Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (227)

Search Parameters:
Keywords = bone antimicrobial activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2752 KB  
Article
Effects of Zanthoxyli Pericarpium Extracts on Ligature-Induced Periodontitis and Alveolar Bone Loss in Rats
by Jang-Soo Kim, Beom-Rak Choi, Geun-Log Choi, Hye-Rim Park, Jin-Gwan Kwon, Chan-Gon Seo, Jae-Kwang Kim and Sae-Kwang Ku
Antioxidants 2025, 14(10), 1159; https://doi.org/10.3390/antiox14101159 - 24 Sep 2025
Viewed by 49
Abstract
Zanthoxyli Pericarpium (ZP), the dried pericarp of mature fruits of Zanthoxylum schinifolium Siebold and Zucc., has traditionally been used in East Asian medicine for its medicinal properties, but its therapeutic potential in periodontitis has not been elucidated. In the present study, we investigated [...] Read more.
Zanthoxyli Pericarpium (ZP), the dried pericarp of mature fruits of Zanthoxylum schinifolium Siebold and Zucc., has traditionally been used in East Asian medicine for its medicinal properties, but its therapeutic potential in periodontitis has not been elucidated. In the present study, we investigated the effects of ZP on ligature-induced experimental periodontitis (EPD) in male Sprague Dawley rats. Animals were assigned to vehicle control, ligature control, ZP-treated (25, 50, and 100 mg/kg), or indomethacin-treated (5 mg/kg) groups (n = 10 per group) and orally administered the respective treatments daily for 10 days after ligature placement. ZP significantly reduced anaerobic bacterial proliferation and inflammatory cell infiltration in gingival tissue. ZP suppressed the production of inflammatory mediators, such as tumor necrosis factor-α and interleukin-1β, in both gingival tissues and lipopolysaccharide-stimulated RAW 264.7 macrophages, through inhibition of the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways. In addition, ZP decreased myeloperoxidase activity and reduced matrix metalloproteinase-8 expression, thereby preserving collagen areas. ZP also restored the receptor activator of NF-κB ligand/osteoprotegerin (RANKL/OPG) balance, leading to a reduction in osteoclast numbers and their occupancy on the alveolar surface, and it effectively ameliorated horizontal alveolar bone loss. Furthermore, ZP exhibited antioxidant effects by lowering malondialdehyde levels and inducible nitric oxide synthase activity in gingival tissues. Statistical analysis was performed using ANOVA followed by a post hoc test, with significance set at p < 0.05. These findings indicate that ZP mitigates periodontitis through combined antimicrobial, anti-inflammatory, antioxidant, and anti-resorptive actions, supporting its potential as a therapeutic candidate for periodontitis. Full article
(This article belongs to the Special Issue Antioxidants as Weapons to Maintain or Restore Oral Health)
Show Figures

Graphical abstract

38 pages, 6969 KB  
Review
Nanotechnology for Biomedical Applications: Synthesis and Properties of Ti-Based Nanocomposites
by Maciej Tulinski, Mieczyslawa U. Jurczyk, Katarzyna Arkusz, Marek Nowak and Mieczyslaw Jurczyk
Nanomaterials 2025, 15(18), 1417; https://doi.org/10.3390/nano15181417 - 15 Sep 2025
Viewed by 274
Abstract
Nanobiocomposites are a class of biomaterials that include at least one phase with constituents in the nanometer range. Nanobiocomposites, a new class of materials formed by combining natural and inorganic materials (metals, ceramics, polymers, and graphene) at the nanoscale dimension, are expected to [...] Read more.
Nanobiocomposites are a class of biomaterials that include at least one phase with constituents in the nanometer range. Nanobiocomposites, a new class of materials formed by combining natural and inorganic materials (metals, ceramics, polymers, and graphene) at the nanoscale dimension, are expected to revolutionize tissue engineering and bone implant applications because of their enhanced corrosion resistance, mechanical properties, biocompatibility, and antimicrobial activity. Titanium-based nanocomposites are gaining attention in biomedical applications due to their exceptional biocompatibility, corrosion resistance, and mechanical properties. These composites typically consist of a titanium or titanium alloy matrix that is embedded with nanoscale bioactive phases, such as hydroxyapatite, bioactive glass, polymers, or carbon-based nanomaterials. Common methods for synthesizing Ti-based nanobiocomposites and their parts, including bottom-up and top-down approaches, are presented and discussed. The synthesis conditions and appropriate functionalization influence the final properties of nanobiomaterials. By modifying the surface roughness at the nanoscale level, composite implants can be enhanced to improve tissue integration, leading to increased cell adhesion and protein adsorption. The objective of this review is to illustrate the most recent research on the synthesis and properties of Ti-based biocomposites and their scaffolds. Full article
(This article belongs to the Special Issue Nanobiocomposite Materials: Synthesis, Properties and Applications)
Show Figures

