Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = bivalent subunit vaccine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2352 KiB  
Article
XBB.1.5 RBD-Based Bivalent Vaccines Induced Antibody Responses Against SARS-CoV-2 Variants in Mice
by Jiawen Liu, Tiantian Wang, Hongying Ren, Ruixi Liu, Qian Wang, Jun Wu and Bo Liu
Vaccines 2025, 13(5), 543; https://doi.org/10.3390/vaccines13050543 - 20 May 2025
Viewed by 280
Abstract
(1) Background: The currently circulating variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibits resistance to antibodies induced by vaccines. The World Health Organization recommended the use of monovalent XBB.1 sublineages (e.g., XBB.1.5) as an antigenic component in 2023. (2) Objective: In [...] Read more.
(1) Background: The currently circulating variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibits resistance to antibodies induced by vaccines. The World Health Organization recommended the use of monovalent XBB.1 sublineages (e.g., XBB.1.5) as an antigenic component in 2023. (2) Objective: In this study, we aimed to develop vaccines based on the XBB.1.5 receptor-binding domain (RBD) to combat the recently emerged SARS-CoV-2 XBB and JN.1 variants, as well as previously circulating variants. (3) Methods: Glycoengineered Pichia pastoris was utilized to produce a recombinant XBB.1.5 RBD protein with mammalian-like and fucose-free N-glycosylation. The XBB.1.5 RBD was mixed with Al(OH)3:CpG adjuvants to prepare monovalent vaccines. Thereafter, the XBB.1.5 RBD was mixed with the Beta (B.1.351), Delta (B.1.617.2), or Omicron (BA.2) RBDs (1:1 ratio), along with Al(OH)3:CpG, to prepare bivalent vaccines. BALB/c mice were immunized with the monovalent and bivalent vaccines. Neutralizing antibody titers were assessed via pseudovirus and authentic virus assays; humoral immune responses were analyzed by RBD-binding IgG subtypes. (4) Results: The monovalent vaccine induced higher neutralizing antibody titers against Delta, BA.2, XBB.1.5, and JN.1 compared to those in mice immunized solely with Al(OH)3:CpG, as demonstrated by pseudovirus virus assays. The XBB.1.5/Delta RBD and XBB.1.5/Beta RBD-based bivalent vaccines provided potent protection against the BA.2, XBB.1.5, JN.1, and KP.2 variants, as well as the previously circulating Delta and Beta variants. All monovalent and bivalent vaccines induced high levels of RBD-binding IgG (IgG1, IgG2a, IgG2b, and IgG3) antibodies in mice, suggesting that they elicited robust humoral immune responses. The serum samples from mice immunized with the XBB.1.5 RBD-based and XBB.1.5/Delta RBD-based vaccines could neutralize the authentic XBB.1.16 virus. (5) Conclusions: The XBB.1.5/Beta and XBB.1.5/Delta RBD-based bivalent vaccines are considered as potential candidates for broad-spectrum vaccines against SARS-CoV-2 variants. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

16 pages, 3875 KiB  
Article
Immunogenicity and Safety of the Bivalent Respiratory Syncytial Virus Prefusion F Subunit Vaccine in Immunocompromised or Renally Impaired Adults
by Natalia Castillo Almeida, Lalitha Parameswaran, Elliot N. DeHaan, Hayley Wyper, Farah Rahman, Qin Jiang, Wen Li, Michael Patton, Maria Maddalena Lino, Zaynah Majid-Mahomed, Elissa Malkin, Matthew Davis, William J. Towner, Kapil Saharia, Kumar Ilangovan, Elena Kalinina, David Cooper, Kena A. Swanson, Annaliesa S. Anderson, Alejandra Gurtman and Iona Munjaladd Show full author list remove Hide full author list
Vaccines 2025, 13(3), 328; https://doi.org/10.3390/vaccines13030328 - 19 Mar 2025
Viewed by 1330
Abstract
Background/Objectives: Individuals with immunocompromising conditions are at high risk of developing severe respiratory syncytial virus (RSV) illness. This phase 3, single-arm study assessed the safety and immunogenicity of the bivalent RSV prefusion F protein−based (RSVpreF) 120-µg vaccine in immunocompromised and renally impaired adults. [...] Read more.
Background/Objectives: Individuals with immunocompromising conditions are at high risk of developing severe respiratory syncytial virus (RSV) illness. This phase 3, single-arm study assessed the safety and immunogenicity of the bivalent RSV prefusion F protein−based (RSVpreF) 120-µg vaccine in immunocompromised and renally impaired adults. Methods: Participants were stratified by age group (18−<60-year-olds; ≥60-year-olds) and received two RSVpreF doses 1 month apart (i.e., Dose 1 and Dose 2, respectively). Reactogenicity events were collected for 7 days after each dose; adverse events through 1 month after the last dose; and serious adverse events, adverse events of special interest, and newly diagnosed chronic medical conditions throughout the study. Results: One month after Dose 1, RSVpreF elicited robust immune responses overall and across age and immunocompromised subgroups. Overall, geometric mean fold rises from before to 1 month after Dose 1 were high for RSV A and RSV B (8.3 and 9.0, respectively); no additional increases 1 month after Dose 2 (7.5 and 7.8) were observed. The most frequent local reaction was pain at the injection site, which was more common after Dose 2 than after Dose 1. The most frequent systemic event after any dose was fatigue. Most local reactions and systemic events were mild or moderate in severity. Adverse event and serious adverse event rates were 13.5% and 7.3% among 18−<60-year-olds and 22.4% and 14.0% among ≥60-year-olds, respectively. Conclusions: A single dose of the RSVpreF vaccine conferred robust immune responses in immunocompromised and renally impaired adults with no safety concerns. (ClinicalTrials.gov Identifier: NCT05842967). Full article
(This article belongs to the Special Issue Current Development of Vaccines for Respiratory Viral Infection)
Show Figures

