Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = bluff erosion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 19341 KB  
Article
Landslide at the River’s Edge: Alum Bluff, Apalachicola River, Florida
by Joann Mossa and Yin-Hsuen Chen
Geosciences 2025, 15(4), 130; https://doi.org/10.3390/geosciences15040130 - 1 Apr 2025
Cited by 1 | Viewed by 1175
Abstract
When rivers impinge on the steep bluffs of valley walls, dynamic changes stem from a combination of fluvial and mass wasting processes. This study identifies the geomorphic changes, drivers, and timing of a landslide adjacent to the Apalachicola River at Alum Bluff, the [...] Read more.
When rivers impinge on the steep bluffs of valley walls, dynamic changes stem from a combination of fluvial and mass wasting processes. This study identifies the geomorphic changes, drivers, and timing of a landslide adjacent to the Apalachicola River at Alum Bluff, the tallest natural geological exposure in Florida at ~40 m, comprising horizontal sediments of mixed lithology. We used hydrographic surveys from 1960 and 2010, two sets of LiDAR from 2007 and 2018, historical aerial, drone, and ground photography, and satellite imagery to interpret changes at this bluff and river bottom. Evidence of slope failure includes a recessed upper section with concave scarps and debris fans in the lower section with subaqueous features including two occlusions and a small island exposed from the channel bottom at lower water levels. Aerial photos and satellite images indicate that the failure occurred in at least two phases in early 2013 and 2015. The loss in volume in the 11-year interval, dominantly from the upper portion of the bluff, was ~72,750 m3 and was offset by gains of ~14,760 m3 at the lower portion of the bluff, suggesting that nearly 80% of the material traveled into the river, causing changes in riverbed morphology from the runout. Despite being along a cutbank and next to the scour pool of a large meandering river, this failure was not driven by floods and the associated lateral erosion, but instead by rainfall in noncohesive sediments at the upper portion of the bluff. This medium-magnitude landslide is now the second documented landslide in Florida. Full article
(This article belongs to the Special Issue Landslides Runout: Recent Perspectives and Advances)
Show Figures

Figure 1

17 pages, 6026 KB  
Article
Formalization for Subsequent Computer Processing of Kara Sea Coastline Data
by Daria Bogatova and Stanislav Ogorodov
Data 2024, 9(12), 145; https://doi.org/10.3390/data9120145 - 9 Dec 2024
Cited by 1 | Viewed by 947
Abstract
This study aimed to develop a methodological framework for predicting shoreline dynamics using machine learning techniques, focusing on analyzing generalized data without distinguishing areas with higher or lower retreat rates. Three sites along the southwestern Kara Sea coast were selected for this investigation. [...] Read more.
This study aimed to develop a methodological framework for predicting shoreline dynamics using machine learning techniques, focusing on analyzing generalized data without distinguishing areas with higher or lower retreat rates. Three sites along the southwestern Kara Sea coast were selected for this investigation. The study analyzed key coastal features, including lithology, permafrost, and geomorphology, using a combination of field studies and remote sensing data. Essential datasets were compiled and formatted for computer-based analysis. These datasets included information on permafrost and the geomorphological characteristics of the coastal zone, climatic factors influencing the shoreline, and measurements of bluff top positions and retreat rates over defined time periods. The positions of the bluff tops were determined through a combination of imagery with varying resolutions and field measurements. A novel aspect of the study involved employing geostatistical methods to analyze erosion rates, providing new insights into the shoreline dynamics. The data analysis allowed us to identify coastal areas experiencing the most significant changes. By continually refining neural network models with these datasets, we can improve our understanding of the complex interactions between natural factors and shoreline evolution, ultimately aiding in developing effective coastal management strategies. Full article
Show Figures

