Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (151)

Search Parameters:
Keywords = body vibration acceleration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 8773 KB  
Article
FEA Modal and Vibration Analysis of the Operator’s Seat in the Context of a Modern Electric Tractor for Improved Comfort and Safety
by Teofil-Alin Oncescu, Sorin Stefan Biris, Iuliana Gageanu, Nicolae-Valentin Vladut, Ioan Catalin Persu, Stefan-Lucian Bostina, Florin Nenciu, Mihai-Gabriel Matache, Ana-Maria Tabarasu, Gabriel Gheorghe and Daniela Tarnita
AgriEngineering 2025, 7(11), 362; https://doi.org/10.3390/agriengineering7110362 - 1 Nov 2025
Viewed by 239
Abstract
The central purpose of this study is to develop and validate an advanced numerical model capable of simulating the vibrational behavior of the operator’s seat in a tractor-type agricultural vehicle designed for operation in protected horticultural environments, such as vegetable greenhouses. The three-dimensional [...] Read more.
The central purpose of this study is to develop and validate an advanced numerical model capable of simulating the vibrational behavior of the operator’s seat in a tractor-type agricultural vehicle designed for operation in protected horticultural environments, such as vegetable greenhouses. The three-dimensional (3D) model of the seat was created using SolidWorks 2023, while its dynamic response was investigated through Finite Element Analysis (FEA) in Altair SimSolid, enabling a detailed evaluation of the natural vibration modes within the 0–80 Hz frequency range. Within this interval, eight significant natural frequencies were identified and correlated with the real structural behavior of the seat assembly. For experimental validation, direct time-domain measurements were performed at a constant speed of 5 km/h on an uneven, grass-covered dirt track within the research infrastructure of INMA Bucharest, using the TE-0 self-propelled electric tractor prototype. At the operator’s seat level, vibration data were collected considering the average anthropometric characteristics of a homogeneous group of subjects representative of typical tractor operators. The sample of participating operators, consisting exclusively of males aged between 27 and 50 years, was selected to ensure representative anthropometric characteristics and ergonomic consistency for typical agricultural tractor operators. Triaxial accelerometer sensors (NexGen Ergonomics, Pointe-Claire, Canada, and Biometrics Ltd., Gwent, UK) were strategically positioned on the seat cushion and backrest to record accelerations along the X, Y, and Z spatial axes. The recorded acceleration data were processed and converted into the frequency domain using Fast Fourier Transform (FFT), allowing the assessment of vibration transmissibility and resonance amplification between the floor and seat. The combined numerical–experimental approach provided high-fidelity validation of the seat’s dynamic model, confirming the structural modes most responsible for vibration transmission in the 4–8 Hz range—a critical sensitivity band for human comfort and health as established in previous studies on whole-body vibration exposure. Beyond validating the model, this integrated methodology offers a predictive framework for assessing different seat suspension configurations under controlled conditions, reducing experimental costs and enabling optimization of ergonomic design before physical prototyping. The correlation between FEA-based modal results and field measurements allows a deeper understanding of vibration propagation mechanisms within the operator–seat system, supporting efforts to mitigate whole-body vibration exposure and improve long-term operator safety in horticultural mechanization. Full article
Show Figures