Figure 1

14 pages, 2475 KiB  
Article
Development and Immunogenicity Study of Subunit Vaccines Based on Spike Proteins of Porcine Epidemic Diarrhea Virus and Porcine Transmissible Gastroenteritis Virus
by Mingguo Xu, Zhonglian Yang, Ningning Yang, Honghuan Li, Hailong Ma, Jihai Yi, Huilin Hou, Fangfang Han, Zhongchen Ma and Chuangfu Chen
Vet. Sci. 2025, 12(2), 106; https://doi.org/10.3390/vetsci12020106 - 1 Feb 2025
Cited by 1 | Viewed by 995
Abstract
Porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are responsible for significant economic losses in the swine industry. The S1 proteins of these viruses serve as key targets for vaccine development. In this study, prokaryotic expression vectors for pCZN1-PEDV S1, pCZN1-TGEV [...] Read more.
Porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are responsible for significant economic losses in the swine industry. The S1 proteins of these viruses serve as key targets for vaccine development. In this study, prokaryotic expression vectors for pCZN1-PEDV S1, pCZN1-TGEV S1, and pCZN1-PEDV S1-TGEV S1 were constructed. The corresponding proteins were expressed, purified, and used to prepare monovalent, bivalent, and mixed (PEDV S1 + TGEV S1) vaccines. Kunming (KM) mice were immunized with subunit vaccines, with PBS as the negative control (NC) and a commercial inactivated vaccine as the positive control (PC). Immune responses, including specific antibody (IgG, IgG1, IgG2a) levels, virus neutralization, and IFN-γ production, were evaluated. All vaccines induced high levels of specific IgG, IgG1, and IgG2a antibodies. At weeks 2 and 8, the PEDV S1 + TGEV S1 vaccine induced significantly higher levels of specific IgG and IgG1 compared to the PC (p < 0.001). The PEDV S1 vaccine also induced significantly higher specific IgG2a levels than the PC at week 4 (p < 0.0001). Virus neutralization assays demonstrated that the subunit vaccines induced neutralizing antibody levels comparable to or exceeding those of the PC. Furthermore, IFN-γ levels were significantly elevated in all vaccinated groups compared to the NC (p < 0.0001), indicating a robust immune response. These results suggest that the subunit vaccines are promising candidates for the safe and effective control of both PEDV and TGEV infections. Full article
Show Figures

Figure 1

16 pages, 8049 KiB  
Article
TLR Agonist Immunoadjuvants Provide Effective Protection Against PCV2 and PRV Infections in a Bivalent Subunit Vaccine for PCV2 and PRV
by Fulai Yu, Wei Xiang, Weiye Ou, Yang Li, Xinbiao Shu and Xiaoliang Li
Vet. Sci. 2025, 12(1), 25; https://doi.org/10.3390/vetsci12010025 - 7 Jan 2025
Viewed by 1085
Abstract
Diseases associated with porcine circovirus type 2 (PCV2) and pseudorabies virus (PRV) significantly affect the economy of pig farms, particularly when combined infections lead to bacterial co-infections. Antigens from the pseudorabies variant strain gB and gD proteins and PCV2 (genotyped) Cap protein were [...] Read more.
Diseases associated with porcine circovirus type 2 (PCV2) and pseudorabies virus (PRV) significantly affect the economy of pig farms, particularly when combined infections lead to bacterial co-infections. Antigens from the pseudorabies variant strain gB and gD proteins and PCV2 (genotyped) Cap protein were mixed with the pattern recognition receptor (PRR) agonist FLICd as adjuvants and formulated with a micro-hydrogel adjuvant into PCV2 and PRV bivalent subunit vaccines. Twenty pigs, aged 30–35 days, were divided into groups A (received bivalent subunit vaccine) and B (received bivalent subunit vaccines with recombinant FLICd adjuvant), as well as C (non-vaccinated challenge control) and D (blank control). Groups A and B showed no significant difference in average daily weight gain compared to the unvaccinated controls. Fourteen days post-second vaccination, groups A and B exhibited significantly higher levels of PRV and PCV2 antibodies than groups C and D. Group B showed significantly higher average titers of PRV-specific neutralizing antibodies than group A. Fourteen days post-second vaccination, a PRV (ZJM-1 strain) challenge test was conducted. The vaccinated group achieved 100% protection. Vaccination effectively reduced virus load post-challenge and shortened the PRV shedding period. Vaccination with PCV2 and PRV bivalent subunit vaccines effectively prevents the onset of PCV2-related diseases and infections by wild pseudorabies strains. Full article
Show Figures