Figure 1

13 pages, 1756 KB  
Article
Methylcellulose-Encapsulated Magnesium-Substituted Biphasic Calcium Phosphate Granules for Local Drug Delivery in Bone Tissue Engineering: Modification for Prolonged Release and Antibacterial Behavior
by Daniil O. Golubchikov, Inna V. Fadeeva, Elena S. Trofimchuk, Katia Barbaro, Viktoriya G. Yankova, Iulian V. Antoniac, Valery I. Putlayev, Julietta V. Rau and Vicentiu Saceleanu
Polymers 2025, 17(17), 2422; https://doi.org/10.3390/polym17172422 - 7 Sep 2025
Viewed by 621
Abstract
Bone tissue restoration requires biomaterials, which combine osteoinductivity and the capability to prevent surgical site infections. Magnesium-substituted biphasic calcium phosphate (Mg-BCP) represents a promising solution, as magnesium substitution increases the biodegradation rate of calcium phosphate ceramics and provides inherent antibacterial properties. This study [...] Read more.
Bone tissue restoration requires biomaterials, which combine osteoinductivity and the capability to prevent surgical site infections. Magnesium-substituted biphasic calcium phosphate (Mg-BCP) represents a promising solution, as magnesium substitution increases the biodegradation rate of calcium phosphate ceramics and provides inherent antibacterial properties. This study aimed to achieve wet precipitation synthesis of magnesium-substituted (1–10 mol%) biphasic calcium phosphate and to evaluate its drug delivery potential and antibacterial performance. Porous Mg-BCP granules were fabricated via the gelation of Mg-BCP suspension in sodium alginate followed by polymer removal. Drug delivery potential was evaluated using methylene blue as a model compound, with methylcellulose encapsulation implemented to ensure prolonged release. Magnesium content directly ruled the phase composition: low concentrations (1%) favored hydroxyapatite phase prevalence, while higher concentrations led to the β-tricalcium phosphate formation. Further assessment of drug delivery potential revealed that direct drug loading resulted in burst release, whereas methylcellulose encapsulation successfully enabled prolonged drug delivery. Mg-5BCP formulation demonstrated significant antimicrobial activity with growth inhibition of 17.7 ± 4.1% against C. albicans, 20.8 ± 7.0% against E. faecalis, and 12.9 ± 7.5% against E. coli. Therefore, Mg-5BCP–methylcellulose composite granules present a versatile platform for antibacterial drug delivery for bone tissue engineering applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

23 pages, 638 KB  
Review
Matrix Metalloproteinase Inhibitors and Their Potential Clinical Application in Periodontitis
by Daniela Mendoza-Juárez, Manuel Sánchez-Gutiérrez, Aleli Julieta Izquierdo-Vega, Eduardo Osiris Madrigal-Santillán, Claudia Velázquez-González and Jeannett Alejandra Izquierdo-Vega
Diseases 2025, 13(9), 296; https://doi.org/10.3390/diseases13090296 - 6 Sep 2025
Viewed by 593
Abstract
Matrix metalloproteinases (MMPs) are a family of endopeptidases recognized for their involvement in the degradation of the extracellular matrix and their important role in the pathogenesis of periodontitis. This chronic inflammatory condition causes the degradation of dental supporting tissues, resulting in bone loss. [...] Read more.
Matrix metalloproteinases (MMPs) are a family of endopeptidases recognized for their involvement in the degradation of the extracellular matrix and their important role in the pathogenesis of periodontitis. This chronic inflammatory condition causes the degradation of dental supporting tissues, resulting in bone loss. In patients with periodontitis, the expression and activation of MMPs, especially MMP-8 and MMP-9, significantly influence tissue degradation. In periodontitis treatment, various natural or synthetic metalloproteinase inhibitors (MMPIs) and antibiotics are used in sub-antimicrobial doses. However, while the evidence supports a role for MMPIs in reducing inflammation, preserving connective tissue, and improving the results of conventional periodontitis treatment, their clinical application is limited. In this review, we summarize MMPIs, their characteristics, and the mechanisms of action that may support their use in the treatment of periodontitis. In conclusion, MMPIs are a therapeutic alternative with great potential in the management of periodontitis, especially when combined with mechanical treatments, although further research is needed to optimize their clinical use. Full article
Show Figures