Figure 1

13 pages, 3335 KB  
Article
Abrupt Late Holocene Closure of San Elijo Lagoon, Northern San Diego County, California
by William R. Laton and John H. Foster
Coasts 2023, 3(3), 227-239; https://doi.org/10.3390/coasts3030014 - 30 Aug 2023
Viewed by 1930
Abstract
The San Elijo Lagoon experienced a sudden shift in sedimentation type around 1000 AD, as evidenced by the 14C dating. This shift is marked by a sharp boundary between a lower layer of medium to fine sand and an upper layer of [...] Read more.
The San Elijo Lagoon experienced a sudden shift in sedimentation type around 1000 AD, as evidenced by the 14C dating. This shift is marked by a sharp boundary between a lower layer of medium to fine sand and an upper layer of dark, silty clay that reflects the lagoon closure. The dated sediments also reveal a history of marine conditions in the lagoon basin since about 7400 ± 140 years before the present (ybp), when the sea level was −12.2 meters (m), and the shoreline was 400 m away from the current location. The sea level rose at a rate of 2.84 m per 1000 years until about 4170 ± 100 ybp. After that, the rising sea level slowed and reached the present level about 3100 years ago. However, the lagoon remained closed after about 730 to 1180 ybp, with only fine organic sediment accumulating in the basin, which coincides with a severe drought in the southwest around 1150 AD. A higher sedimentation rate is interpreted from bluff erosion as seen after 520 ± 40 ybp but without enough stream flow to force the reopening of the lagoon. Full article
Show Figures

Figure 1

28 pages, 29670 KB  
Article
Coastal Dynamics at Kharasavey Key Site, Kara Sea, Based on Remote Sensing Data
by Georgii Kazhukalo, Anna Novikova, Natalya Shabanova, Mikhail Drugov, Stanislav Myslenkov, Pavel Shabanov, Nataliya Belova and Stanislav Ogorodov
Remote Sens. 2023, 15(17), 4199; https://doi.org/10.3390/rs15174199 - 26 Aug 2023
Cited by 4 | Viewed by 2058
Abstract
In recent decades, acceleration of coastal erosion has been observed at many key sites of the Arctic region. Coastal dynamics of both erosional and accretional stretches at Kharasavey, Kara Sea, was studied using multi-temporal remote sensing data covering the period from 1964 to [...] Read more.
In recent decades, acceleration of coastal erosion has been observed at many key sites of the Arctic region. Coastal dynamics of both erosional and accretional stretches at Kharasavey, Kara Sea, was studied using multi-temporal remote sensing data covering the period from 1964 to 2022. Cross-proxy analyses of the interplay between coastal dynamics and regional (wave and thermal action) and local (geomorphic and lithological features; technogenic impact) drivers were supported by cluster analysis and wind–wave modelling via the Popov–Sovershaev method and WaveWatch III. Ice-rich permafrost bluffs and accretional sandy beaches exhibited a tendency towards persistent erosion (−1.03 m/yr and −0.42 m/yr, respectively). Shoreline progradation occurred locally near Cape Burunniy (6% of the accretional stretch) and may be due to sediment flux reversals responding to sea-ice decline. Although the mean rates of erosion were decreasing at a decadal scale, cluster analysis captured a slight increase in the retreat for 71% of the erosional stretch, which is apparently related to the forcing of wind–wave and thermal energy. Erosional hotspots (up to −7.9 m/yr) occurred mainly in the alignment of Cape Kharasavey and were predominantly caused by direct human impact. The presented study highlights the non-linear interaction of the Arctic coastal change and environmental drivers that require further upscaling of the applied models and remote sensing data. Full article
(This article belongs to the Special Issue Earth Observation of Study on Coastal Geomorphic Evolution)
Show Figures

Figure 1

26 pages, 36367 KB  
Article
Investigating Geomorphic Change Using a Structure from Motion Elevation Model Created from Historical Aerial Imagery: A Case Study in Northern Lake Michigan, USA
by Jessica D. DeWitt and Francis X. Ashland
ISPRS Int. J. Geo-Inf. 2023, 12(4), 173; https://doi.org/10.3390/ijgi12040173 - 20 Apr 2023
Cited by 2 | Viewed by 2767
Abstract
South Manitou Island, part of Sleeping Bear Dunes National Lakeshore in northern Lake Michigan, is a post-glacial lacustrine landscape with substantial geomorphic changes including landslides, shoreline and bluff retreat, and sand dune movement. These changes involve interrelated processes, and are influenced to different [...] Read more.
South Manitou Island, part of Sleeping Bear Dunes National Lakeshore in northern Lake Michigan, is a post-glacial lacustrine landscape with substantial geomorphic changes including landslides, shoreline and bluff retreat, and sand dune movement. These changes involve interrelated processes, and are influenced to different extents by lake level, climate change, and land use patterns, among other factors. The utility of DEM of Difference (DoD) and other terrain analyses were investigated as a means of understanding interrelated geomorphologic changes and processes across multiple decades and at multiple scales. A 1m DEM was developed from 1955 historical aerial imagery using Structure from Motion Multi-View Stereo (SfM-MVS) and compared to a 2016 lidar-based DEM to quantify change. Landslides, shoreline erosion, bluff retreat, and sand dune movement were investigated throughout South Manitou Island. While the DoD indicates net loss or gain, interpretation of change must take into consideration the SfM-MVS source of the historical DEM. In the case of landslides, where additional understanding may be gleaned through review of the timing of lake high- and lowstands together with DoD values. Landscape-scale findings quantified cumulative feedbacks between interrelated processes. These findings could be upscaled to assess changes across the entire park, informing future change investigations and land management decisions. Full article
Show Figures