Figure 1

19 pages, 3748 KiB  
Article
Favorable Nonclinical Safety Profile of RSVpreF Bivalent Vaccine in Rats and Rabbits
by Jun Zhou, Christopher J. Bowman, Vicki R. Markiewicz, Balasubramanian Manickam, Emily Gomme, Rani S. Sellers and Cynthia M. Rohde
Vaccines 2025, 13(1), 26; https://doi.org/10.3390/vaccines13010026 - 31 Dec 2024
Viewed by 995
Abstract
Background: Respiratory syncytial virus (RSV) infections usually cause mild, cold-like symptoms in most people, but are a leading infectious disease causing infant death and hospitalization and can result in increased morbidity and mortality in older adults and at-risk individuals. Pfizer has developed [...] Read more.
Background: Respiratory syncytial virus (RSV) infections usually cause mild, cold-like symptoms in most people, but are a leading infectious disease causing infant death and hospitalization and can result in increased morbidity and mortality in older adults and at-risk individuals. Pfizer has developed Abrysvo®, an unadjuvanted bivalent recombinant protein subunit vaccine containing prefusion-stabilized fusion (F) proteins representing RSV A and RSV B subgroups (RSVpreF). It is the only RSV vaccine approved for both maternal immunization to protect infants and active immunization of older adults (≥60 years) and 18–59-year-old individuals with high-risk conditions for prevention of RSV disease. Methods: Nonclinical safety studies, including a repeat-dose toxicity (RDT) study in rats and a combined developmental and reproductive toxicity (DART) study in rabbits, were conducted to support early clinical development. Study designs and parameters evaluated in these studies were consistent with principles and practices as outlined in relevant regulatory guidelines. RSVpreF bivalent vaccine, with or without Al(OH)3, was administered intramuscularly (IM) at 2× the human dose to animals in both studies. Results: Locally tolerated, reversible, inflammatory responses at the injection sites and the draining lymph nodes were observed as typical findings following vaccination. No effect of RSVpreF, with or without Al(OH)3, was observed on female fertility or on embryo–fetal or postnatal survival, growth, or development in the DART study. In both studies, robust immune responses to both RSV A and B antigens were observed, especially with the Al(OH)3 formulation. Conclusions: RSVpreF was well-tolerated both locally and systemically without any adverse effects on reproductive and developmental endpoints. Full article
Show Figures