Figure 1

28 pages, 11672 KB  
Article
Microwave-Assisted Hydrothermal Synthesis of Cu/Sr-Doped Hydroxyapatite with Prospective Applications for Bone Tissue Engineering
by Diana-Elena Radulescu, Bogdan Stefan Vasile, Otilia Ruxandra Vasile, Ionela Andreea Neacsu, Roxana Doina Trusca, Vasile-Adrian Surdu, Alexandra Catalina Birca, Georgiana Dolete, Cornelia-Ioana Ilie and Ecaterina Andronescu
J. Compos. Sci. 2025, 9(8), 427; https://doi.org/10.3390/jcs9080427 - 7 Aug 2025
Viewed by 779
Abstract
One of the main challenges in hydroxyapatite research is to develop cost-effective synthesis methods that consistently produce materials closely resembling natural bone, while maintaining high biocompatibility, phase purity, and mechanical stability for biomedical applications. Traditional synthetic techniques frequently fail to provide desirable mechanical [...] Read more.
One of the main challenges in hydroxyapatite research is to develop cost-effective synthesis methods that consistently produce materials closely resembling natural bone, while maintaining high biocompatibility, phase purity, and mechanical stability for biomedical applications. Traditional synthetic techniques frequently fail to provide desirable mechanical characteristics and antibacterial activity, necessitating the development of novel strategies based on natural precursors and selective ion doping. The present study aims to explore the possibility of synthesizing hydroxyapatite through the co-precipitation method, followed by a microwave-assisted hydrothermal maturation process. The main CaO sources selected for this study are eggshells and mussel shells. Cu2+ and Sr2+ ions were added into the hydroxyapatite structure at concentrations of 1% and 5% to investigate their potential for biomedical applications. Furthermore, the morpho-structural and biological properties have been investigated. Results demonstrated the success of hydroxyapatite synthesis and ion incorporation into its chemical structure. Moreover, HAp samples exhibited significant antimicrobial properties, especially the samples doped with 5% Cu and Sr. Additionally, all samples presented good biological activity on MC3T3-E1 osteoblast cells, demonstrating good cellular viability of all samples. Therefore, by correlating the results, it could be concluded that the undoped and doped hydroxyapatite samples are suitable biomaterials to be further applied in orthopedic applications. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution, 2nd Edition)
Show Figures

Figure 1

16 pages, 1855 KB  
Article
Emodin-Loaded Thermoresponsive Hydrogel as a Potential Drug Delivery System for Periodontal Disease in a Rat Model of Ligature-Induced Periodontitis
by Gyu-Yeon Shim, Seong-Hee Moon, Seong-Jin Shin, Hyun-Jin Kim, Seunghan Oh and Ji-Myung Bae
Polymers 2025, 17(15), 2108; https://doi.org/10.3390/polym17152108 - 31 Jul 2025
Viewed by 604
Abstract
Periodontitis, a chronic inflammatory disease, causes alveolar bone loss. Current treatments show limitations in achieving dual antimicrobial and anti-inflammatory effects. We evaluated an emodin-loaded thermoresponsive hydrogel as a local drug delivery system for periodontitis treatment. Emodin itself demonstrated antibacterial activity against Porphyromonas gingivalis [...] Read more.
Periodontitis, a chronic inflammatory disease, causes alveolar bone loss. Current treatments show limitations in achieving dual antimicrobial and anti-inflammatory effects. We evaluated an emodin-loaded thermoresponsive hydrogel as a local drug delivery system for periodontitis treatment. Emodin itself demonstrated antibacterial activity against Porphyromonas gingivalis, with minimal inhibitory and minimal bactericidal concentrations of 50 μM. It also suppressed mRNA expression of proinflammatory cytokines [tumor necrosis factor alpha, interleukin (IL)-1β, and IL-6] in lipopolysaccharide-stimulated RAW 264.7 cells. The hydrogel, formulated with poloxamers and carboxymethylcellulose, remained in a liquid state at room temperature and formed a gel at 34 °C, providing sustained drug release for 96 h and demonstrating biocompatibility with human periodontal ligament stem cells while exhibiting antibacterial activity against P. gingivalis. In a rat model of periodontitis, the hydrogel significantly reduced alveolar bone loss and inflammatory responses, as confirmed by micro-computed tomography and reverse transcription quantitative polymerase chain reaction of gingival tissue. The dual antimicrobial and anti-inflammatory properties of emodin, combined with its thermoresponsive delivery system, provide advantages over conventional treatments by maintaining therapeutic concentrations in the periodontal pocket while minimizing systemic exposure. This shows the potential of emodin-loaded thermoresponsive hydrogels as effective local delivery systems for periodontitis treatment. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