Figure 1

45 pages, 6648 KB  
Article
A Process-Based Model for Arctic Coastal Erosion Driven by Thermodenudation and Thermoabrasion Combined and including Nearshore Morphodynamics
by Mohammad Akhsanul Islam and Raed Lubbad
J. Mar. Sci. Eng. 2022, 10(11), 1602; https://doi.org/10.3390/jmse10111602 - 31 Oct 2022
Cited by 2 | Viewed by 2420
Abstract
Various models have recently been developed to describe Arctic coastal erosion. Current process-based models simulate multiple physical processes and combine them interactively to resemble the unique mechanism of Arctic coastal erosion. One limitation of such models is the difficulty of including hydrodynamic forces. [...] Read more.
Various models have recently been developed to describe Arctic coastal erosion. Current process-based models simulate multiple physical processes and combine them interactively to resemble the unique mechanism of Arctic coastal erosion. One limitation of such models is the difficulty of including hydrodynamic forces. The available coastal erosion models developed for warmer climates cannot be applied to Arctic coastal erosion, where permafrost is a significant environmental parameter. This paper explains a methodology that allows us to use the models designed for warmer climates to simulate Arctic coastal erosion. The open-source software XBeach is employed to simulate the waves, sediment transport and morphological changes. We developed different submodules for the processes unique to Arctic coasts, such as thawing–freezing, slumping, wave-cut niche, bluff failure, etc. The submodules are coupled with XBeach to enable concurrent simulation of the two mechanisms of Arctic coastal erosion, namely thermodenudation and thermoabrasion. Some of the model’s input parameters are calibrated using field measurements from the Arctic coast of Kara Sea, Russia. The model is then validated by another set of mutually exclusive field measurements under different morphological conditions from the study area. The sensitivity analysis of the model indicates that nearshore waves are an important driver of erosion, and the inclusion of nearshore hydrodynamics and sediment transport are essential for accurately modelling the erosion mechanism. Full article
(This article belongs to the Special Issue Interdisciplinary Approaches to Arctic Hazards and Risks)
Show Figures