Figure 1

12 pages, 1627 KiB  
Article
Comparative Analysis of the Neutralizing Capacity of Monovalent and Bivalent Formulations of Betuvax-CoV-2, a Subunit Recombinant COVID-19 Vaccine, Against Various Strains of SARS-CoV-2
by Anna V. Vakhrusheva, Ekaterina A. Romanovskaya-Romanko, Marina A. Stukova, Maria M. Sukhova, Ksenia S. Kuznetsova, Aleksandr V. Kudriavtsev, Maria E. Frolova, Taras V. Ivanishin, Igor V. Krasilnikov and Artur A. Isaev
Vaccines 2024, 12(10), 1200; https://doi.org/10.3390/vaccines12101200 - 21 Oct 2024
Viewed by 1190
Abstract
SARS-CoV-2, the causal agent of the COVID-19 pandemic, is characterized by rapid evolution, which poses a significant public health challenge. Effective vaccines that provide robust protection, elicit strong immune responses, exhibit favorable safety profiles, and enable cost-effective large-scale production are crucial. The RBD-Fc-based [...] Read more.
SARS-CoV-2, the causal agent of the COVID-19 pandemic, is characterized by rapid evolution, which poses a significant public health challenge. Effective vaccines that provide robust protection, elicit strong immune responses, exhibit favorable safety profiles, and enable cost-effective large-scale production are crucial. The RBD-Fc-based Betuvax-CoV-2 vaccine has previously demonstrated a favorable safety profile and induced a significant anti-SARS-CoV-2 humoral immune response in clinical trials. Due to the rapid evolution and emergence of new SARS-CoV-2 strains, the relevance of bivalent vaccine formulations has increased. Methods: This study compared the neutralizing capacity of monovalent and bivalent vaccine formulations against different SARS-CoV-2 strains detected with a SARS-CoV-2 microneutralization assay (MNT). Findings: The monovalent Wuhan-based vaccine generated neutralizing antibodies against the Wuhan and Omicron BA.2 variants but not the distinct Omicron BQ.1 strain. Conversely, the monovalent BA.2-based vaccine induced neutralizing antibodies against both Omicron strains but not Wuhan. While the bivalent Wuhan and BA.2-based vaccine was effective against strains containing the same antigens, it was insufficient to neutralize the distinctive BQ.1 strain at a small dosage. Interpretation: These findings suggest that the vaccine composition should closely match the circulating SARS-CoV-2 strain to elicit the optimal neutralizing antibody response and include the appropriate dosage. Moreover, this study did not find additional advantages of using the bivalent form over the monovalent form for the vaccination against a single prevailing SARS-CoV-2 strain. Full article
(This article belongs to the Special Issue SARS-CoV-2 Infections; Treatment and Development of Vaccine)
Show Figures

Figure 1

18 pages, 2445 KiB  
Article
Immunogenicity and Neutralization of Recombinant Vaccine Candidates Expressing F and G Glycoproteins against Nipah Virus
by Seo Young Moon, Rochelle A. Flores, Min Su Yim, Heeji Lim, Seungyeon Kim, Seung Yun Lee, Yoo-kyoung Lee, Jae-Ouk Kim, Hyejin Park, Seong Eun Bae, In-Ohk Ouh and Woo H. Kim
Vaccines 2024, 12(9), 999; https://doi.org/10.3390/vaccines12090999 - 31 Aug 2024
Cited by 2 | Viewed by 2312
Abstract
Nipah virus (NiV), of the Paramyxoviridae family, causes highly fatal infections in humans and is associated with severe neurological and respiratory diseases. Currently, no commercial vaccine is available for human use. Here, eight structure-based mammalian-expressed recombinant proteins harboring the NiV surface proteins, fusion [...] Read more.
Nipah virus (NiV), of the Paramyxoviridae family, causes highly fatal infections in humans and is associated with severe neurological and respiratory diseases. Currently, no commercial vaccine is available for human use. Here, eight structure-based mammalian-expressed recombinant proteins harboring the NiV surface proteins, fusion glycoprotein (F), and the major attachment glycoprotein (G) were produced. Specifically, prefusion NiV-F and/or NiV-G glycoproteins expressed in monomeric, multimeric (trimeric F and tetra G), or chimeric forms were evaluated for their properties as sub-unit vaccine candidates. The antigenicity of the recombinant NiV glycoproteins was evaluated in intramuscularly immunized mice, and the antibodies in serum were assessed. Predictably, all homologous immunizations exhibited immunogenicity, and neutralizing antibodies to VSV-luciferase-based pseudovirus expressing NiV-GF glycoproteins were found in all groups. Comparatively, neutralizing antibodies were highest in vaccines designed in their multimeric structures and administered as bivalent (GMYtet + GBDtet) and trivalent (Ftri + GMYtet + GBDtet). Additionally, while all adjuvants were able to elicit an immunogenic response in vaccinated groups, bivalent (GMYtet + GBDtet) and trivalent (Ftri + GMYtet + GBDtet) induced more potent neutralizing antibodies when administered with oil-in-water nano-emulsion adjuvant, AddaS03. For all experiments, the bivalent GMYtet + GBDtet was the most immunogenic vaccine candidate. Results from this study highlight the potential use of these mammalian-expressed recombinant NiV as vaccine candidates, deserving further exploration. Full article
Show Figures

