Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = bottle gourd

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2347 KB  
Article
Cucumber Green Mottle Mosaic Virus Decreases Chlorophyll a Content in Cucurbit Crops by Upregulating the Key Gene in Chlorophyll Catabolic Pathway, Chlorophyllase 1
by Zhenggang Li, Yafei Tang, Guobing Lan, Lin Yu, Shanwen Ding, Zifu He and Xiaoman She
Plants 2025, 14(19), 3086; https://doi.org/10.3390/plants14193086 - 6 Oct 2025
Viewed by 539
Abstract
Cucumber green mottle mosaic virus (CGMMV, Tobamovirus viridimaculae) is a tobamovirus that induces leaf green mottling, mosaic patterns, bleaching, fruit sponginess, rotting, and malformation symptoms in various cucurbit crops. The underlying mechanisms by which CGMMV elicits these symptoms have yet to be [...] Read more.
Cucumber green mottle mosaic virus (CGMMV, Tobamovirus viridimaculae) is a tobamovirus that induces leaf green mottling, mosaic patterns, bleaching, fruit sponginess, rotting, and malformation symptoms in various cucurbit crops. The underlying mechanisms by which CGMMV elicits these symptoms have yet to be elucidated. In the present study, we observed that the infection of CGMMV in bottle gourd, but not in N. benthamiana, led to the significant upregulation of a key gene involved in chlorophyll degradation, Chlorophyllase 1 (CLH1). This induction may be closely linked to chlorophyll degradation, particularly that of chlorophyll a (Clh a) in bottle gourd plants. Phylogenetic analysis showed that the amino acid sequence of BgCLH1 has a closer relationship with those of CLH1 from other cucurbit crops and has a relatively farther relationship with those of the well-studied CLH1 from Arabidopsis thaliana and Citrus sinensis. Further, confocal microscopy analysis indicated that BgCLH1 may be localized to the cytoplasm instead of the chloroplast. Moreover, silencing of the BgCLH1 gene not only reduced viral accumulation but also resulted in an increase in chlorophyll content. Similar results were also observed in watermelon, suggesting that this regulatory mechanism may be conserved across cucurbit crops. Our findings thus reveal a complex and intricate interplay between viral infection and the chlorophyll metabolic pathway. Full article
Show Figures

Figure 1

20 pages, 12114 KB  
Article
Comparative Identification of LsWRKY Transcription Factors and Transcriptional Response to Abiotic and Biotic Stresses in Lagenaria siceraria
by Han Jin, Shuoshuo Wang, Wenli Li, Shujing Tan and Yan Zhao
Horticulturae 2025, 11(10), 1192; https://doi.org/10.3390/horticulturae11101192 - 3 Oct 2025
Viewed by 438
Abstract
Lagenaria siceraria is an essential horticultural and medicinal crop that is used for its edible fruits and ornamental purposes. WRKY transcription factors have been extensively studied in plant responses to environmental stress; however, there is limited information on their specific functions in L. [...] Read more.
Lagenaria siceraria is an essential horticultural and medicinal crop that is used for its edible fruits and ornamental purposes. WRKY transcription factors have been extensively studied in plant responses to environmental stress; however, there is limited information on their specific functions in L. siceraria. In this study, 51 LsWRKY genes were identified in the L. siceraria genome. The 51 LsWRKYs were divided into classes I, II, and III based on evolutionary analysis. Members of each class have similar conserved motifs and exon-intron structures, and promoter analysis helped identify many cis-regulatory elements associated with growth, hormones, and stress responses. GO terms and KEGG analyses indicated the potential roles of LsWRKY in the regulation of bottle gourd development and acclimation to various environmental stressors. Significant differences in LsWRKY expression were observed between different tissues. The results of RNA-seq and qRT-PCR showed that LsWRKYs were expressed in a tissue- and development-specific manner under normal growth conditions. LsWRKY abundance showed a clear pattern of change related to stress when L. siceraria was exposed to unfavorable environmental conditions. This study provides new insights into the role of LsWRKYs in the growth and stress responses of cucurbits. Full article
(This article belongs to the Special Issue Genetics and Breeding of Cucurbitaceae Crops)
Show Figures