Figure 1

34 pages, 3430 KB  
Article
Multi-Objective Optimization Study on the Separation Stability of the Falling Body in Absolute Gravimeters
by Lu Guo, Chunjian Li, Baoying Peng, Jinyang Feng, Jiamin Yao, Dong Wang, Lishuang Mou and Shuqing Wu
Appl. Sci. 2025, 15(21), 11535; https://doi.org/10.3390/app152111535 - 29 Oct 2025
Viewed by 347
Abstract
The stability of absolute gravimeters during carriage-falling body separation is crucial for improving gravitational acceleration measurement accuracy. Transmission speed accuracy of the transmission system and system vibration are core factors determining this stability, while steel belt pre-tightening force, free-fall segment acceleration, and start-up [...] Read more.
The stability of absolute gravimeters during carriage-falling body separation is crucial for improving gravitational acceleration measurement accuracy. Transmission speed accuracy of the transmission system and system vibration are core factors determining this stability, while steel belt pre-tightening force, free-fall segment acceleration, and start-up segment displacement are key parameters influencing both. In-depth analysis of their coupling clarified their roles, and two objective function models (for speed accuracy and vibration) were established, with fitting accuracies R2 = 0.8976 and R2 = 0.8395, respectively. Since traditional single-objective optimization fails to balance “improving speed accuracy” and “suppressing vibration”, this study proposes a multi-objective optimization method: two Nondominated Sorting Genetic Algorithm II (NSGA-II) parameter sets were designed, Hypervolume (HV) index quantified solution set quality, and Wilcoxon signed-rank test was combined to determine the optimal parameter set; comparing the Global Criterion Method and Weighted Sum Method, the former was superior (no dimensional bias) and more suitable for this study, finally screening out the optimal parameter combination. Experimental results showed that the measured transmission speed accuracy was 0.09132 m/s (16.94% lower than the orthogonal experiment’s optimal level); the measured system vibration was 0.022 m/s2, falling within the orthogonal experiment’s optimal range. Consequently, separation moment stability was significantly enhanced, with its standard deviation reduced by 45% pre-optimization. This method achieves global balance in transmission system dynamic performance, providing an effective parameter optimization strategy for improving absolute gravimeter measurement accuracy. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

22 pages, 6011 KB  
Article
Effect of Stochastic Guideway Irregularity on Dynamic Performance of Maglev Train
by Tian Qin, Deqiu Kong, Yang Song, Like Pan and Cheng Zhang
Infrastructures 2025, 10(11), 285; https://doi.org/10.3390/infrastructures10110285 - 27 Oct 2025
Viewed by 170
Abstract
Maglev trains represent an advanced form of modern rail transportation. The guideway irregularity presents a common disturbance to the safe and reliable operation of the maglev train. Variations in the air gap between the train and the guideway, induced by the guideway irregularities, [...] Read more.
Maglev trains represent an advanced form of modern rail transportation. The guideway irregularity presents a common disturbance to the safe and reliable operation of the maglev train. Variations in the air gap between the train and the guideway, induced by the guideway irregularities, exert a significant influence on the train’s dynamic performance, thereby impacting both ride comfort and operational safety. Although previous studies have acknowledged the importance of guideway irregularity, the stochastic effects on the car body vibration across different speeds have not been quantitatively assessed. To fill in this gap, this paper presents a 10-degree-of-freedom maglev train model based on multibody dynamics. The guideway is modelled via the finite element method using Euler–Bernoulli beam theory, and a linearized electromagnetic force equation is employed to couple the guideway and the train dynamics. Furthermore, the measurement data of guideway irregularity from the Shanghai Maglev commercial line are incorporated to evaluate their stochastic effect. Analysis results under varying speeds and irregularity wavelengths identify a resonance speed of 127.34 km/h, attributed to the interplay between guideway periodicity and the train’s natural frequency. When the ratio of the train speed versus irregularity wavelength satisfies the train’s natural frequency, a significant resonance can be observed, leading to an increase in train vibration. Based on the Monte Carlo method, stochastic analysis is conducted using 150 simulations per speed in 200–600 km/h. The maximum vertical acceleration remains relatively stable at 200–400 km/h but increases significantly at higher speeds. When the irregularity is present, greater dispersion is observed with increasing speed, with the standard deviation at 600 km/h reaching 2.7 times that at 200 km/h. Across all tested cases, acceleration values are consistently higher than those without irregularities within the corresponding confidence intervals. Full article
(This article belongs to the Special Issue The Resilience of Railway Networks: Enhancing Safety and Robustness)
Show Figures