Figure 1

15 pages, 3195 KiB  
Article
Vaccine Based on Recombinant Fusion Protein Combining Hepatitis B Virus PreS with SARS-CoV-2 Wild-Type- and Omicron-Derived Receptor Binding Domain Strongly Induces Omicron-Neutralizing Antibodies in a Murine Model
by Pia Gattinger, Bernhard Kratzer, Al Nasar Ahmed Sehgal, Anna Ohradanova-Repic, Laura Gebetsberger, Gabor Tajti, Margarete Focke-Tejkl, Mirjam Schaar, Verena Fuhrmann, Lukas Petrowitsch, Walter Keller, Sandra Högler, Hannes Stockinger, Winfried F. Pickl and Rudolf Valenta
Vaccines 2024, 12(3), 229; https://doi.org/10.3390/vaccines12030229 - 23 Feb 2024
Cited by 2 | Viewed by 3048
Abstract
Background: COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a recurrent endemic disease affecting the whole world. Since November 2021, Omicron and its subvariants have dominated in the spread of the disease. In order to prevent severe courses [...] Read more.
Background: COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a recurrent endemic disease affecting the whole world. Since November 2021, Omicron and its subvariants have dominated in the spread of the disease. In order to prevent severe courses of disease, vaccines are needed to boost and maintain antibody levels capable of neutralizing Omicron. Recently, we produced and characterized a SARS-CoV-2 vaccine based on a recombinant fusion protein consisting of hepatitis B virus (HBV)-derived PreS and two SARS-CoV-2 wild-type RBDs. Objectives: To develop a PreS-RBD vaccine which induces high levels of Omicron-specific neutralizing antibodies. Methods: We designed, produced, characterized and compared strain-specific (wild-type: W-PreS-W; Omicron: O-PreS-O), bivalent (mix of W-PreS-W and O-PreS-O) and chimeric (i.e., W-PreS-O) SARS-CoV-2 protein subunit vaccines. Immunogens were characterized in vitro using protein chemical methods, mass spectrometry, and circular dichroism in combination with thermal denaturation and immunological methods. In addition, BALB/c mice were immunized with aluminum–hydroxide-adsorbed proteins and aluminum hydroxide alone (i.e., placebo) to study the specific antibody and cytokine responses, safety and Omicron neutralization. Results: Defined and pure immunogens could be produced in significant quantities as secreted and folded proteins in mammalian cells. The antibodies induced after vaccination with different doses of strain-specific, bivalent and chimeric PreS-RBD fusion proteins reacted with wild-type and Omicron RBD in a dose-dependent manner and resulted in a mixed Th1/Th2 immune response. Interestingly, the RBD-specific IgG levels induced with the different vaccines were comparable, but the W-PreS-O-induced virus neutralization titers against Omicron (median VNT50: 5000) were seven- and twofold higher than the W-PreS-W- and O-PreS-O-specific ones, respectively, and they were six-fold higher than those of the bivalent vaccine. Conclusion: Among the tested immunogens, the chimeric PreS-RBD subunit vaccine, W-PreS-O, induced the highest neutralizing antibody titers against Omicron. Thus, W-PreS-O seems to be a highly promising COVID-19 vaccine candidate for further preclinical and clinical evaluation. Full article
(This article belongs to the Special Issue Research on Immune Response and Vaccines)
Show Figures

Figure 1

10 pages, 1295 KiB  
Article
Long-Term Analyses of SARS-CoV-2 Humoral and T Cell Responses and Breakthrough SARS-CoV-2 Infections after Two Doses of BNT162b2 Followed by mRNA-1273 and Bivalent Omicron-Adapted BNT162b2 Vaccines: A Prospective Study over 2 Years in Non-Immunocompromised Individuals
by Alejo Erice, Lola Prieto and Cristina Caballero
Vaccines 2023, 11(12), 1835; https://doi.org/10.3390/vaccines11121835 - 10 Dec 2023
Cited by 2 | Viewed by 3311
Abstract
Long-term analyses of the immune response following SARS-CoV-2 mRNA vaccines are essential to determining its characteristics and providing the basis for vaccination strategies. We conducted a prospective study in a cohort of 268 healthy adults followed for >2 years after two doses of [...] Read more.
Long-term analyses of the immune response following SARS-CoV-2 mRNA vaccines are essential to determining its characteristics and providing the basis for vaccination strategies. We conducted a prospective study in a cohort of 268 healthy adults followed for >2 years after two doses of BNT162b2. Antibodies targeting the receptor-binding domain of the S1 subunit of the spike of SARS-CoV-2 (anti-RBD) were measured at eight time points; T cell response was analyzed using an interferon-γ release assay. A total of 248 (93%) subjects received mRNA-1273 on month 9; 93 (35%) received the bivalent Omicron-adapted BNT162b2 vaccine between months 19 and 26. Breakthrough infections occurred in 215 (80%) participants, with frequencies unaffected by the additional vaccines. Anti-RBD declined over the initial 9 months, increased after mRNA-1273, and declined gradually thereafter. In 50 (17%) previously infected subjects, anti-RBD levels were significantly higher up to month 9 (p < 0.05) but subsequently declined below those of uninfected individuals. Anti-RBD titers protective against SARS-CoV-2 could not be defined. Most subjects developed a positive T cell response that remained after 26 months. Waning of protection against SARS-CoV-2 infection occurred over time, resulting in non-severe breakthrough infections in most participants. The evolution of anti-RBD suggests modulation of the immune response through immune imprinting. Full article
(This article belongs to the Special Issue Antibody Research in the Era of COVID-19)
Show Figures