25 pages, 3886 KB  
Article
Amikacin Coated 3D-Printed Metal Devices for Prevention of Postsurgical Infections (PSIs)
by Chu Zhang, Ishwor Poudel, Nur Mita, Xuejia Kang, Manjusha Annaji, Seungjong Lee, Peter Panizzi, Nima Shamsaei, Oladiran Fasina, R. Jayachandra Babu and Robert D. Arnold
Pharmaceutics 2025, 17(7), 911; https://doi.org/10.3390/pharmaceutics17070911 - 14 Jul 2025
Viewed by 591
Abstract
Background/Objectives: Personalized 3D-printed (3DP) metallic implants delivery systems are being explored to repair bone fractures, allowing the customization of medical implants that respond to individual patient needs, making it potentially more effective and of greater quality than mass-produced devices. However, challenges associated [...] Read more.
Background/Objectives: Personalized 3D-printed (3DP) metallic implants delivery systems are being explored to repair bone fractures, allowing the customization of medical implants that respond to individual patient needs, making it potentially more effective and of greater quality than mass-produced devices. However, challenges associated with postsurgical infections caused by bacterial adhesion remain a clinical issue. To address this, local antibiotic therapies are receiving extensive attention to minimize the risk of implant-related infections. This study investigated the use of amikacin (AMK), a broad-spectrum aminoglycoside antibiotic, incorporated onto 3D-printed 316L stainless steel implants using biodegradable polymer coatings of chitosan and poly lactic-co-glycolic acid (PLGA). Methods: This research examined different approaches to coat 3DP implants with amikacin. Various polymer-based coatings were studied to determine the optimal formulation based on the characteristics and release profile. The optimal formulation was performed on the antibacterial activity studies. Results: AMK-chitosan with PLGA coating implants controlled the rate of drug release for up to one month. The 3DP drug-loaded substrates demonstrated effective, concentration-dependent antibacterial activity against common infective pathogens. AMK-loaded substrates showed antimicrobial effectiveness for one week and inhibited bacteria significantly compared to the uncoated controls. Conclusions: This study demonstrated that 3DP metal surfaces coated with amikacin can provide customizable drug release profiles while effectively inhibiting bacterial growth. These findings highlight the potential of combining 3D printing with localized delivery strategies to prevent implant-associated infections and advance the development of personalized therapies. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

29 pages, 2331 KB  
Review
Therapeutic Potential of Tanshinones in Osteolytic Diseases: From Molecular and Cellular Pathways to Preclinical Models
by Rafael Scaf de Molon
Dent. J. 2025, 13(7), 309; https://doi.org/10.3390/dj13070309 - 9 Jul 2025
Cited by 1 | Viewed by 852
Abstract
Tanshinones are a class of lipophilic diterpenoid quinones extracted from Salvia miltiorrhiza (Dan shen), a widely used herb in traditional Chinese medicine. These compounds, particularly tanshinone IIA (T-IIA) and sodium tanshinone sulfonate (STS), have been acknowledged for their broad spectrum of biological activities, [...] Read more.
Tanshinones are a class of lipophilic diterpenoid quinones extracted from Salvia miltiorrhiza (Dan shen), a widely used herb in traditional Chinese medicine. These compounds, particularly tanshinone IIA (T-IIA) and sodium tanshinone sulfonate (STS), have been acknowledged for their broad spectrum of biological activities, including anti-inflammatory, antioxidant, anti-tumor, antiresorptive, and antimicrobial effects. Recent studies have highlighted the potential of tanshinones in the treatment of osteolytic diseases, characterized by excessive bone resorption, such as osteoporosis, rheumatoid arthritis, and periodontitis. The therapeutic effects of tanshinones in these diseases are primarily attributed to their ability to inhibit osteoclast differentiation and activity, suppress inflammatory cytokine production (e.g., tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6), and modulate critical signaling pathways, including NF-kB, MAPK, PI3K/Akt, and the RANKL/RANK/OPG axis. Additionally, tanshinones promote osteoblast differentiation and mineralization by enhancing the expression of osteogenic markers such as Runx2, ALP, and OCN. Preclinical models have demonstrated that T-IIA and STS can significantly reduce bone destruction and inflammatory cell infiltration in arthritic joints and periodontal tissues while also enhancing bone microarchitecture in osteoporotic conditions. This review aims to provide a comprehensive overview of the pharmacological actions of tanshinones in osteolytic diseases, summarizing current experimental findings, elucidating underlying molecular mechanisms, and discussing the challenges and future directions for their clinical application as novel therapeutic agents in bone-related disorders, especially periodontitis. Despite promising in vitro and in vivo findings, clinical evidence remains limited, and further investigations are necessary to validate the efficacy, safety, and pharmacokinetics of tanshinones in human populations. Full article
(This article belongs to the Special Issue New Perspectives in Periodontology and Implant Dentistry)
Show Figures