Figure 1

19 pages, 19327 KB  
Article
Genome-Wide Identification of the SRS Gene Family in Cucurbitaceae: Clade Identification and Expression Analysis of CmSRS Genes Under Drought and Salt Stress
by Haozhe Min, Kexiang Wang, Yao Guo, Junyan Yang, Xuhui Wang, Miao He, Tao Lin, Jiancai Mao and Zhengying Xuan
Biology 2025, 14(7), 891; https://doi.org/10.3390/biology14070891 - 20 Jul 2025
Viewed by 596
Abstract
Background: The short strand-related sequence (SRS) gene family is a class of plant-specific transcription factors related to a group of genes known as the short internode (SHI) or SRS/STY gene family, which plays important roles in regulating plant growth and development and stress [...] Read more.
Background: The short strand-related sequence (SRS) gene family is a class of plant-specific transcription factors related to a group of genes known as the short internode (SHI) or SRS/STY gene family, which plays important roles in regulating plant growth and development and stress responses. Although the SRS genes have been studied in many plants, in cucurbit crops, they have thus far only been identified in cucumber. Methods: In the Cucurbitaceae database from melon (Cucumis melo), cucumber (Cucumis sativus), watermelon (Citrullus lanatus), bottle gourd (Lagenaria siceraria), wax gourd (Benincasa hispida), moschata pumpkin (Cucurbita moschata), and pumpkin (Cucurbita maxima), a total of 60 SRS genes were identified in seven Cucurbitaceae crops, which were classified into three subfamilies. Results: The same subfamily showed conserved motifs and gene structures. The differences in the number of SRS genes in different Cucurbitaceae crops implied likely gene loss or duplication events during evolution. Analysis of promoter cis-regulatory elements indicated that these SRS genes may be involved in hormone response, growth and development, and biotic and abiotic stress responses in plants. Most of the CmSRS genes in melons were expressed in the roots, with a few expressed in the leaves and ovaries. In addition, CmSRS expression was induced by biotic (wilt and powdery mildew) and abiotic (drought and salt) stresses. Subcellular localization of CmSRS proteins showed predominant expression in the nucleus. Conclusions: A total of 60 Cucurbitaceae SRS genes are present in the genomes of seven Cucurbitaceae crops. These cucurbit SRS genes seem to have maintained similar characteristics and functions during the evolutionary process. These results lay the foundation for the study of biological functions of SRS genes in Cucurbitaceae crops. Full article
Show Figures

Figure 1

13 pages, 2051 KB  
Article
Near-Infrared Spectroscopy and Machine Learning for Fast Quality Prediction of Bottle Gourd
by Xiao Guo, Hongyu Huang, Haiyan Wang, Chang Cai, Ying Wang, Xiaohua Wu, Jian Wang, Baogen Wang, Biao Zhu and Yun Xiang
Foods 2025, 14(14), 2503; https://doi.org/10.3390/foods14142503 - 17 Jul 2025
Viewed by 811
Abstract
Protein and amino acid content are the crucial quality parameters in bottle gourd, and traditional measurement methods for detecting those parameters are complicated, time-consuming, and costly. In this study, we employed NIRS along with machine learning and neural network-based methods to model and [...] Read more.
Protein and amino acid content are the crucial quality parameters in bottle gourd, and traditional measurement methods for detecting those parameters are complicated, time-consuming, and costly. In this study, we employed NIRS along with machine learning and neural network-based methods to model and predict protein and free amino acids (FAAs) of bottle gourd. Specifically, the content of protein and FAAs were measured through conventional methods. Then a near-infrared analyzer was utilized to obtain the spectral data, which were processed using multiple scattering correction (MSC) and standard normalized variate (SNV). The processed spectral data were further processed using feature importance selection to select the feature bands that had the highest correlation with protein and FAAs, respectively. The models for protein and FAAs estimation were developed using support vector regression (SVR), ridge regression (RR), random forest regression (RFR), and fully connected neural networks (FCNNs). Among them, ridge regression achieved the optimal performance, with determination coefficients (R2) of 0.96 and 0.77 on the protein and FAAs test sets, respectively, and root mean square error (RMSE) values of 0.23 and 0.5, respectively. Based on this, we developed a precise and rapid prediction model for the important quality indices of bottle gourd. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