Figure 1

11 pages, 1559 KiB  
Brief Report
A Triple Gene-Deleted Pseudorabies Virus-Vectored Subunit PCV2b and CSFV Vaccine Protect Pigs against a Virulent CSFV Challenge
by Ediane Silva, Elizabeth Medina-Ramirez, Selvaraj Pavulraj, Douglas P. Gladue, Manuel Borca and Shafiqul I. Chowdhury
Viruses 2023, 15(11), 2143; https://doi.org/10.3390/v15112143 - 25 Oct 2023
Cited by 1 | Viewed by 1913
Abstract
Classical swine fever (CSF) remains one of the most economically significant viral diseases affecting domestic pigs and wild boars worldwide. To develop a safe and effective vaccine against CSF, we have constructed a triple gene-deleted pseudorabies virus (PRVtmv)-vectored bivalent subunit vaccine against porcine [...] Read more.
Classical swine fever (CSF) remains one of the most economically significant viral diseases affecting domestic pigs and wild boars worldwide. To develop a safe and effective vaccine against CSF, we have constructed a triple gene-deleted pseudorabies virus (PRVtmv)-vectored bivalent subunit vaccine against porcine circovirus type 2b (PCV2b) and CSFV (PRVtmv+). In this study, we determined the protective efficacy of the PRVtmv+ against virulent CSFV challenge in pigs. The results revealed that the sham-vaccinated control group pigs developed severe CSFV-specific clinical signs characterized by pyrexia and diarrhea, and became moribund on or before the seventh day post challenge (dpc). However, the PRVtmv+-vaccinated pigs survived until the day of euthanasia at 21 dpc. A few vaccinated pigs showed transient diarrhea but recovered within a day or two. One pig had a low-grade fever for a day but recovered. The sham-vaccinated control group pigs had a high level of viremia, severe lymphocytopenia, and thrombocytopenia. In contrast, the vaccinated pigs had a low–moderate degree of lymphocytopenia and thrombocytopenia on four dpc, but recovered by seven dpc. Based on the gross pathology, none of the vaccinated pigs had any CSFV-specific lesions. Therefore, our results demonstrated that the PRVtmv+ vaccinated pigs are protected against virulent CSFV challenge. Full article
(This article belongs to the Special Issue Strategies for Preventing Viral Diseases of Domestic Animals)
Show Figures

Figure 1

11 pages, 1861 KiB  
Article
Comparison of the Immune Responses to Different Formulations of BC02-Adjuvanted HPV Types 16 and 18 Bivalent Vaccines in Mice
by Junli Li, Huicong Xie, Lili Fu, Xiaonan Guo, Jiaxin Dong, Miao Xu, Guozhi Wang and Aihua Zhao
Vaccines 2023, 11(10), 1553; https://doi.org/10.3390/vaccines11101553 - 30 Sep 2023
Cited by 2 | Viewed by 1875
Abstract
To achieve maximum efficacy, vaccines, such as subunit, recombinant, and conjugate vaccines, necessitate the incorporation of immunostimulators/adjuvants. Adjuvants play a vital role in bolstering and extending the strength of the immune response while also influencing its type. As antigen and adjuvant formulations become [...] Read more.
To achieve maximum efficacy, vaccines, such as subunit, recombinant, and conjugate vaccines, necessitate the incorporation of immunostimulators/adjuvants. Adjuvants play a vital role in bolstering and extending the strength of the immune response while also influencing its type. As antigen and adjuvant formulations become more intricate, it becomes imperative to establish a well-characterized and robust formulation to ensure consistent and reproducible outcomes in preclinical and clinical studies. In the present study, an HPV bivalent vaccine was developed using a BC02 adjuvant in conjunction with HPV 16 and 18 L1 VLP antigens produced from an E. coli expression system. The study involved evaluating the adjuvant formulation and in vivo immunogenicity in mice. Remarkably, a medium-dose of BCG-CpG-DNA combined with a low-dose of aluminum hydroxide substantially enhanced the immunogenicity of HPV16 and 18 VLPs, resulting in improved cellular and humoral immune responses. Full article
(This article belongs to the Section Human Papillomavirus Vaccines)
Show Figures