Figure 1

22 pages, 2464 KB  
Article
Fuzzy Control with Modified Fireworks Algorithm for Fuel Cell Commercial Vehicle Seat Suspension
by Nannan Jiang and Xiaoliang Chen
World Electr. Veh. J. 2025, 16(10), 585; https://doi.org/10.3390/wevj16100585 - 17 Oct 2025
Viewed by 414
Abstract
Enhancing ride comfort and vibration control performance is a critical requirement for fuel cell commercial vehicles (FCCVs). This study develops a semi-active seat suspension control strategy that integrates a fuzzy logic controller with a Modified Fireworks Algorithm (MFWA) to systematically optimize fuzzy parameters. [...] Read more.
Enhancing ride comfort and vibration control performance is a critical requirement for fuel cell commercial vehicles (FCCVs). This study develops a semi-active seat suspension control strategy that integrates a fuzzy logic controller with a Modified Fireworks Algorithm (MFWA) to systematically optimize fuzzy parameters. A seven-degree-of-freedom (7-DOF) half-vehicle model, including the magnetorheological damper (MRD)-based seat suspension system, is established in MATLAB/Simulink to evaluate the methodology under both random and bump road excitations. In addition, a hardware-in-the-loop (HIL) experimental validation was conducted, confirming the real-time feasibility and effectiveness of the proposed controller. Comparative simulations are conducted against passive suspension (comprising elastic and damping elements) and conventional PID control. Results show that the proposed MFWA-FL approach significantly improves ride comfort, reducing vertical acceleration of the human body by up to 49.29% and seat suspension dynamic deflection by 12.50% under C-Class road excitation compared with the passive system. Under bump excitations, vertical acceleration is reduced by 43.03% and suspension deflection by 11.76%. These improvements effectively suppress vertical vibrations, minimize the risk of suspension bottoming, and highlight the potential of intelligent optimization-based control for enhancing FCCV reliability and passenger comfort. Full article
(This article belongs to the Section Propulsion Systems and Components)
Show Figures

Figure 1

28 pages, 4782 KB  
Article
Computer Simulation of Whole-Body Vibration in Port Container Handling Machine Operators
by Ricardo Luís Alves Silva, Kleber Gonçalves Alves, José Ângelo Peixoto da Costa, Alvaro Antonio Villa Ochoa, Roberto Nobuyoshi Junior Yamada, Paula Suemy Arruda Michima, Gustavo de Novaes Pires Leite and Álvaro Augusto Soares Lima
Sensors 2025, 25(20), 6346; https://doi.org/10.3390/s25206346 - 14 Oct 2025
Viewed by 474
Abstract
This study aimed to evaluate the effect of whole-body vibrations (WBV) on ergonomics related to static posture during the operation of container handling machines (Portainer). A 3D numerical model of a seated man was developed using modal and harmonic analysis based on the [...] Read more.
This study aimed to evaluate the effect of whole-body vibrations (WBV) on ergonomics related to static posture during the operation of container handling machines (Portainer). A 3D numerical model of a seated man was developed using modal and harmonic analysis based on the finite element method (FEM), and implemented on the ANSYS platform to achieve this. Quantitative analyses of whole-body vibrations were carried out in actual workplaces at a port terminal in northeastern Brazil, considering the interaction between the human and the machine. A comparison was made between the real data collected at the operating sites and the values obtained from the developed model. Concerning vibration exposure, the results revealed a critical situation: in 86.2% of cases, the Acceleration of Resulting Normalized Exposure—A(8)—exceeded the alert level, and in 96.6% of cases, the Resulting Vibration Dose Value (VDV) also surpassed this threshold. Similarly, an alert level was exceeded in 97.0% of cases. According to the maximum limits established by Brazilian legislation, the acceleration from normalized exposure did not exceed the limit, while the resulting vibration dose value was surpassed in 20% of cases. The modal analysis results helped identify the critical directions of vibration response, thus supporting the assessment of human exposure effects and the structural performance of the system analyzed. The harmonic analysis showed good agreement between the model and the real acceleration data in the frequency range of 3 to 4 Hz. Full article
Show Figures