19 pages, 8793 KB  
Article
Genome-Wide Identification of the PHR Gene Family in Six Cucurbitaceae Species and Its Expression Analysis in Cucurbita moschata
by Ying Ni, Kailing Xie, Minghui Shi, Hanchen Shan, Wenxiang Wu, Weiwei Wang, Beijiu Cheng and Xiaoyu Li
Plants 2025, 14(10), 1443; https://doi.org/10.3390/plants14101443 - 12 May 2025
Viewed by 1026
Abstract
Phosphorus, as an essential nutrient, plays an important role in plant growth and development. Although Phosphate Starvation Response 1 (PHR1) or PHR1-like have been recognized as central regulators of phosphorus (Pi) homeostasis in several plants, they have not been systematically studied in Cucurbitaceae. [...] Read more.
Phosphorus, as an essential nutrient, plays an important role in plant growth and development. Although Phosphate Starvation Response 1 (PHR1) or PHR1-like have been recognized as central regulators of phosphorus (Pi) homeostasis in several plants, they have not been systematically studied in Cucurbitaceae. In this study, 11, 10, 8, 12, 12, and 22 PHR genes were identified in cucumber, melon, bottle gourd, watermelon, wax gourd, and pumpkin, respectively, by genome-wide analysis. Phylogenetic analysis showed that the Cucurbitaceae PHR genes were divided into seven distinct subfamilies. These genes were further phylogenetically analyzed for their chromosomal localization, gene structure, protein structure, and synteny. Genomic homology analysis showed that many PHR genes existed in the corresponding homology blocks of six Cucurbitaceae species. qRT-PCR analysis showed that the CmoPHR genes exhibited differential expression under different concentrations of phosphate treatment. Transcriptional self-activation assays showed that CmoPHR2, CmoPHR9, CmoPHR16, and CmoPHR17 proteins had transcriptional self-activating activity. The results of this study provide a basis for the further cloning and functional validation of genes related to the phosphate regulatory network in pumpkin. Full article
(This article belongs to the Special Issue Nitrogen and Phosphorus Transport and Signaling in Plants)
Show Figures