Figure 1

25 pages, 7172 KB  
Article
Seven Decades of Coastal Change at Barter Island, Alaska: Exploring the Importance of Waves and Temperature on Erosion of Coastal Permafrost Bluffs
by Ann E. Gibbs, Li H. Erikson, Benjamin M. Jones, Bruce M. Richmond and Anita C. Engelstad
Remote Sens. 2021, 13(21), 4420; https://doi.org/10.3390/rs13214420 - 3 Nov 2021
Cited by 17 | Viewed by 4087
Abstract
Observational data of coastal change over much of the Arctic are limited largely due to its immensity, remoteness, harsh environment, and restricted periods of sunlight and ice-free conditions. Barter Island, Alaska, is one of the few locations where an extensive, observational dataset exists, [...] Read more.
Observational data of coastal change over much of the Arctic are limited largely due to its immensity, remoteness, harsh environment, and restricted periods of sunlight and ice-free conditions. Barter Island, Alaska, is one of the few locations where an extensive, observational dataset exists, which enables a detailed assessment of the trends and patterns of coastal change over decadal to annual time scales. Coastal bluff and shoreline positions were delineated from maps, aerial photographs, and satellite imagery acquired between 1947 and 2020, and at a nearly annual rate since 2004. Rates and patterns of shoreline and bluff change varied widely over the observational period. Shorelines showed a consistent trend of southerly erosion and westerly extension of the western termini of Barter Island and Bernard Spit, which has accelerated since at least 2000. The 3.2 km long stretch of ocean-exposed coastal permafrost bluffs retreated on average 114 m and at a maximum of 163 m at an average long-term rate (70 year) of 1.6 ± 0.1 m/yr. The long-term retreat rate was punctuated by individual years with retreat rates up to four times higher (6.6 ± 1.9 m/yr; 2012–2013) and both long-term (multidecadal) and short-term (annual to semiannual) rates showed a steady increase in retreat rates through time, with consistently high rates since 2015. A best-fit polynomial trend indicated acceleration in retreat rates that was independent of the large spatial and temporal variations observed on an annual basis. Rates and patterns of bluff retreat were correlated to incident wave energy and air and water temperatures. Wave energy was found to be the dominant driver of bluff retreat, followed by sea surface temperatures and warming air temperatures that are considered proxies for evaluating thermo-erosion and denudation. Normalized anomalies of cumulative wave energy, duration of open water, and air and sea temperature showed at least three distinct phases since 1979: a negative phase prior to 1987, a mixed phase between 1987 and the early to late 2000s, followed by a positive phase extending to 2020. The duration of the open-water season has tripled since 1979, increasing from approximately 40 to 140 days. Acceleration in retreat rates at Barter Island may be related to increases in both thermodenudation, associated with increasing air temperature, and the number of niche-forming and block-collapsing episodes associated with higher air and water temperature, more frequent storms, and longer ice-free conditions in the Beaufort Sea. Full article
Show Figures

Graphical abstract

20 pages, 8576 KB  
Article
A Probabilistic Model of Coastal Bluff-Top Erosion in High Latitudes Due to Thermoabrasion: A Case Study from Baydaratskaya Bay in the Kara Sea
by Mohammad Akhsanul Islam, Raed Lubbad and Mohammad Saud Afzal
J. Mar. Sci. Eng. 2020, 8(3), 169; https://doi.org/10.3390/jmse8030169 - 3 Mar 2020
Cited by 6 | Viewed by 2888
Abstract
Arctic coastal erosion demands more attention as the global climate continues to change. Unlike those along low-latitude and mid-latitude, sediments along Arctic coastlines are often frozen, even during summer. Thermal and mechanical factors must be considered together when analysing Arctic coastal erosion. Two [...] Read more.
Arctic coastal erosion demands more attention as the global climate continues to change. Unlike those along low-latitude and mid-latitude, sediments along Arctic coastlines are often frozen, even during summer. Thermal and mechanical factors must be considered together when analysing Arctic coastal erosion. Two major erosion mechanisms in the Arctic have been identified: thermodenudation and thermoabrasion. Field observations of Arctic coastal erosion are available in Baydaratskaya Bay in the Kara Sea. The objective of this study is to develop a probabilistic model of thermoabrasion to simulate the measured coastal erosion at two sites where observations suggest thermoabrasion is dominant. The model simulates two time periods: (a) the summer of 2013 (2012–2013) and (b) the summer of 2017 (2016–2017). A probabilistic analysis is performed to quantify the uncertainties in the model results. The input parameters are assumed to follow normal and lognormal distributions with a 10% coefficient of variation. Monte Carlo simulation is applied to determine the erosion rates for the two different cases. The simulation results agree reasonably well with the field observations. In addition, a sensitivity analysis is performed, revealing a very high sensitivity of the model to sea-level changes. The model indicates that the relation between sea-level rise and thermoabrasional erosion is exponential. Full article
(This article belongs to the Special Issue Coastal Hazards Assessment in Cold Regions)
Show Figures