Figure 1

19 pages, 4869 KB  
Article
PSO-LQR Control of ISD Suspension for Vehicle Coupled with Bridge Considering General Boundary Conditions
by Buyun Zhang, Shipeng Dai, Yunshun Zhang and Chin An Tan
Machines 2025, 13(10), 935; https://doi.org/10.3390/machines13100935 - 10 Oct 2025
Viewed by 365
Abstract
With the rapid development of transportation infrastructure, bridges increasingly face prominent issues of dynamic response and fatigue damage induced by vehicle–bridge interaction (VBI). To effectively suppress the coupled vibrations and enhance both vehicle ride comfort and bridge service life, this paper proposes an [...] Read more.
With the rapid development of transportation infrastructure, bridges increasingly face prominent issues of dynamic response and fatigue damage induced by vehicle–bridge interaction (VBI). To effectively suppress the coupled vibrations and enhance both vehicle ride comfort and bridge service life, this paper proposes an active inerter-spring-damper (ISD) suspension system based on Particle Swarm Optimization (PSO) algorithm and Linear Quadratic Regulator (LQR) control. By establishing a VBI model considering general boundary conditions and employing the modal superposition method to solve the system response, an LQR controller is designed for multi-objective optimization targeting the vehicle body acceleration, suspension dynamic travel, and tire dynamic load. To further improve control performance, the PSO algorithm is utilized to globally optimize the LQR weighting matrices. Numerical simulation results demonstrate that, compared to passive suspension and unoptimized LQR active suspension, the PSO-LQR control strategy significantly reduces vertical body acceleration and tire dynamic load, while also improving the convergence and stability of the suspension dynamic travel. This research provides a new insight into the control method for VBI systems, possessing both theoretical and practical engineering application value. Full article
(This article belongs to the Special Issue Advances in Vehicle Suspension System Optimization and Control)
Show Figures

Figure 1

26 pages, 1947 KB  
Article
Active Suspension Control for Improved Ride Comfort and Vehicle Performance Using HHO-Based Type-I and Type-II Fuzzy Logic
by Tayfun Abut, Enver Salkim and Harun Tugal
Biomimetics 2025, 10(10), 673; https://doi.org/10.3390/biomimetics10100673 - 7 Oct 2025
Viewed by 578
Abstract
This study focuses on improving the control system of vehicle suspension, which is critical for optimizing driving dynamics and enhancing passenger comfort. Traditional passive suspension systems are limited in their ability to effectively mitigate road-induced vibrations, often resulting in compromised ride quality and [...] Read more.
This study focuses on improving the control system of vehicle suspension, which is critical for optimizing driving dynamics and enhancing passenger comfort. Traditional passive suspension systems are limited in their ability to effectively mitigate road-induced vibrations, often resulting in compromised ride quality and vehicle handling. To overcome these limitations, this work explores the application of active suspension control strategies aimed at improving both comfort and performance. Type-I and Type-II Fuzzy Logic Control (FLC) methods were designed and implemented to enhance vehicle stability and ride quality. The Harris Hawks Optimization (HHO) algorithm was employed to optimize the membership function parameters of both fuzzy control types. The system was tested under two distinct road disturbance inputs to evaluate performance. The designed control methods were evaluated in simulations where results demonstrated that the proposed active control approaches significantly outperformed the passive suspension system in terms of vibration reduction. Specifically, the Type-II FLC achieved a 54.7% reduction in vehicle body displacement and a 76.8% reduction in acceleration for the first road input, while improvements of 75.2% and 72.8% were recorded, respectively, for the second input. Performance was assessed using percentage-based metrics and Root Mean Square Error (RMSE) criteria. Numerical and graphical analyses of suspension deflection and tire deformation further confirm that the proposed control strategies substantially enhance both ride comfort and vehicle handling. Full article
Show Figures