Figure 1

13 pages, 236 KB  
Article
Impact of Sustainable Biostimulators on Yield and Phytochemical Traits of Bottle Gourd (Lagenaria siceraria L.)
by Abd-Allah Gahory, Wagdi Saber Soliman, Rofayda Sayed, Ahmed M. Abbas and Sabri Salaheldin
Horticulturae 2025, 11(3), 299; https://doi.org/10.3390/horticulturae11030299 - 10 Mar 2025
Cited by 1 | Viewed by 1477
Abstract
Lagenaria siceraria is a nutritionally and medicinally important crop. Biostimulants offer a sustainable alternative to agrochemicals, yet their effects on bottle gourd remain largely unexplored. This study was conducted over two consecutive seasons (2021 and 2022) under open-field conditions. The aim was to [...] Read more.
Lagenaria siceraria is a nutritionally and medicinally important crop. Biostimulants offer a sustainable alternative to agrochemicals, yet their effects on bottle gourd remain largely unexplored. This study was conducted over two consecutive seasons (2021 and 2022) under open-field conditions. The aim was to evaluate the impact of eco-friendly biostimulants—salicylic acid (SA), humic acid (HA), and seaweed extract (SW)—on the growth, yield, and phytochemical composition of bottle gourd (Lagenaria siceraria). A randomized complete block design with a factorial arrangement was implemented, including ten treatments with three concentrations of SA, HA, and SW, alongside a control. The results demonstrated that these sustainable growth enhancers significantly improved plant growth parameters. The application of 1.2 g L−1 HA produced the longest plants with the highest leaf and flower number, while fruit traits such as length and diameter were notably enhanced by the 3 mL L−1 SW and 0.8 g L−1 SA treatments. Fruit and seed dry weights were also significantly increased, with the 2 mL L−1 SW and 0.16 g L−1 SA treatments yielding the heaviest fruits, and the 3 mL L−1 SW treatment leading to the highest seed dry weight per fruit. Higher concentrations of SA, HA, and SW, particularly 3 mL L−1 SW, resulted in significant increases in total phenolic content, total flavonoid content, and antioxidant activity. Additionally, biostimulant treatments influenced fixed oil content and composition, with variations in fatty acid profiles. GC analysis identified 21 compounds, with linoleic acid as the dominant fatty acid, reaching its highest concentration under the 1 mL L−1 SW treatment. These findings highlight the potential of sustainable biostimulants in enhancing the productivity and nutritional quality of bottle gourd, supporting the adoption of organic and eco-friendly farming practices in open-field vegetable production. Full article
15 pages, 3484 KB  
Article
Combined BSA-Seq and RNA-Seq to Identify Potential Genes Regulating Fruit Size in Bottle Gourd (Lagenaria siceraria L.)
by Huarong Fang, Shishi Huang, Ruirui Li, Peng Wang, Qingwei Jiang, Chuan Zhong, Yanjuan Yang and Wenjin Yu
Plants 2024, 13(15), 2154; https://doi.org/10.3390/plants13152154 - 3 Aug 2024
Cited by 1 | Viewed by 1825
Abstract
Fruit size is a crucial agronomic trait in bottle gourd, impacting both yield and utility. Despite its significance, the regulatory mechanism governing fruit size in bottle gourd remains largely unknown. In this study, we used bottle gourd (small-fruited H28 and large-fruited H17) parent [...] Read more.
Fruit size is a crucial agronomic trait in bottle gourd, impacting both yield and utility. Despite its significance, the regulatory mechanism governing fruit size in bottle gourd remains largely unknown. In this study, we used bottle gourd (small-fruited H28 and large-fruited H17) parent plants to measure the width and length of fruits at various developmental stages, revealing a single ‘S’ growth curve for fruit expansion. Paraffin section observations indicated that both cell number and size significantly influence bottle gourd fruit size. Through bulked segregant analysis and combined genotype–phenotype analysis, the candidate interval regulating fruit size was pinpointed to 17,747,353 bp–18,185,825 bp on chromosome 9, encompassing 0.44 Mb and including 44 genes. Parental fruits in the rapid expansion stage were subjected to RNA-seq, highlighting that differentially expressed genes were mainly enriched in pathways related to cell wall biosynthesis, sugar metabolism, and hormone signaling. Transcriptome and resequencing analysis, combined with gene function annotation, identified six genes within the localized region as potential regulators of fruit size. This study not only maps the candidate interval of genes influencing fruit size in bottle gourd through forward genetics, but also offers new insights into the potential molecular mechanisms underlying this trait through transcriptome analysis. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