Figure 1

10 pages, 1764 KB  
Brief Report
Cathelicidins Limit Intracellular Neospora caninum-Infection in Macrophages
by Franco Fiorani, Priyoshi Lahiri, Rodrigo Puentes, Peter John Bradley, Dadin Prando Moore and Eduardo Ruben Cobo
Pathogens 2025, 14(7), 663; https://doi.org/10.3390/pathogens14070663 - 5 Jul 2025
Viewed by 958
Abstract
Infections with the protozoan Neospora caninum cause abortion in cattle, likely due to the parasite’s replication and excessive inflammation in the placenta. Cathelicidins are host defense peptides known for their antimicrobial and immunomodulatory functions, but their role in N. caninum infections remains elusive. [...] Read more.
Infections with the protozoan Neospora caninum cause abortion in cattle, likely due to the parasite’s replication and excessive inflammation in the placenta. Cathelicidins are host defense peptides known for their antimicrobial and immunomodulatory functions, but their role in N. caninum infections remains elusive. Using bone marrow-derived macrophages (BMDMs) isolated from mice expressing (wild-type, Camp+/+) and lacking (Camp/−) cathelicidins, we investigated the role of endogenous cathelicidin in infections with N. caninum. We show that Camp/− macrophages primed with lipopolysaccharide (LPS) had an increased number of intracellular N. caninum tachyzoites, and these macrophages released higher amounts of IL-1β and lactate dehydrogenase (LDH), a marker of cytotoxicity. These findings indicate that cathelicidins contribute to intracellular N. caninum control and inflammation by limiting the activation of the inflammasome, particularly under LPS-induced conditions. This insight reveals the immunomodulatory role of cathelicidins in controlling N. caninum-associated pathologies. Full article
(This article belongs to the Special Issue Genetics and Molecular Evolution of Parasitic Protozoa)
Show Figures

Figure 1

19 pages, 4384 KB  
Article
Porous Osteoplastic Composite Materials Based on Alginate–Pectin Complexes and Cation-Substituted Hydroxyapatites
by Galina A. Davydova, Inna V. Fadeeva, Elena S. Trofimchuk, Irina I. Selezneva, Muhriddin T. Mahamadiev, Lenar I. Akhmetov, Daniel S. Yakovsky, Vadim P. Proskurin, Marco Fosca, Viktoriya G. Yankova, Julietta V. Rau and Vicentiu Saceleanu
Polymers 2025, 17(13), 1744; https://doi.org/10.3390/polym17131744 - 23 Jun 2025
Viewed by 754
Abstract
Novel three-dimensional porous composites of alginate–pectin (A/P) with zinc- or manganese-substituted hydroxyapatites (A/P-ZnHA and A/P-MnHA) were synthesized via lyophilization and calcium cross-linking. Powder X-ray diffraction and infrared spectroscopy analyses confirmed single-phase apatite formation (crystallite sizes < 1 µm), with ZnHA exhibiting lattice contraction [...] Read more.
Novel three-dimensional porous composites of alginate–pectin (A/P) with zinc- or manganese-substituted hydroxyapatites (A/P-ZnHA and A/P-MnHA) were synthesized via lyophilization and calcium cross-linking. Powder X-ray diffraction and infrared spectroscopy analyses confirmed single-phase apatite formation (crystallite sizes < 1 µm), with ZnHA exhibiting lattice contraction (*c*-axis: 6.881 Å vs. 6.893 Å for HA). Mechanical testing revealed tunable properties: pristine A/P sponges exhibited an elastic modulus of 4.7 MPa and a tensile strength of 0.10 MPa, reduced by 30–70% by HA incorporation due to increased porosity (pore sizes: 112 ± 18 µm in the case of MnHA vs. 148 ± 23 µm-ZnHA). Swelling capacity increased 2.3–2.8-fold (125–155% vs. 55% for A/P), governed by polysaccharide interactions. Scanning electron microscopy investigation showed microstructural evolution from layered A/P (<100 µm) to tridimensional architectures with embedded mineral particles. The A/P-MnHA composites demonstrated minimal cytotoxicity for the NCTC cells and good viability of dental pulp stem cells, while A/P-ZnHA caused ≈20% metabolic suppression, attributed to hydrolysis-induced acidification. Antibacterial assays highlighted A/P-MnHA′s broad-spectrum efficacy against Gram-positive (Bacillus atrophaeus) and Gram-negative (Pseudomonas protegens) strains, whereas A/P-ZnHA targeted only the Gram-positive strain. The developed composite sponges combine cytocompatibility and antimicrobial activity, potentially advancing osteoplastic materials for bone regeneration and infection control in orthopedic/dental applications. Full article
(This article belongs to the Special Issue Functional Polymer Composites: Synthesis and Application)
Show Figures