Figure 1

16 pages, 3190 KB  
Article
Effects of Seat Vibration on Biometric Signals and Postural Stability in a Simulated Autonomous Driving Environment
by Emi Yuda, Yutaka Yoshida, Kunio Sato, Hideki Sakamoto and Makoto Takahashi
Sensors 2025, 25(19), 6039; https://doi.org/10.3390/s25196039 - 1 Oct 2025
Viewed by 501
Abstract
This study investigated the physiological effects of seat vibration during prolonged sitting in a simulated autonomous driving environment. Eleven healthy participants (3 young adults and 8 older adults) viewed a 120-min highway driving video under two conditions: rhythmic seat vibration (2 Hz, mimicking [...] Read more.
This study investigated the physiological effects of seat vibration during prolonged sitting in a simulated autonomous driving environment. Eleven healthy participants (3 young adults and 8 older adults) viewed a 120-min highway driving video under two conditions: rhythmic seat vibration (2 Hz, mimicking natural respiration) and no vibration. Physiological and behavioral metrics—including Psychomotor Vigilance Task (PVT), seat pressure distribution, heart rate variability (HRV), body acceleration, and skin temperature—were assessed across three phases. Results demonstrated that seat vibration significantly enhanced parasympathetic activity, as evidenced by increased HF power and decreased LF/HF ratio (p < 0.05), suggesting reduced autonomic stress. Additionally, seated posture remained more stable under vibration, with reduced asymmetry and sway, while the no-vibration condition showed time-dependent postural degradation. Interestingly, skin surface temperature was lower in the vibration condition (p < 0.001), indicating a possible thermoregulatory mechanism. In contrast, PVT performance revealed more false starts in the vibration condition, particularly among older adults, suggesting that vibration may not enhance—and could slightly impair—cognitive alertness. These findings suggest that low-frequency seat vibration can support physiological stability and postural control during prolonged sedentary conditions, such as in autonomous vehicles. However, its effects on vigilance appear limited and age-dependent. Overall, rhythmic vibration may contribute to enhancing passenger comfort and reducing fatigue-related risks, particularly in older individuals. Future work should explore adaptive vibration strategies to balance physiological relaxation and cognitive alertness in mobility environments. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

27 pages, 11163 KB  
Article
Analysis of Vehicle Vibration Considering Fractional Damping in Suspensions and Tires
by Xianglong Su, Shuangning Xie and Jipeng Li
Fractal Fract. 2025, 9(10), 620; https://doi.org/10.3390/fractalfract9100620 - 24 Sep 2025
Viewed by 549
Abstract
Vehicle dynamics play a crucial role in assessing vehicle performance, comfort, and safety. To precisely depict the dynamic behaviors of a vehicle, fractional damping is employed to substitute the conventional damping in suspensions and tires. Taking the fractional damping into account, a four-degrees-of-freedom [...] Read more.
Vehicle dynamics play a crucial role in assessing vehicle performance, comfort, and safety. To precisely depict the dynamic behaviors of a vehicle, fractional damping is employed to substitute the conventional damping in suspensions and tires. Taking the fractional damping into account, a four-degrees-of-freedom vehicle model is developed, which encompasses the vertical vibration and pitch motion of the vehicle body, as well as the vertical motions of the front and rear axles. The vibration equations are solved in the Laplace domain using the transfer function method. The validity of the transfer function method is verified through comparison with a benchmark case. The vibrations of the vehicle are analyzed under the effects of suspension and tire properties, pavement excitation, and vehicle speed. The assessment methods employed include the time-domain vibration response, amplitude–frequency curves, phase diagrams, the frequency response function matrix, and weighted root mean square acceleration. The results show that the larger fractional order results in higher energy dissipation. Elevated values of the fractional order α, suspension stiffness, and the damping coefficient contribute to greater stable vibration amplitudes in vehicles and a consequent degradation in ride comfort. Higher tire stiffness reduces vehicle vibration amplitude, while the fractional order β and tire damping have a negligible effect. Moreover, increased vehicle speed and a greater pavement input amplitude adversely affect ride comfort. Full article
Show Figures