17 pages, 2872 KB  
Article
A Transcriptomic Analysis of Bottle Gourd-Type Rootstock Roots Identifies Novel Transcription Factors Responsive to Low Root Zone Temperature Stress
by Jinqiu Liu, Man Zhang, Jian Xu, Xiefeng Yao, Lina Lou, Qian Hou, Lingli Zhu, Xingping Yang, Guang Liu and Jinhua Xu
Int. J. Mol. Sci. 2024, 25(15), 8288; https://doi.org/10.3390/ijms25158288 - 29 Jul 2024
Cited by 3 | Viewed by 1385
Abstract
The bottle gourd [Lagenaria siceraria (Molina) Standl.] is often utilized as a rootstock for watermelon grafting. This practice effectively mitigates the challenges associated with continuous cropping obstacles in watermelon cultivation. The lower ground temperature has a direct impact on the rootstocks’ root [...] Read more.
The bottle gourd [Lagenaria siceraria (Molina) Standl.] is often utilized as a rootstock for watermelon grafting. This practice effectively mitigates the challenges associated with continuous cropping obstacles in watermelon cultivation. The lower ground temperature has a direct impact on the rootstocks’ root development and nutrient absorption, ultimately leading to slower growth and even the onset of yellowing. However, the mechanisms underlying the bottle gourd’s regulation of root growth in response to low root zone temperature (LRT) remain elusive. Understanding the dynamic response of bottle gourd roots to LRT stress is crucial for advancing research regarding its tolerance to low temperatures. In this study, we compared the physiological traits of bottle gourd roots under control and LRT treatments; root sample transcriptomic profiles were monitored after 0 h, 48 h and 72 h of LRT treatment. LRT stress increased the malondialdehyde (MDA) content, relative electrolyte permeability and reactive oxygen species (ROS) levels, especially H2O2 and O2−. Concurrently, LRT treatment enhanced the activities of antioxidant enzymes like superoxide dismutase (SOD) and peroxidase (POD). RNA-Seq analysis revealed the presence of 2507 and 1326 differentially expressed genes (DEGs) after 48 h and 72 h of LRT treatment, respectively. Notably, 174 and 271 transcription factors (TFs) were identified as DEGs compared to the 0 h control. We utilized quantitative real-time polymerase chain reaction (qRT-PCR) to confirm the expression patterns of DEGs belonging to the WRKY, NAC, bHLH, AP2/ERF and MYB families. Collectively, our study provides a robust foundation for the functional characterization of LRT-responsive TFs in bottle gourd roots. Furthermore, these insights may contribute to the enhancement in cold tolerance in bottle gourd-type rootstocks, thereby advancing molecular breeding efforts. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 7534 KB  
Article
A Modeling Approach to Studying the Influence of Grafting on the Anatomical Features and SAUR Gene Expression in Watermelons
by Rita Márkus, Marianna Kocsis, Ágnes Farkas, Dávid U. Nagy, Paul Helfrich, Damir Kutyáncsánin, Gergely Nyitray, Szilvia Czigle and Szilvia Stranczinger
Agronomy 2024, 14(7), 1472; https://doi.org/10.3390/agronomy14071472 - 7 Jul 2024
Cited by 1 | Viewed by 2115
Abstract
Grafting alters the genetic and anatomical features of plants. Although grafting has been widely applied in plant propagation, the underlying processes that govern the effects of the procedure are not fully understood. Samples were collected to study the long-term influence of grafting on [...] Read more.
Grafting alters the genetic and anatomical features of plants. Although grafting has been widely applied in plant propagation, the underlying processes that govern the effects of the procedure are not fully understood. Samples were collected to study the long-term influence of grafting on the leaf-shoot morphology, leaf-shoot anatomy, and genetic signature of the grafted plants. Citrulus lanatus (Thunb.) Matsum. & Nakai (cv. Lady) was used as the scion, and Lagenaria siceraria (Molina) Standl (cv. Argentario) as a rootstock. In grafted plants, leaf blades and petioles were 20.92% and 12.82% longer, respectively, while the midrib collenchyma was 35.68% thicker, and the diameter of the vessel member was 11.17% larger than in ungrafted plants. In the stem, grafting affected the arrangement and number of vascular bundles (from 1 to 2 rings). The thickness of the epidermis decreased by 69.79%, and the size of the external fascicular phloem decreased by 23.56%. The diameter of the vessel member of the grafted plants increased by 28.94%. Eight out of ten evaluated primers met the requirements (stability in both watermelons and bottle gourd, tissue-specific). In the genetic tests, we examined whether this change in the gene expression pattern is due to the grafting and, if so, to what extent. Seven out of eight tested Small Auxin Up-Regulated RNA (SAUR) genes were expressed in the ungrafted and grafted C. lanatus lines in four cases; the expression increased by more than 10% after grafting. The morpho-anatomical changes and genetic variation reported in this study for grafted lines of C. lanatus contribute to the understanding of the underlying mechanisms of plant growth observations resulting from grafting. Full article
(This article belongs to the Special Issue Recent Insights in Sustainable Agriculture and Nutrient Management)
Show Figures

Figure 1

10 pages, 1427 KB  
Article
Comprehensive Assessment of Morphological Diversity in Bottle Gourd (Lagenaria siceraria) Accessions: A Focus on Roots and Morpho-Agronomic Traits
by Sebastián Flores-Chacón, Gonzalo Carreño, Carlos Maldonado and Rodrigo Contreras-Soto
Diversity 2024, 16(3), 136; https://doi.org/10.3390/d16030136 - 22 Feb 2024
Cited by 2 | Viewed by 2872
Abstract
Phenotypic characterization of the variability present within bottle gourd has been limited to morpho-agronomic traits, and this evaluation is a prerequisite for a bottle gourd breeding program. Despite playing an important role in the phenotypic variation in plants, the root system has limited [...] Read more.
Phenotypic characterization of the variability present within bottle gourd has been limited to morpho-agronomic traits, and this evaluation is a prerequisite for a bottle gourd breeding program. Despite playing an important role in the phenotypic variation in plants, the root system has limited use in studies of morphological diversity. Thus, the objective of this study was to characterize the morphological diversity present in bottle gourd accessions of different countries based on roots and morpho-agronomic traits. The magnitude of morphological diversity and divergence among nineteen bottle gourd accessions that represent nine different countries of origin were evaluated with analysis of variance, principal component analysis, and an agglomerative hierarchical clustering (AHC) analysis. ANOVA for morpho-agronomic and root traits revealed significant morphological effects among the accessions, suggesting substantial differences among the bottle gourd accessions. The nineteen accessions were grouped into three clusters, and while these were not grouped according to the country of origin, clear differences among the roots and flowering traits were observed between the L. siceraria var. hispida with L. siceraria var. siceraria accessions, which were confirmed with the AHC analysis, revealing the divergence between these varieties and the opportunities for rootstock breeding programs. Full article
(This article belongs to the Special Issue Genetic Diversity of Cucurbit Crops)
Show Figures