Figure 1

22 pages, 1884 KB  
Review
Melatonin/Chitosan Biomaterials for Wound Healing and Beyond: A Multifunctional Therapeutic Approach
by Karolina Kulka-Kamińska, Patrycja Brudzyńska, Mayuko Okura, Tatsuyuki Ishii, Marco Skala, Russel J. Reiter, Andrzej T. Slominski, Kazuo Kishi, Kerstin Steinbrink, Alina Sionkowska and Konrad Kleszczyński
Int. J. Mol. Sci. 2025, 26(13), 5918; https://doi.org/10.3390/ijms26135918 - 20 Jun 2025
Viewed by 1410
Abstract
Chitosan is increasingly utilized in combination with melatonin in novel formulations for a wide range of therapeutic applications. As a biocompatible and biodegradable polymer, chitosan exhibits notable properties, including antioxidant, antimicrobial, moisturizing, and absorption capabilities, in addition to a high potential for chemical [...] Read more.
Chitosan is increasingly utilized in combination with melatonin in novel formulations for a wide range of therapeutic applications. As a biocompatible and biodegradable polymer, chitosan exhibits notable properties, including antioxidant, antimicrobial, moisturizing, and absorption capabilities, in addition to a high potential for chemical modification due to its functional groups. These characteristics make it a valuable material in biomedical, pharmaceutical, cosmetic, food packaging, and environmental applications. Melatonin, an indoleamine primarily synthesized in the pineal gland but also found in various peripheral organs and in diverse organisms—including plants, bacteria, and fungi—has been extensively investigated for its antioxidant, anti-apoptotic, and anti-inflammatory activities, as well as its roles in immunomodulation, mitochondrial function, and melanin biosynthesis. This review summarizes recent advances in the combined use of chitosan and melatonin, with emphasis on their synergistic effects in wound healing, anti-cancer therapies, tissue engineering (i.e., skin and bone regeneration), and drug delivery systems. Additional potential applications are discussed in the context of cosmetology, aesthetic medicine, and veterinary practice. Full article
(This article belongs to the Special Issue The Chitosan Biomaterials: Advances and Challenges—2nd Edition)
Show Figures