Figure 1

48 pages, 2121 KB  
Review
Bone-Derived Factors: Regulating Brain and Treating Alzheimer’s Disease
by Qiao Guan, Yanting Cao, Jun Zou and Lingli Zhang
Biology 2025, 14(9), 1112; https://doi.org/10.3390/biology14091112 - 22 Aug 2025
Viewed by 1292
Abstract
In recent years, the bidirectional regulatory mechanism of the bone-brain axis has become a hotspot for interdisciplinary research. In this paper, we systematically review the anatomical and functional links between bone and the central nervous system, focusing on the regulation of brain function [...] Read more.
In recent years, the bidirectional regulatory mechanism of the bone-brain axis has become a hotspot for interdisciplinary research. In this paper, we systematically review the anatomical and functional links between bone and the central nervous system, focusing on the regulation of brain function by bone-derived signals and their clinical translational potential. At the anatomical level, the blood–brain barrier permeability mechanism and the unique structure of the periventricular organs establish the anatomical basis for bone-brain information transmission. Innovative discoveries indicate that the bone cell network (bone marrow mesenchymal stem cells, osteoblasts, osteoclasts, and bone marrow monocytes) directly regulates neuroplasticity and the inflammatory microenvironment through the secretion of factors such as osteocalcin, lipid transporter protein 2, nuclear factor κB receptor-activating factor ligand, and fibroblast growth factor 23, as well as exosome-mediated remote signaling. Clinical studies have revealed a bidirectional vicious cycle between osteoporosis and Alzheimer’s disease: reduced bone density exacerbates Alzheimer’s disease pathology through pathways such as PDGF-BB, while AD-related neurodegeneration further accelerates bone loss. The breakthrough lies in the discovery that anti-osteoporotic drugs, such as bisphosphonates, improve cognitive function. In contrast, neuroactive drugs modulate bone metabolism, providing new strategies for the treatment of comorbid conditions. Additionally, whole-body vibration therapy shows potential for non-pharmacological interventions by modulating bone-brain interactions through the mechano-osteoclast signaling axis. In the future, it will be essential to integrate multiple groups of biomarkers to develop early diagnostic tools that promote precise prevention and treatment of bone-brain comorbidities. This article provides a new perspective on the mechanisms and therapeutic strategies of neuroskeletal comorbidities. Full article
(This article belongs to the Special Issue Bone Cell Biology)
Show Figures

Figure 1

22 pages, 2556 KB  
Article
The Elastic Vibration Behavior of a Springboard in Gymnastics
by Daniel-Mirel Dumitrescu, Gheorghe Voicu, Nicolaie Orasanu, Irina-Aura Istrate and Gabriel-Alexandru Constantin
Processes 2025, 13(8), 2573; https://doi.org/10.3390/pr13082573 - 14 Aug 2025
Viewed by 438
Abstract
The paper presents aspects of the elastic behavior of a springboard in school gyms after contact with a basketball (0.500 kg) falling from a height of 1 m or a volunteer student jumping from 30 or 60 cm in three different areas at [...] Read more.
The paper presents aspects of the elastic behavior of a springboard in school gyms after contact with a basketball (0.500 kg) falling from a height of 1 m or a volunteer student jumping from 30 or 60 cm in three different areas at the end of the springboard. The results recorded obtained from three accelerometers mounted under the main plate of the springboard are presented, primarily focusing on the accelerations and vertical displacements after contact. The springboard has a special construction, the upper plate and the curved support plates being provided with two pairs of conical and cylindrical truncated helical springs, respectively. The accelerometers were placed at different points, centrally on the upper plate and on the support plates. It was found that in the dynamic process of a body falling on the springboard, the coefficient of elasticity/rigidity of the elastic system changes, presenting values of 22.14–71.12 kN/m. Normally, both accelerations and displacements are greater on the upper plate, but its vibratory motion also induces additional movements and vibrations on the two lower plates. The results may be useful both for manufacturers of such equipment and for coaches to give appropriate instructions to athletes. Full article
Show Figures