Figure 1

13 pages, 3338 KB  
Article
Excavation of Genes Response to Heat Resistance by Transcriptome Analysis in Bottle Gourd (Lagenaria siceraria (Mol.) Standl.)
by Min Wang, Wenrui Liu, Qingwu Peng, Shaoqi Shi, Ying Wang, Liqin Cao, Biao Jiang, Yu’e Lin, Tianyue Zhao, Xiaojuan Cui and Songguang Yang
Agronomy 2024, 14(2), 299; https://doi.org/10.3390/agronomy14020299 - 30 Jan 2024
Cited by 3 | Viewed by 1965
Abstract
Heat stress, as a negative factor, severely threatens the quality and production of bottle gourd, which prefers to grow in a warm environment. To understand which genes are involved in the resistance to heat stress in bottle gourd (Lagenaria siceraria (Mol.) Standl.), [...] Read more.
Heat stress, as a negative factor, severely threatens the quality and production of bottle gourd, which prefers to grow in a warm environment. To understand which genes are involved in the resistance to heat stress in bottle gourd (Lagenaria siceraria (Mol.) Standl.), we analyzed the characteristics of two genetic bottle gourd varieties, “Mei feng”-MF (heat resistant) and “Lv long”-LL (heat sensitive). Under heat stress, MF plants exhibited a higher survival rate, lower relative electrolytic leakage, and decreased stomatal aperture compared with LL. In addition, RNA-Seq was carried out on the two varieties under normal conditions and heat stress. The results revealed a total of 1485 up-regulated and 946 down-regulated genes under normal conditions, while 602 genes were up-regulated and 1212 genes were down-regulated under heat stress. Among these genes, several differentially expressed genes (DEGs) involved in the MAPK (mitogen-activated protein kinase) signaling pathway and members of bHLH (basic helix-loop-helix) transcription factors showed significant up- or down-regulation after heat stress. Next, to validate these findings, we conducted quantitative real-time PCR (qRT-PCR) analysis, which confirmed the expression patterns of the genes detected through RNA-Seq. Collectively, the DEGs between the two contrasting cultivars identified in our study provide novel insight into excavating helpful candidate genes associated with heat tolerance in bottle gourd. Full article
(This article belongs to the Special Issue Climate Change and Agriculture—Sustainable Plant Production)
Show Figures