Figure 1

22 pages, 11552 KB  
Article
A Method to Extract Measurable Indicators of Coastal Cliff Erosion from Topographical Cliff and Beach Profiles: Application to North Norfolk and Suffolk, East England, UK
by Pablo Muñoz López, Andrés Payo, Michael A. Ellis, Francisco Criado-Aldeanueva and Gareth Owen Jenkins
J. Mar. Sci. Eng. 2020, 8(1), 20; https://doi.org/10.3390/jmse8010020 - 2 Jan 2020
Cited by 13 | Viewed by 5592
Abstract
Recession of coastal cliffs (bluffs) is a significant problem globally, as around 80% of Earth’s coastlines are classified as sea cliffs. It has long been recognised that beaches control wave energy dissipation on the foreshore and, as a result, can provide protection from [...] Read more.
Recession of coastal cliffs (bluffs) is a significant problem globally, as around 80% of Earth’s coastlines are classified as sea cliffs. It has long been recognised that beaches control wave energy dissipation on the foreshore and, as a result, can provide protection from shoreline and cliff erosion. However, there have been few studies that have quantified the relationship between beach levels and cliff recession rates. One of the few quantitative studies has shown that there is a measurable relationship between the beach thickness (or beach wedge area (BWA) as a proxy for beach thickness) and the annual cliff top recession rate along the undefended coast of North Norfolk and Suffolk in eastern England, United Kingdom (UK). Additionally, previous studies also found that for profiles with low BWA, the annual cliff top recession rate frequency distribution follows a bimodal distribution. This observation suggests that as BWA increases, not only does cliff top recession rate become lower, but also more predictable, which has important implications for coastal stakeholders particularly for planning purposes at decadal and longer time scales. In this study, we have addressed some of the limitations of the previous analysis to make it more transferable to other study sites and applicable to longer time scales. In particular, we have automatised the extraction of cliff tops, toe locations, and BWA from elevation profiles. Most importantly, we have verified the basic assumption of space-for-time substitution in three different ways: (1) Extending the number or years analysed in a previous study from 11 to 24 years, (2) extending the number of locations at which cliff top recession rate and BWA are calculated, and (3) exploring the assumption of surface material remaining unchanged over time by using innovative 3D subsurface modelling. The present study contributes to our understanding of a poorly known aspect of cliff–beach interaction and outlines a quantitative approach that allows for simple analysis of widely available topographical elevation profiles, enabling the extraction of measurable indicators of coastal erosion. Full article
Show Figures

Figure 1

22 pages, 18416 KB  
Article
Documenting a Century of Coastline Change along Central California and Associated Challenges: From the Qualitative to the Quantitative
by Gary Griggs, Lida Davar and Borja G. Reguero
Water 2019, 11(12), 2648; https://doi.org/10.3390/w11122648 - 15 Dec 2019
Cited by 18 | Viewed by 11363
Abstract
Wave erosion has moved coastal cliffs and bluffs landward over the centuries. Now climate change-induced sea-level rise (SLR) and the changes in wave action are accelerating coastline retreat around the world. Documenting the erosion of cliffed coasts and projecting the rate of coastline [...] Read more.
Wave erosion has moved coastal cliffs and bluffs landward over the centuries. Now climate change-induced sea-level rise (SLR) and the changes in wave action are accelerating coastline retreat around the world. Documenting the erosion of cliffed coasts and projecting the rate of coastline retreat under future SLR scenarios are more challenging than historical and future shoreline change studies along low-lying sandy beaches. The objective of this research was to study coastal erosion of the West Cliff Drive area in Santa Cruz along the Central California Coast and identify the challenges in coastline change analysis. We investigated the geological history, geomorphic differences, and documented cliff retreat to assess coastal erosion qualitatively. We also conducted a quantitative assessment of cliff retreat through extracting and analyzing the coastline position at three different times (1953, 1975, and 2018). The results showed that the total retreat of the West Cliff Drive coastline over 65 years ranges from 0.3 to 32 m, and the maximum cliff retreat rate was 0.5 m/year. Geometric errors, the complex profiles of coastal cliffs, and irregularities in the processes of coastal erosion, including the undercutting of the base of the cliff and formation of caves, were some of the identified challenges in documenting historical coastline retreat. These can each increase the uncertainty of calculated retreat rates. Reducing the uncertainties in retreat rates is an essential initial step in projecting cliff and bluff retreat under future SLR more accurately and in developing a practical adaptive management plan to cope with the impacts of coastline change along this highly populated edge. Full article
(This article belongs to the Special Issue Coastal Dynamic and Evolution)
Show Figures