Figure 1

19 pages, 1970 KB  
Article
Multi-Objective Vibration Control of a Vehicle-Track-Bridge Coupled System Using Tuned Inerter Dampers Based on the FE-SEA Hybrid Method
by Xingxing Hu, Qingsong Feng, Min Yang and Jian Liu
Appl. Sci. 2025, 15(15), 8675; https://doi.org/10.3390/app15158675 - 5 Aug 2025
Viewed by 386
Abstract
To address the adverse effects of Tuned Inertia Dampers (TIDs) on track slab vibrations while controlling high-frequency rail vibrations, a hybrid Finite Element-Statistical Energy Analysis (FE-SEA) method is developed for modeling the vehicle-track-bridge coupled system. Short-wavelength track irregularities are introduced as high-frequency excitation, [...] Read more.
To address the adverse effects of Tuned Inertia Dampers (TIDs) on track slab vibrations while controlling high-frequency rail vibrations, a hybrid Finite Element-Statistical Energy Analysis (FE-SEA) method is developed for modeling the vehicle-track-bridge coupled system. Short-wavelength track irregularities are introduced as high-frequency excitation, and the accuracy and efficiency of this method are validated by comparison with the traditional finite element method (FEM). A vibration control model for track-bridge structures incorporating TIDs is designed, and the effects of the TID’s inertance, stiffness, and damping coefficients on the vertical acceleration responses of the rail and track slab are investigated in detail. The study reveals that although TIDs effectively reduce rail vibrations, they may induce adverse effects on track slab vibrations. Using the vibration acceleration amplitudes of both the rail and track slab as dual control objectives, a multi-objective optimization model is established, and the TID’s optimal parameters are determined using a multi-objective genetic algorithm. The results show that the optimized TID parameters reduce rail acceleration amplitudes by 16.43% and improve the control efficiency by 12.45%, while also addressing the negative effects on track slab vibration. The track slab’s vibration acceleration is reduced by 5.47%, and the vertical displacement and acceleration of the vehicle body are reduced by 14.22% and 47.5%, respectively, thereby enhancing passenger comfort. This study provides new insights and theoretical guidance for vibration control analysis in vehicle-track-bridge coupled systems. Full article
Show Figures

Figure 1

21 pages, 8215 KB  
Article
Mix Controller Design for Active Suspension of Trucks Integrated with Online Estimation of Vehicle Mass
by Choutao Ma, Yiming Hu, Weiwei Zhao and Dequan Zeng
Vehicles 2025, 7(3), 71; https://doi.org/10.3390/vehicles7030071 - 11 Jul 2025
Viewed by 569
Abstract
Active suspension can improve vehicle vibrations caused by road excitation. For trucks, the vehicle mass change is usually large, and changes in vehicle mass will affect the control performance of the active suspension. In order to solve the problem of active suspension control [...] Read more.
Active suspension can improve vehicle vibrations caused by road excitation. For trucks, the vehicle mass change is usually large, and changes in vehicle mass will affect the control performance of the active suspension. In order to solve the problem of active suspension control performance decreasing due to large changes in vehicle mass, this paper proposes an active suspension control method integrating online mass estimation. This control method is designed based on the mass estimation algorithm of the recursive least squares method with a forgetting factor (FFRLS) and the Linear Quadratic Regulator (LQR) algorithm. A set of feedback control matrices K is obtained according to different vehicle masses. Then, the mass estimation algorithm can estimate the actual vehicle mass in real-time during the vehicle acceleration process. According to the mass estimation value, a corresponding feedback control matrix K is selected from the control matrix set, and K is used as the actual control gain matrix of the current active suspension. With specific simulation cases, the vehicle vibration response is studied by the numerical simulation method. The results of the simulation process have shown that when the vehicle mass changes largely, the suspension dynamic deflection and tire dynamic deformation are significantly reduced while keeping a good vehicle body attitude control effect by using an active suspension controller integrated with online mass estimation. In the random road simulation, suspension dynamic deflection is reduced by 3.26%, and tire dynamic deformation is reduced by 5.91% compared with the original active suspension controller. In the road bump simulation, suspension dynamic deflection and tire dynamic deformation are also significantly reduced. As a consequence, the stability and comfort of the vehicle have been greatly enhanced. Full article
Show Figures