Graphical abstract

14 pages, 840 KB  
Article
Efficacy and Safety of Fosfomycin Disodium in Patients with Bacterial Infections: A Single-Center, Real-Life Clinical Study
by Fabio Luciano, Lorenzo Bertolino, Fabian Patauner, Filomena Boccia, Raffaella Gallo, Pino Sommese, Anna Maria Carolina Peluso, Oriana Infante, Silvia Mercadante, Augusto Delle Femine, Arta Karruli, Roberto Andini, Rosa Zampino and Emanuele Durante-Mangoni
J. Clin. Med. 2025, 14(12), 4386; https://doi.org/10.3390/jcm14124386 - 19 Jun 2025
Cited by 1 | Viewed by 1030
Abstract
Objectives: Fosfomycin is an old antibiotic that has recently gained attention owing to its preserved activity against multidrug-resistant (MDR) bacteria. Data on its use in real life are limited. Thus, we evaluated the efficacy and safety of fosfomycin disodium in the context of [...] Read more.
Objectives: Fosfomycin is an old antibiotic that has recently gained attention owing to its preserved activity against multidrug-resistant (MDR) bacteria. Data on its use in real life are limited. Thus, we evaluated the efficacy and safety of fosfomycin disodium in the context of our hospital clinical practice. Methods: Single-center, retrospective, observational study on 56 patients who received fosfomycin disodium from September 2016 to July 2023, focusing on clinical and microbiological outcomes and adverse events. Results: Included in this study were 56 patients. Fosfomycin disodium was administered for a median duration of 10 days [5–13.5] and was always used in combination with other antibiotics, more frequently with meropenem (16 cases, 28.6%) and colistin (11 cases, 19.6%). It was mostly used for treating pneumonia (41%), followed by bloodstream infections (19.6%), urinary tract infections (16.1%), bone infections (16.1%), and surgical site infections (7.1%). The most common isolated pathogen was Pseudomonas aeruginosa (17%), and polymicrobial infections were detected in 18 patients (32%). Among the isolated bacteria, 36 (44.4%) were MDR. The complete resolution, defined as the disappearance of symptoms, eradication of the causative microorganism, and decrease in CRP levels, was achieved in 39% of cases. During treatment, we observed electrolyte imbalances, in particular a decrease in serum potassium (0.6 mEq/L [0.3–1.1]), calcium (0.7 mEq/L [0.3–1.1]) and magnesium levels (0.3 mg/dL [0.20–0.48]), and an increase in serum sodium levels (4 mEq/dL [2–7]). Changes in potassium and sodium levels were more pronounced in patients with prior kidney dysfunction and heart failure, respectively, and in patients receiving fosfomycin diluted with saline compared with 5% glucose solution (p = 0.04). Conclusions: Fosfomycin is effective in treating complicated infections in comorbid patients when combined with other antimicrobials. During treatment, major electrolyte imbalances occur that require careful monitoring and correction, especially in patients with prior kidney disease. Full article
(This article belongs to the Section Infectious Diseases)
Show Figures

Figure 1

21 pages, 5905 KB  
Article
Tellurium-Doped Silanised Bioactive Glass–Chitosan Hydrogels: A Dual Action for Antimicrobial and Osteoconductive Platforms
by Matteo Bergoglio, Ziba Najmi, Federica Ferla, Alessandro Calogero Scalia, Andrea Cochis, Lia Rimondini, Enrica Vernè, Marco Sangermano and Marta Miola
Polymers 2025, 17(12), 1651; https://doi.org/10.3390/polym17121651 - 13 Jun 2025
Cited by 1 | Viewed by 976
Abstract
UV-cured methacrylated chitosan (MCHIT) hydrogels were achieved in the presence of silanised tellurium-doped silica bioactive glass (BG-Te-Sil) to produce an antimicrobial and osteoconductive scaffold for tissue engineering applications. Methacrylation of chitosan enabled efficient crosslinking, and the curing process was evaluated by means of [...] Read more.
UV-cured methacrylated chitosan (MCHIT) hydrogels were achieved in the presence of silanised tellurium-doped silica bioactive glass (BG-Te-Sil) to produce an antimicrobial and osteoconductive scaffold for tissue engineering applications. Methacrylation of chitosan enabled efficient crosslinking, and the curing process was evaluated by means of Fourier-transform infrared spectroscopy (FTIR) and photorheology analyses. Compressive testing on crosslinked hydrogels showed that the silanised, bioactive, doped glass increased the hydrogel’s elastic modulus by up to 200% compared to unreinforced controls. Antibacterial assays against Staphylococcus aureus ATCC 43300 revealed a significant (p < 0.05) reduction in bacterial metabolic activity for hydrogels containing 50 wt% of the Te-doped bioactive glass. In vitro cytocompatibility with human bone-marrow mesenchymal stem cells demonstrated sustained viability and uniform distribution at 72 h (live/dead staining, AlamarBlue). Under H2O2-induced oxidative stress, reinforced hydrogels downregulated pro-inflammatory genes (TNF-α, IFN-γ, IL-1β, and PGES-2). These results suggest that the presence of the silanised bioactive glass can significantly enhance mechanical stability, antibacterial properties, and anti-inflammatory responses without affecting cytocompatibility, making these hydrogels promising for tissue engineering applications. Full article
Show Figures