Figure 1

30 pages, 7262 KB  
Article
Dynamics of Permafrost Coasts of Baydaratskaya Bay (Kara Sea) Based on Multi-Temporal Remote Sensing Data
by Anna Novikova, Nataliya Belova, Alisa Baranskaya, Daria Aleksyutina, Alexey Maslakov, Egor Zelenin, Natalia Shabanova and Stanislav Ogorodov
Remote Sens. 2018, 10(9), 1481; https://doi.org/10.3390/rs10091481 - 16 Sep 2018
Cited by 40 | Viewed by 7759
Abstract
Arctic coasts composed of frozen deposits are extremely sensitive to climate change and human impact. They retreat with average rates of 1–2 m per year, depending on climatic and permafrost conditions. In recent decades, retreat rates have shown a tendency to increase. In [...] Read more.
Arctic coasts composed of frozen deposits are extremely sensitive to climate change and human impact. They retreat with average rates of 1–2 m per year, depending on climatic and permafrost conditions. In recent decades, retreat rates have shown a tendency to increase. In this paper, we studied the coastal dynamics of two key sites (Ural and Yamal coasts) of Baydaratskaya Bay, Kara Sea, where a gas pipeline had been constructed. Based on multi-temporal aerial and satellite imagery, we identified coastal erosion rates at several time lapses, in natural conditions and under human impact, and discussed their temporal variability. In addition to planimetric (m/yr), we calculated volumetric (m3/m/yr) retreat rates of erosional coasts using ArcticDEM. We also estimated the influence of geomorphology, lithology, and permafrost structure of the coasts on spatial variations of their dynamics. Erosional coasts of the Ural key site retreat with higher mean rates (1.2 m/yr and 8.7 m3/m/yr) as compared to the Yamal key site (0.3 m/yr and 3.7 m3/m/yr) due to their exposure to higher open sea waves, more complex lithology, higher ice content and lower coastal bluffs. Since the 1960s, coastal retreat rates have been growing on both coasts of Baydaratskaya Bay; we relate this effect with Arctic climate warming. From the 1960s to 2005, such growth was moderate, while in 2005–2016 it became rapid, which may be explained by the enhanced wave and thermal action or by the onset of industrial development. The adjacent coastal segments, originally accumulative, remained relatively stable from the 1960s to 2005. After 2005, a considerable part of them began to retreat as a result of changing weather conditions and/or increasing human impact. Full article
(This article belongs to the Special Issue Remote Sensing of Dynamic Permafrost Regions)
Show Figures

Graphical abstract

21 pages, 24904 KB  
Article
Reducing High Flows and Sediment Loading through Increased Water Storage in an Agricultural Watershed of the Upper Midwest, USA
by Nate Mitchell, Karthik Kumarasamy, Se Jong Cho, Patrick Belmont, Brent Dalzell and Karen Gran
Water 2018, 10(8), 1053; https://doi.org/10.3390/w10081053 - 8 Aug 2018
Cited by 12 | Viewed by 5453
Abstract
Climate change, land clearing, and artificial drainage have increased the Minnesota River Basin’s (MRB) stream flows, enhancing erosion of channel banks and bluffs. Accelerated erosion has increased sediment loads and sedimentation rates downstream. High flows could be reduced through increased water storage (e.g., [...] Read more.
Climate change, land clearing, and artificial drainage have increased the Minnesota River Basin’s (MRB) stream flows, enhancing erosion of channel banks and bluffs. Accelerated erosion has increased sediment loads and sedimentation rates downstream. High flows could be reduced through increased water storage (e.g., wetlands or detention basins), but quantifying the effectiveness of such a strategy remains a challenge. We used the Soil and Water Assessment Tool (SWAT) to simulate changes in river discharge from various water retention site (WRS) implementation scenarios in the Le Sueur watershed, a tributary basin to the MRB. We also show how high flow attenuation can address turbidity issues by quantifying the impact on near-channel sediment loading in the watershed’s incised reaches. WRS placement in the watershed, hydraulic conductivity (K), and design depth were varied across 135 simulations. The dominant control on site performance is K, with greater flow reductions allowed by higher seepage rates and less frequent overflowing. Deeper design depths enhance flow reductions from sites with low K values. Differences between WRS placement scenarios are slight, suggesting that site placement is not a first-order control on overall performance in this watershed. Flow reductions exhibit power-law scaling with exceedance probability, enabling us to create generalized relationships between WRS extent and flow reductions that accurately reproduce our SWAT results and allow for more rapid evaluation of future scenarios. Overall, we show that increasing water storage within the Le Sueur watershed can be an effective management option for high flow and sediment load reduction. Full article
(This article belongs to the Special Issue Watershed Hydrology, Erosion and Sediment Transport Processes )
Show Figures