Figure 1

11 pages, 1420 KiB  
Article
A Delta–Omicron Bivalent Subunit Vaccine Elicited Antibody Responses in Mice against Both Ancestral and Variant Strains of SARS-CoV-2
by Tiantian Wang, Jing Zheng, Huifang Xu, Zhongyi Wang, Peng Sun, Xuchen Hou, Xin Gong, Bin Zhang, Jun Wu and Bo Liu
Vaccines 2023, 11(10), 1539; https://doi.org/10.3390/vaccines11101539 - 28 Sep 2023
Cited by 2 | Viewed by 1533
Abstract
Continued mutation of the SARS-CoV-2 genome has led to multiple waves of COVID-19 infections, and new variants have continued to emerge and dominate. The emergence of Omicron and its subvariants has substantially increased the infectivity of SARS-CoV-2. RBD genes of the wild-type SARS-CoV-2 [...] Read more.
Continued mutation of the SARS-CoV-2 genome has led to multiple waves of COVID-19 infections, and new variants have continued to emerge and dominate. The emergence of Omicron and its subvariants has substantially increased the infectivity of SARS-CoV-2. RBD genes of the wild-type SARS-CoV-2 strain and the Delta, Omicron BA.1 and Omicron BA.2 variants were used to construct plasmids and express the proteins in glycoengineered Pichia pastoris. A stable 4 L-scale yeast fermentation and purification process was established to obtain high-purity RBD proteins with a complex glycoform N-glycosyl structure that was fucose-free. The RBD glycoproteins were combined with two adjuvants, Al(OH)3 and CpG, which mitigated the typical disadvantage of low immunogenicity associated with recombinant subunit vaccines. To improve the broad-spectrum antiviral activity of the candidate vaccine, Delta RBD proteins were mixed with BA.2 RBD proteins at a ratio of 1:1 and then combined with two adjuvants—Al(OH)3 and CpG—to prepare a bivalent vaccine. The bivalent vaccine effectively induced mice to produce pseudovirus-neutralizing antibodies against SARS-CoV-2 variants, Delta, Beta, and Omicron sublineages BA.1, BA.2, BA.5. The bivalent vaccine could neutralize the authentic wild-type SARS-CoV-2 strain, Delta, BA.1.1, BA.2.2, BA2.3, and BA.2.12.1 viruses, providing a new approach for improving population immunity and delivering broad-spectrum protection under the current epidemic conditions. Full article
Show Figures

Figure 1

21 pages, 2617 KiB  
Article
Recombinant Protein Vaccines Formulated with Enantio-Specific Cationic Lipid R-DOTAP Induce Protective Cellular and Antibody-Mediated Immune Responses in Mice
by Siva K. Gandhapudi, Hua Shi, Martin R. Ward, John Peyton Bush, Margarita Avdiushko, Karuna Sundarapandiyan, Lauren V. Wood, Mania Dorrani, Afsheen Fatima, Joe Dervan, Frank Bedu-Addo, Greg Conn, Ted M. Ross and Jerold G. Woodward
Viruses 2023, 15(2), 432; https://doi.org/10.3390/v15020432 - 4 Feb 2023
Cited by 7 | Viewed by 3438
Abstract
Adjuvants are essential components of subunit vaccines added to enhance immune responses to antigens through immunomodulation. Very few adjuvants have been approved for human use by regulatory agencies due to safety concerns. Current subunit vaccine adjuvants approved for human use are very effective [...] Read more.
Adjuvants are essential components of subunit vaccines added to enhance immune responses to antigens through immunomodulation. Very few adjuvants have been approved for human use by regulatory agencies due to safety concerns. Current subunit vaccine adjuvants approved for human use are very effective in promoting humoral immune responses but are less effective at promoting T-cell immunity. In this study, we evaluated a novel pure enantio-specific cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (R-DOTAP) as an immunomodulator for subunit vaccines capable of inducing both humoral- and cellular-mediated immunity. Using recombinant protein antigens derived from SARS-CoV2 spike or novel computationally optimized broadly reactive influenza antigen (COBRA) proteins, we demonstrated that R-DOTAP nanoparticles promoted strong cellular- and antibody-mediated immune responses in both monovalent and bivalent vaccines. R-DOTAP-based vaccines induced antigen-specific and polyfunctional CD8+ and CD4+ effector T cells and memory T cells, respectively. Antibody responses induced by R-DOTAP showed a balanced Th1/Th2 type immunity, neutralizing activity and protection of mice from challenge with live SARS-CoV2 or influenza viruses. R-DOTAP also facilitated significant dose sparing of the vaccine antigens. These studies demonstrate that R-DOTAP is an excellent immune stimulator for the production of next-generation subunit vaccines containing multiple recombinant proteins. Full article
(This article belongs to the Special Issue Advances in Universal Influenza Vaccines and Therapies)
Show Figures