Graphical abstract

11 pages, 2399 KB  
Article
An In Vitro Diacetylcurcumin Study for Periodontitis: A New Approach to Controlling Subgingival Biofilms
by Valdo Antonio Aires da Silva, Bruno Bueno-Silva, Luciene Cristina Figueiredo, Tatiane Tiemi Macedo, Lucas Daylor Aguiar da Silva, Helio Chagas Chaves de Oliveira Junior, Carlos Roberto Polaquini, Luís Octávio Regasini and Janaina de Cássia Orlandi Sardi
Future Pharmacol. 2025, 5(2), 19; https://doi.org/10.3390/futurepharmacol5020019 - 25 Apr 2025
Viewed by 636
Abstract
Background: Periodontal disease (PD) is a chronic inflammatory condition associated with dysbiotic biofilm, leading to the destruction of bone and periodontal ligament. Scaling and root planing (SRP) is the gold-standard treatment for PD, but some patients may not respond adequately, necessitating adjunctive therapies. [...] Read more.
Background: Periodontal disease (PD) is a chronic inflammatory condition associated with dysbiotic biofilm, leading to the destruction of bone and periodontal ligament. Scaling and root planing (SRP) is the gold-standard treatment for PD, but some patients may not respond adequately, necessitating adjunctive therapies. This study investigated the antimicrobial activity of diacetylcurcumin (DAC), a modified curcumin, against multispecies subgingival biofilm associated with periodontitis. Methods: The biofilm, containing 40 bacterial species, was cultured for seven days in the Calgary apparatus. Treatments with DAC (200 μg/mL), 0.12% chlorhexidine (CHX), and a vehicle (control) were applied twice daily for 1 min, starting on the third day. On the seventh day, biofilms were analyzed for metabolic activity (MA) and bacterial counts via DNA-DNA hybridization. DAC toxicity was tested on Galleria mellonella larvae. Results: DAC reduced biofilm metabolic activity by 51%, while CHX achieved 88% reduction compared to the vehicle (p < 0.05). DAC also significantly decreased counts of key periodontal pathogens, including P. gingivalis, T. forsythia, P. intermedia, and A. actinomycetemcomitans (p < 0.05). At the tested concentration, DAC showed no toxicity in larvae. Conclusions: These findings suggest that DAC effectively reduces biofilm activity and periodontal pathogen counts, presenting a promising adjunctive therapy for PD. Full article
(This article belongs to the Special Issue Feature Papers in Future Pharmacology 2024)
Show Figures

Figure 1

15 pages, 2935 KB  
Article
Tannic Acid-Loaded Antibacterial Hydroxyapatite-Zirconia Composite for Dental Applications
by Nusrat Yeasmin, Joel Pilli, Julian McWilliams, Sarah Norris and Arjak Bhattacharjee
Crystals 2025, 15(5), 396; https://doi.org/10.3390/cryst15050396 - 24 Apr 2025
Cited by 2 | Viewed by 997
Abstract
The development of advanced biomaterials for dental applications has gained significant attention due to the need for enhanced mechanical properties, biocompatibility, and antibacterial activity. Hydroxyapatite (HA) is widely used in bone tissue engineering owing to its chemical similarities to bone. However, biofilm formation [...] Read more.
The development of advanced biomaterials for dental applications has gained significant attention due to the need for enhanced mechanical properties, biocompatibility, and antibacterial activity. Hydroxyapatite (HA) is widely used in bone tissue engineering owing to its chemical similarities to bone. However, biofilm formation and bacterial infection on HA may lead to implant failure and revision surgery. Tannic acid, a polyphenolic compound with strong antibacterial and antioxidant properties, was incorporated into the composite to provide antimicrobial effects, that may address the challenge of biofilm formation on dental surfaces. In this study, the biomedical potential of tannic acid (TA)-loaded hydroxyapatite-zirconia composites were analyzed. The crystallization characteristics, functional groups, and morphology were analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM) analysis. The biocompatibility of composite samples was analyzed through in vitro cell culture studies. The combined effect of TA and zirconia showed antibacterial efficacy against Staphylococcus aureus (S. aureus) after 24 h of sample–bacterial interactions. The results demonstrate that this tannic acid-loaded hydroxyapatite-zirconia composite holds significant promise for improving the performance of dental materials and preventing infections in oral healthcare applications. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

Back to TopTop