Figure 1

27 pages, 88372 KB  
Article
High Resolution Monitoring of River Bluff Erosion Reveals Failure Mechanisms and Geomorphically Effective Flows
by Sara Ann Kelly and Patrick Belmont
Water 2018, 10(4), 394; https://doi.org/10.3390/w10040394 - 28 Mar 2018
Cited by 17 | Viewed by 5339
Abstract
Using a combination of Structure from Motion and time lapse photogrammetry, we document rapid river bluff erosion occurring in the Greater Blue Earth River (GBER) basin, a muddy tributary to the sediment-impaired Minnesota River in south central Minnesota. Our datasets elucidated dominant bluff [...] Read more.
Using a combination of Structure from Motion and time lapse photogrammetry, we document rapid river bluff erosion occurring in the Greater Blue Earth River (GBER) basin, a muddy tributary to the sediment-impaired Minnesota River in south central Minnesota. Our datasets elucidated dominant bluff failure mechanisms and rates of bluff retreat in a transient system responding to ongoing streamflow increases and glacial legacy impacts. Specifically, we document the importance of fluvial scour, freeze–thaw, as well as other drivers of bluff erosion. We find that even small flows, a mere 30% of the two-year recurrence interval flow, are capable of causing bluff erosion. During our study period (2014–2017), the most erosion was associated with two large flood events with 13- and 25-year return periods. However, based on the frequency of floods and magnitude of bluff face erosion associated with floods over the last 78 years, the 1.2-year return interval flood has likely accomplished the most cumulative erosion, and is thus more geomorphically effective than larger magnitude floods. Flows in the GBER basin are nonstationary, increasing across the full range of return intervals. We find that management implications differ considerably depending on whether the bluff erosion-runoff power law exponent, γ, is greater than, equal to, or less than 1. Previous research has recommended installation of water retention sites in tributaries to the Minnesota River in order to reduce flows and sediment loading from river bluffs. Our findings support the notion that water retention would be an effective practice to reduce sediment loading and highlight the importance of managing for both runoff frequency and magnitude. Full article
(This article belongs to the Special Issue Watershed Hydrology, Erosion and Sediment Transport Processes )
Show Figures

Figure 1

20 pages, 7167 KB  
Article
Remote Sensing of River Erosion on the Colville River, North Slope Alaska
by Cole Payne, Santosh Panda and Anupma Prakash
Remote Sens. 2018, 10(3), 397; https://doi.org/10.3390/rs10030397 - 5 Mar 2018
Cited by 34 | Viewed by 9078
Abstract
The Colville is an Arctic river in the Alaska North Slope. The residents of Nuiqsut rely heavily on the Colville for their subsistence needs. Increased erosion has been reported on the Colville, especially along bluffs, which shaped the goals of this study: to [...] Read more.
The Colville is an Arctic river in the Alaska North Slope. The residents of Nuiqsut rely heavily on the Colville for their subsistence needs. Increased erosion has been reported on the Colville, especially along bluffs, which shaped the goals of this study: to use remote sensing techniques to map and quantify erosion rates and the volume of land loss at selected bluff sites along the main channel of the Colville, and to assess the suitability of automated methods of regional erosion monitoring. We used orthomosaics from high resolution aerial photos acquired in 1955 and 1979/1982, as well as high resolution WorldView-2 images from 2015 to quantify long-term erosion rates and the cubic volume of erosion. We found that, at the selected sites, erosion rates averaged 1 to 3.5 m per year. The erosion rate remained the same at one site and increased from 1955 to 2015 at two of the four sites. We estimated the volume of land loss to be in the magnitude of 166,000 m3 to 2.5 million m3 at our largest site. We also found that estimates of erosion were comparable for manual hand-digitized and automated methods, suggesting our automated method was effective and can be extended to monitor erosion at other sites along river systems that are bordered by bluffs. Full article
(This article belongs to the Special Issue Remote Sensing of Dynamic Permafrost Regions)
Show Figures

Graphical abstract

Back to TopTop