Figure 1

23 pages, 1810 KB  
Article
Investigating Mineral Accumulation and Seed Vigor Potential in Bottle Gourd (Lagenaria siceraria) through Crossbreeding Timing
by Anurag Malik, Virender Singh Mor, Himani Punia, D. S. Duhan, Axay Bhuker, Jayanti Tokas, Mohamed A. El-Sheikh and Tariq Shah
Plants 2023, 12(23), 3998; https://doi.org/10.3390/plants12233998 - 28 Nov 2023
Cited by 6 | Viewed by 4048
Abstract
Bottle gourd (Lagenaria siceraria) is a well-known cucurbit with an active functional ingredient. A two-year field experiment was carried out at the Research Farm of Seed Science and Technology, CCS HAU, Hisar, in a randomized block design during the Kharif season [...] Read more.
Bottle gourd (Lagenaria siceraria) is a well-known cucurbit with an active functional ingredient. A two-year field experiment was carried out at the Research Farm of Seed Science and Technology, CCS HAU, Hisar, in a randomized block design during the Kharif season (Kharif is one of the two major cropping seasons in India and other South Asian countries, heavily reliant on monsoon rains with the other being Rabi) and the summer season. Five different crossing periods (CP), viz. CP1, CP2, CP3, CP4, and CP5, were considered to illustrate the effects of agro-climatic conditions on the quality and biochemical components of two bottle gourd parental lines and one hybrid, HBGH-35. The average mean temperature for the Kharif season in 2017 was 31.7 °C, and for the summer season, it was 40.1 °C. Flowers were tagged weekly from the start of the crossing period until the end and harvested separately at different times. The fruits harvested from different crossing periods under different environmental conditions influenced the bottle gourd’s qualitative and biochemical traits and showed significant variations among the five crossing period environments. A positive significance and correlation were observed between weather variables and different biochemical characteristics. Henceforth, the CP4 crossing period at a temperature of 31.7 °C retained high-quality seed development, which may be essential in enhancing agricultural productivity and the national economy. Full article
(This article belongs to the Special Issue Genetic and Environmental Factors Affecting Seed Germination)
Show Figures

Figure 1

19 pages, 4715 KB  
Article
Transcriptome and Metabolome Analyses Reveal That Jasmonic Acids May Facilitate the Infection of Cucumber Green Mottle Mosaic Virus in Bottle Gourd
by Zhenggang Li, Yafei Tang, Guobing Lan, Lin Yu, Shanwen Ding, Xiaoman She and Zifu He
Int. J. Mol. Sci. 2023, 24(23), 16566; https://doi.org/10.3390/ijms242316566 - 21 Nov 2023
Cited by 7 | Viewed by 2529
Abstract
Cucumber green mottle mosaic virus (CGMMV) is a typical seed-borne tobamovirus that mainly infects cucurbit crops. Due to the rapid growth of international trade, CGMMV has spread worldwide and become a significant threat to cucurbit industry. Despite various studies focusing on the interaction [...] Read more.
Cucumber green mottle mosaic virus (CGMMV) is a typical seed-borne tobamovirus that mainly infects cucurbit crops. Due to the rapid growth of international trade, CGMMV has spread worldwide and become a significant threat to cucurbit industry. Despite various studies focusing on the interaction between CGMMV and host plants, the molecular mechanism of CGMMV infection is still unclear. In this study, we utilized transcriptome and metabolome analyses to investigate the antiviral response of bottle gourd (Lagenaria siceraria) under CGMMV stress. The transcriptome analysis revealed that in comparison to mock-inoculated bottle gourd, 1929 differently expressed genes (DEGs) were identified in CGMMV-inoculated bottle gourd. Among them, 1397 genes were upregulated while 532 genes were downregulated. KEGG pathway enrichment indicated that the DEGs were mainly involved in pathways including the metabolic pathway, the biosynthesis of secondary metabolites, plant hormone signal transduction, plant–pathogen interaction, and starch and sucrose metabolism. The metabolome result showed that there were 76 differentially accumulated metabolites (DAMs), of which 69 metabolites were up-accumulated, and 7 metabolites were down-accumulated. These DAMs were clustered into several pathways, including biosynthesis of secondary metabolites, tyrosine metabolism, flavonoid biosynthesis, carbon metabolism, and plant hormone signal transduction. Combining the transcriptome and metabolome results, the genes and metabolites involved in the jasmonic acid and its derivatives (JAs) synthesis pathway were significantly induced upon CGMMV infection. The silencing of the allene oxide synthase (AOS) gene, which is the key gene involved in JAs synthesis, reduced CGMMV accumulation. These findings suggest that JAs may facilitate CGMMV infection in bottle gourd. Full article
(This article belongs to the Special Issue Advances in Plant Virus Diseases and Virus-Induced Resistance)
Show Figures

