALP) assays. Additionally, bacterial adhesion was assessed using Staphylococcus aureus and Pseudomonas aeruginosa in both monoculture and co-culture. The results showed that both materials were non-cytotoxic and supported cell growth. Notably, after 7 days of culture, PEEK TiO2 surfaces promoted approximately 7% higher ALP activity than stainless steel, demonstrating a significantly enhanced osteogenic response (p < 0.01). Moreover, at day 7, PEEK TiO2 promoted ~25% higher metabolic activity in HGF cells compared to SS. Regarding the bacterial adhesion, it was consistently low in PEEK TiO2 for both S. aureus and P. aeruginosa, with a marked reduction (~50%) observed for P. aeruginosa under co-culture conditions. PEEK TiO2 demonstrated enhanced biological performance and lower bacterial adhesion compared with SS, highlighting its potential as a biocompatible and aesthetically promising option for dental applications, including pediatric crowns. Full article
(This article belongs to the Special Issue Advanced Dental Materials and Its Applications)
Show Figures

Figure 1

19 pages, 6635 KB  
Article
Improving Poly(3-Hydroxybutyrate) Properties Using Nanocellulose in Biomedical Applications: Thermal, Mechanical and Biological Studies
by Karolina Maternia-Dudzik, Łukasz Ożóg, Zuzanna Bober, Rafał Oliwa, Mariusz Oleksy, Angelika Kamizela, Agnieszka Szyszkowska, Katarzyna Rafińska, Weronika Gonciarz, Kamil Gancarczyk and Anna Czerniecka-Kubicka
Int. J. Mol. Sci. 2025, 26(19), 9795; https://doi.org/10.3390/ijms26199795 - 8 Oct 2025
Abstract
Poly(3-hydroxybutyrate), P3HB, is a biodegradable polymer produced and stored by different bacterial strains, including Ralstonia eutropha H16. P3HB was used to prepare biocompatible composites modified by nanocellulose. This study aimed to assess selected thermal, mechanical, and biological properties of the obtained nanobiocomposites. Thermal [...] Read more.
Poly(3-hydroxybutyrate), P3HB, is a biodegradable polymer produced and stored by different bacterial strains, including Ralstonia eutropha H16. P3HB was used to prepare biocompatible composites modified by nanocellulose. This study aimed to assess selected thermal, mechanical, and biological properties of the obtained nanobiocomposites. Thermal properties, as determined by differential scanning calorimetry measurements, were established. The crystallinity of nanocomposites and polymeric matrix was investigated using DSC analyses. The morphology of the nanocomposites was evaluated using scanning electron microscopy. The Food and Drug Administration and the European Medicines Agency confirmed the immunosafety of the tested nanocomposites and noted they had either no or very low levels of endotoxin contamination. Some mechanical properties of the investigated materials were also measured and are presented here. It was estimated that the addition of 1% by mass of nanocrystalline cellulose to P3HB causes the greatest improvement in the plasticization of the material, characterised by the best processing and utility properties. The processing window of nanobiocomposites was extended by approximately 25 °C in reference to the unfilled poly(3-hydroxybutyrate). Mechanical and thermal tests revealed that the most desirable properties oscillate around the addition of 0.5% and 1% nanocrystalline cellulose by mass in the nanobiocomposites. Biological studies on implant applications have shown that the addition of only 0.5% nanofiller to a nanobiocomposite can be of key importance. Full article
Show Figures

Figure 1

25 pages, 1657 KB  
Article
Gallic Acid Functionalization Improves the Pharmacological Profile of Fucoidan B: A Polysaccharide with Antioxidant Properties
by Joicy Ribeiro dos Santos, Diego Araujo Sabry, Guilherme Lanzi Sassaki and Hugo Alexandre Oliveira Rocha
Polysaccharides 2025, 6(4), 89; https://doi.org/10.3390/polysaccharides6040089 - 8 Oct 2025
Abstract
Fucoidan B (FucB) is a sulfated polysaccharide with recognized biological activity. In this study, FucB was chemically modified through redox conjugation with gallic acid (GA) to obtain FucB-GA, aiming to enhance its antioxidant properties. Structural characterization using FTIR, NMR, and electrophoresis confirmed the [...] Read more.
Fucoidan B (FucB) is a sulfated polysaccharide with recognized biological activity. In this study, FucB was chemically modified through redox conjugation with gallic acid (GA) to obtain FucB-GA, aiming to enhance its antioxidant properties. Structural characterization using FTIR, NMR, and electrophoresis confirmed the successful covalent binding of GA to FucB without major structural degradation. The conjugation increased the phenolic content and reduced crystallinity, as shown by XRD and SEM, indicating greater amorphous character, which can favor biological applications. Thermogravimetric analysis demonstrated enhanced thermal stability in FucB-GA. Antioxidant activity was evaluated through various in vitro assays. FucB-GA showed superoxide radical scavenging activity of 91.96%, copper chelating capacity of 43.2%, antioxidant capacity of 37 mg AEE/g, and reducing power of 94.22%, significantly higher results than FucB, while no sample chelated iron. Under the conditions analyzed, gallic acid alone showed minimal or no activity in most assays. These results suggest that conjugation with GA increases the antioxidant potential of FucB, while also improving the activity and bioavailability of GA, likely due to the increase in electron-donating and metal-binding groups. Overall, the study supports the development of FucB-GA as a promising antioxidant compound for pharmaceutical or nutraceutical applications. Full article
33 pages, 781 KB  
Review
Recent Advances in Electrochemical Sensors for the Detection of Anti-Inflammatory and Antibiotic Drugs: A Comprehensive Review
by Gisele Afonso Bento Mello, Stephen Rathinaraj Benjamin, Fábio de Lima and Rosa F. Dutra
Biosensors 2025, 15(10), 676; https://doi.org/10.3390/bios15100676 - 8 Oct 2025
Abstract
Electrochemical sensors have emerged as powerful analytical tools for the detection of anti-inflammatory and antibiotic drugs due to their high sensitivity, rapid response, and cost-effectiveness compared to conventional chromatographic and spectrophotometric methods. This review highlights recent advances in electrode materials, surface modification strategies, [...] Read more.
Electrochemical sensors have emerged as powerful analytical tools for the detection of anti-inflammatory and antibiotic drugs due to their high sensitivity, rapid response, and cost-effectiveness compared to conventional chromatographic and spectrophotometric methods. This review highlights recent advances in electrode materials, surface modification strategies, and signal amplification approaches for quantifying nonsteroidal anti-inflammatory drugs (NSAIDs) and various antibiotic classes, including sulfonamides, tetracyclines, macrolides, and quinolones. Particular attention is given to nanostructured carbon-based materials, metal nanoparticles, and polymer composites that enhance electron transfer, improve selectivity, and lower limits of detection (LODs). The analytical performance of different electrochemical techniques such as cyclic voltammetry, differential pulse voltammetry, and square-wave voltammetry is critically compared across various drug targets. Trends indicate that hybrid nanomaterial-modified electrodes consistently achieve sub-micromolar detection limits in biological and environmental samples, offering potential for point-of-care diagnostics and environmental monitoring. Current challenges include improving sensor stability, mitigating fouling effects, and ensuring reproducibility in complex matrices. Future research should focus on integrated, miniaturized sensing platforms capable of multiplex detection, paving the way for rapid, portable, and sustainable analytical solutions in pharmaceutical and biomedical applications. Full article
Show Figures

Graphical abstract

Back to TopTop