Figure 1

14 pages, 2137 KiB  
Article
S Trimer Derived from SARS-CoV-2 B.1.351 and B.1.618 Induced Effective Immune Response against Multiple SARS-CoV-2 Variants
by Hongye Wang, Zengshuai Wang, Liang Ma, Xiaoyong Zhu, Bingxiang Li, Yuhang Huang, Jingwen Li, Ming Sun, Li Shi and Yufeng Yao
Vaccines 2023, 11(1), 193; https://doi.org/10.3390/vaccines11010193 - 16 Jan 2023
Cited by 5 | Viewed by 2448
Abstract
The spread of SARS-CoV-2 and its variants leads to a heavy burden on healthcare and the global economy, highlighting the need for developing vaccines that induce broad immunity against coronavirus. Here, we explored the immunogenicity of monovalent or bivalent spike (S) trimer subunit [...] Read more.
The spread of SARS-CoV-2 and its variants leads to a heavy burden on healthcare and the global economy, highlighting the need for developing vaccines that induce broad immunity against coronavirus. Here, we explored the immunogenicity of monovalent or bivalent spike (S) trimer subunit vaccines derived from SARS-CoV-2 B.1.351 (S1-2P) or/and B.1. 618 (S2-2P) in Balb/c mice. Both S1-2P and S2-2P elicited anti-spike antibody responses, and alum adjuvant induced higher levels of antibodies than Addavax adjuvant. The dose responses of the vaccines on immunogenicity were evaluated in vivo. A low dose of 5 μg monovalent recombinant protein or 2.5 μg bivalent vaccine triggered high-titer antibodies that showed cross-activity to Beta, Delta, and Gamma RBD in mice. The third immunization dose could boost (1.1 to 40.6 times) high levels of cross-binding antibodies and elicit high titers of neutralizing antibodies (64 to 1024) prototype, Beta, Delta, and Omicron variants. Furthermore, the vaccines were able to provoke a Th1-biased cellular immune response. Significantly, at the same antigen dose, S1-2P immune sera induced stronger broadly neutralizing antibodies against prototype, Beta, Delta, and Omicron variants compared to that induced by S2-2P. At the same time, the low dose of bivalent vaccine containing S2-2P and S1-2P (2.5 μg for each antigen) significantly improved the cross-neutralizing antibody responses. In conclusion, our results showed that monovalent S1-2P subunit vaccine or bivalent vaccine (S1-2P and S2-2P) induced potent humoral and cellular responses against multiple SARS-CoV-2 variants and provided valuable information for the development of recombinant protein-based SARS-CoV-2 vaccines that protect against emerging SARS-CoV-2 variants. Full article
(This article belongs to the Special Issue Safety and Efficacy of COVID-19 Vaccine)
Show Figures

Figure 1

11 pages, 1570 KiB  
Article
Rapid Transient Expression of Receptor-Binding Domain of SARS-CoV-2 and the Conserved M2e Peptide of Influenza A Virus Linked to Flagellin in Nicotiana benthamiana Plants Using Self-Replicating Viral Vector
by Eugenia S. Mardanova, Roman Y. Kotlyarov and Nikolai V. Ravin
Plants 2022, 11(24), 3425; https://doi.org/10.3390/plants11243425 - 8 Dec 2022
Cited by 4 | Viewed by 2146
Abstract
The development of recombinant vaccines against SARS-CoV-2 and influenza A is an important task. The combination of the conserved influenza A antigen, the extracellular domain of the transmembrane protein M2 (M2e), and the receptor-binding domain of the SARS-CoV-2 spike glycoprotein (RBD) provides the [...] Read more.
The development of recombinant vaccines against SARS-CoV-2 and influenza A is an important task. The combination of the conserved influenza A antigen, the extracellular domain of the transmembrane protein M2 (M2e), and the receptor-binding domain of the SARS-CoV-2 spike glycoprotein (RBD) provides the opportunity to develop a bivalent vaccine against these infections. The fusion of antigens with bacterial flagellin, the ligand for Toll-like receptor 5 and potent mucosal adjuvant, may increase the immunogenicity of the candidate vaccines and enable intranasal immunization. In this study, we report the transient expression of RBD alone, RBD coupled with four copies of M2e, and fusions of RBD and RBD-4M2e with flagellin in Nicotiana benthamiana plants using the self-replicating potato virus X-based vector pEff. The yields of purified recombinant proteins per gram of fresh leaf tissue were about 20 µg for RBD, 50–60 µg for RBD-4M2e and the fusion of RBD with flagellin, and about 90 µg for RBD-4M2e fused to flagellin. Targeting to the endoplasmic reticulum enabled the production of glycosylated recombinant proteins comprising RBD. Our results show that plant-produced RBD and RBD-4M2e could be further used for the development of subunit vaccines against COVID-19 and a bivalent vaccine against COVID-19 and influenza A, while flagellin fusions could be used for the development of intranasal vaccines. Full article
(This article belongs to the Special Issue Plants as Molecular Farming Factories)
Show Figures

Figure 1

Back to TopTop