Figure 1

14 pages, 3953 KB  
Article
Comparative Evaluation of Volatile Organic Compounds in Two Bottle Gourd Accessions with Distinct Fruit Shapes
by Bazgha Zia, Bidisha Chanda, Jinhe Bai, Andrea Gilliard and Kai-Shu Ling
Foods 2023, 12(21), 3921; https://doi.org/10.3390/foods12213921 - 26 Oct 2023
Cited by 2 | Viewed by 2520
Abstract
Bottle gourd (Lagenaria siceraria L.) belongs to the cucurbit family and has a long history of cultivation in tropical and subtropical regions worldwide, both for food and medicine. Popularized by its unique fruit shapes, gourds are used to make ornaments and musical [...] Read more.
Bottle gourd (Lagenaria siceraria L.) belongs to the cucurbit family and has a long history of cultivation in tropical and subtropical regions worldwide, both for food and medicine. Popularized by its unique fruit shapes, gourds are used to make ornaments and musical instruments. However, there is limited information on volatile organic compounds (VOCs) in the bottle gourd fruit. In the present study, we conducted a comparative analysis of VOCs profiled in two accessions (USVL5 and USVL10) with distinct fruit shapes: bottle and cylinder. While USVL5 only produced long cylinder fruits, USVL10 produced two fruit types, cylinder (USVL10CYN) and bottle (USVL10A and USVL10B). VOCs in each line were analyzed using headspace solid-phase microextraction–gas chromatography/mass spectrometry (HS-SPME-GC/MS). Aliphatic aldehydes and alcohols were the most abundant compounds found in these bottle gourd accessions. Based on the functional profile of the identified VOCs, our results reveal the suitability of our tested line (USVL10), enriched in functionally important VOCs such as hexanal (abundance = 381.07), nonanal (abundance = 9.85), 2-methoxy-2-methylpropane (abundance = 21.26) and D-limonene (abundance = 31.48). The VOCs profiling and functional analyses support the notion that the bottle gourd accession USVL10 can be a good candidate for its use in agriculture, the health care industry and domestic uses. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

15 pages, 2299 KB  
Article
Cucurbitacins B, E and I Concentrations and Relationship with Drought Tolerance in Bottle Gourd [Lagenaria siceraria (Molina) Standl.]
by Phumzile Mkhize, Hussein Shimelis and Jacob Mashilo
Plants 2023, 12(19), 3492; https://doi.org/10.3390/plants12193492 - 7 Oct 2023
Cited by 7 | Viewed by 2805
Abstract
Bottle gourd [Lagenaria siceraria (Molina) Standl.]) is a relatively drought-tolerant cucurbit due to the high composition of unique biochemical compositions, including cucurbitacin. The objective of this study was to determine the concentrations of cucurbitacins in bottle gourd and their relationship to drought [...] Read more.
Bottle gourd [Lagenaria siceraria (Molina) Standl.]) is a relatively drought-tolerant cucurbit due to the high composition of unique biochemical compositions, including cucurbitacin. The objective of this study was to determine the concentrations of cucurbitacins in bottle gourd and their relationship to drought tolerance. The study assessed 12 bottle gourd accessions grown under two moisture levels (i.e., non-stressed (NS) and drought-stressed (DS)) and three drought stress intensities (i.e., mild, moderate, and severe) using a 12 × 2 × 3 factorial experiment designed in a randomized complete block design with three replications. Control studies were undertaken under glasshouse conditions. The content of cucurbitacins B, E, and I were quantified in leaves and roots using high-performance liquid Cchromatography–mass spectrometry (HPLC-MS). The free radical scavenging activities of pure cucurbitacins B, E, and I were quantified using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and a ferrulic acid power assay (FRAP). Results revealed that cucurbitacins B and I were present in accessions BG-48, BG-58, BG-70, BG-78, BG-79, BG-81, BG-52, and GC in leaves and roots under DS condition. The contents of cucurbitacins B and I were enhanced under increased drought intensity for accessions BG-48, BG-81, and GC. In all the leaf and root samples, cucurbitacin E was not detectable. Based on the DPPH test, pure cucurbitacins I, B, and E reduced free radicals at maximum values of 78, 60, and 66%, respectively. Based on the FRAP assay, pure cucurbitacins I, B, and E had maximum ferric-reducing powers of 67, 62, and 48%. Additionally, cucurbitacin I recorded the highest antioxidant activity compared to cucurbitacins B and E. Increased cucurbitacin accumulation and antioxidant properties indicate their role in minimising cell damage caused by oxidative stress under drought-stressed environments. The present study revealed that cucurbitacins B and I serve as novel biochemical markers for screening drought tolerance in bottle gourd or related cucurbits. Full article
Show Figures

Figure 1

Back to TopTop