Figure 1

21 pages, 4791 KB  
Article
Research on the Active Suspension Control Strategy of Multi-Axle Emergency Rescue Vehicles Based on the Inverse Position Solution of a Parallel Mechanism
by Qinghe Guo, Dingxuan Zhao, Yurong Chen, Shenghuai Wang, Hongxia Wang, Chen Wang and Renjun Liu
Vehicles 2025, 7(3), 69; https://doi.org/10.3390/vehicles7030069 - 9 Jul 2025
Viewed by 955
Abstract
Aiming at the problems of complex control processes, strong model dependence, and difficult engineering application when the existing active suspension control strategy is applied to multi-axle vehicles, an active suspension control strategy based on the inverse position solution of a parallel mechanism is [...] Read more.
Aiming at the problems of complex control processes, strong model dependence, and difficult engineering application when the existing active suspension control strategy is applied to multi-axle vehicles, an active suspension control strategy based on the inverse position solution of a parallel mechanism is proposed. First, the active suspension of the three-axle emergency rescue vehicle is grouped and interconnected within the group, and it is equivalently constructed into a 3-DOF parallel mechanism. Then, the displacement of each equivalent suspension actuating hydraulic cylinder is calculated by using the method of the inverse position solution of a parallel mechanism, and then the equivalent actuating hydraulic cylinder is reversely driven according to the displacement, thereby realizing the effective control of the attitude of the vehicle body. To verify the effectiveness of the proposed control strategy, a three-axis vehicle experimental platform integrating active suspension and hydro-pneumatic suspension was built, and a pulse road experiment and gravel pavement experiment were carried out and compared with hydro-pneumatic suspension. Both types of road experimental results show that compared to hydro-pneumatic suspension, the active suspension control strategy based on the inverse position solution of a parallel mechanism proposed in this paper exhibits different degrees of advantages in reducing the peak values of the vehicle vertical displacement, pitch angle, and roll angle changes, as well as suppressing various vibration accelerations, significantly improving the vehicle’s driving smoothness and handling stability. Full article
Show Figures

Figure 1

22 pages, 5766 KB  
Article
A Band-Stop Filter-Based LQR Control Method for Semi-Active Seat Suspension to Mitigate Motion Sickness
by Zhijun Fu, Mengyang Jia, Zhigang Zhang, Dengfeng Zhao, Jinquan Ding and Subhash Rakheja
Machines 2025, 13(7), 562; https://doi.org/10.3390/machines13070562 - 27 Jun 2025
Viewed by 557
Abstract
This study proposes a novel control framework for semi-active seat suspensions, specifically targeting motion sickness mitigation through precision suppression of vertical vibrations within the 0.1–0.5 Hz frequency range. Firstly, a fractional-order band-stop filter in conjunction with a linear quadratic regulator (LQR) controller under [...] Read more.
This study proposes a novel control framework for semi-active seat suspensions, specifically targeting motion sickness mitigation through precision suppression of vertical vibrations within the 0.1–0.5 Hz frequency range. Firstly, a fractional-order band-stop filter in conjunction with a linear quadratic regulator (LQR) controller under frequency-domain sensitivity constraints (0.1–0.5 Hz) is proposed to achieve frequency-selective vibration attenuation. Secondly, the multi-objective butterfly optimization algorithm (MOBOA) is adopted to optimize the LQR controller’s weighting matrices (Q, R) by balancing conflicting requirements in terms of human body displacement limits, acceleration thresholds, and suspension travel. Finally, experimental validation under concrete pavement excitation and random road profiles demonstrates significant advantages over conventional LQR, i.e., a 41.04% reduction in vertical vibration amplitude and a 55.95% suppression of acceleration peaks within the target frequency band. The combined enhancements offer dual benefits of enhancing ride comfort and motion sickness mitigation in real-world driving scenarios. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

Back to TopTop