Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = bridge deck slabs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 11521 KB  
Article
Ultimate Capacity of a GFRP-Reinforced Concrete Bridge Barrier–Deck Anchorage Subjected to Transverse Loading
by Gledis Dervishhasani, Khaled Sennah, Hamdy M. Afefy and Ahmed Diab
Appl. Sci. 2025, 15(14), 7771; https://doi.org/10.3390/app15147771 - 10 Jul 2025
Viewed by 612
Abstract
This paper outlines a structural qualification process to assess the use of newly developed high-modulus (HM) glass fiber-reinforced polymer (GFRP) bars with headed ends in the joint between concrete bridge barriers and decks. The main goals of the study are to evaluate the [...] Read more.
This paper outlines a structural qualification process to assess the use of newly developed high-modulus (HM) glass fiber-reinforced polymer (GFRP) bars with headed ends in the joint between concrete bridge barriers and decks. The main goals of the study are to evaluate the structural performance of GFRP-reinforced TL-5 barrier–deck systems under transverse loading and to determine the pullout capacity of GFRP anchorage systems for both new construction and retrofit applications. The research is divided into two phases. In the first phase, six full-scale Test-Level 5 (TL-5) barrier wall–deck specimens, divided into three systems, were constructed and tested up to failure. The first system used headed-end GFRP bars to connect the barrier wall to a non-deformable thick deck slab. The second system was similar to the first but had a deck slab overhang for improved anchorage. The third system utilized postinstalled GFRP bars in a non-deformable thick deck slab, bonded with a commercial epoxy adhesive as a solution for deteriorated barrier replacement. The second phase involves an experimental program to evaluate the pullout strength of the GFRP bar anchorage in normal-strength concrete. The experimental results from the tested specimens were then compared to the factored applied moments in existing literature based on traffic loads in the Canadian Highway Bridge Design Code. Experimental results confirmed that GFRP-reinforced TL-5 barrier–deck systems exceeded factored design moments, with capacity-to-demand ratios above 1.38 (above 1.17 with the inclusion of an environmental reduction factor of 0.85). A 195 mm embedment length proved sufficient for both pre- and postinstalled bars. Headed-end GFRP bars improved pullout strength compared to straight-end bars, especially when bonded. Failure modes occurred at high loads, demonstrating structural integrity. Postinstalled bars bonded with epoxy performed comparably to preinstalled bars. A design equation for the barrier resistance due to a diagonal concrete crack at the barrier–deck corner was developed and validated using experimental findings. This equation offers a conservative and safe design approach for evaluating barrier–deck anchorage. Full article
Show Figures

Figure 1

16 pages, 1784 KB  
Essay
Identification of Mechanical Parameters of Prestressed Box Girder Bridge Based on Falling Weight Deflectometer
by Yijun Chen, Wenqi Wu, Qingzhao Li, Pan Guo, Yingchun Cai and Jiandong Wei
Buildings 2025, 15(13), 2243; https://doi.org/10.3390/buildings15132243 - 26 Jun 2025
Viewed by 290
Abstract
Traditional damage detection methods of prestressed concrete box girder bridges have low efficiency and cannot quantify the structure’s internal damage. We used an inversion method and a falling weight deflectometer to estimate the mechanical parameters of prestressed box girder bridges. A finite element [...] Read more.
Traditional damage detection methods of prestressed concrete box girder bridges have low efficiency and cannot quantify the structure’s internal damage. We used an inversion method and a falling weight deflectometer to estimate the mechanical parameters of prestressed box girder bridges. A finite element model of the bridge dynamics under impact loading was established. A perturbation-based update was conducted, and a multi-parameter inversion algorithm was constructed. The measured data were used for the efficient identification of the bridge’s elasticity modulus and the prestressing tensile force. The theoretical validation indicated a high modeling accuracy and inversion efficiency, with a convergence accuracy within 1%. The initial value had a minimal influence on the inversion results. The engineering application showed that the maximum error of the elastic modulus between the inversion and the rebound methods was 1.55%. The loss rates of the deck slab’s elastic modulus and the prestressing force obtained from the inversion were 4.39% and 7.64%, respectively. The proposed method provides a new strategy for evaluating damage to prestressed box girder bridges. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 4194 KB  
Article
Experimental Study on Punching Shear Behavior of Ultra-High-Performance Concrete (UHPC) Slabs
by Junping Liu, Baochun Chen, Hamdy M. Afefy and Khaled Sennah
Buildings 2025, 15(10), 1656; https://doi.org/10.3390/buildings15101656 - 14 May 2025
Viewed by 1190
Abstract
This study assesses the punching shear characteristics of ultra-high-performance concrete (UHPC) slabs in two phases. The initial phase involved experimental tests to determine the critical thickness differentiating punching shear failure and flexural failure modes. Subsequently, the second phase further explored the punching shear [...] Read more.
This study assesses the punching shear characteristics of ultra-high-performance concrete (UHPC) slabs in two phases. The initial phase involved experimental tests to determine the critical thickness differentiating punching shear failure and flexural failure modes. Subsequently, the second phase further explored the punching shear behavior of UHPC slabs by analyzing various key parameters. The experimental findings indicated that as the thickness of the slabs increased, the punching shear capacity exhibited nearly linear enhancement, surpassing the improvement seen in bending capacity. Thus, a critical thickness of at least 100 mm was identified as the threshold distinguishing punching shear failure from flexural failure. Additionally, an increase in slab thickness significantly elevated the cracking load of the UHPC slabs. While a higher reinforcement ratio of 3.5% slightly increased the first cracking load, it greatly enhanced the ultimate capacity. The addition of steel fibers also contributed to improvements in both cracking and ultimate loads, albeit to a limited extent. The use of a granite powder substitute, comprising 10% of the mass of silica fume, had minimal impact on the punching shear capacity of the UHPC slabs. Finally, a comparison is drawn between the experimental results for punching shear capacity and those obtained from various theoretical models. This comparison highlights significant discrepancies in the results, stemming from the differing parameters employed in the proposed theoretical models. Among the prediction models, the JSCE model provided the most balanced and conservatively accurate estimation of punching shear capacity, effectively incorporating the effects of slab thickness, reinforcement ratio, and fiber content, thus highlighting its potential as a reliable reference for future design recommendations. This information will serve as a valuable reference for future research and practical applications related to UHPC bridge decks and slabs. Full article
Show Figures

Figure 1

20 pages, 7172 KB  
Article
Flexural Behavior of Engineered Cementitious Composites (ECC) Slabs with Different Strength Grades
by Fengjiang Qin, Yang Han, Xinyan Wei, Xuejun Wang, Zhigang Zhang and Xiaoyue Zhang
Materials 2025, 18(9), 2047; https://doi.org/10.3390/ma18092047 - 30 Apr 2025
Cited by 6 | Viewed by 544
Abstract
Engineering Cementitious Composites (ECC) has gained significant attention in civil engineering due to its excellent tensile strength, crack width control capability, and remarkable ductility. This study examines the influence of the ECC strength and reinforcement on the flexural behavior of ECC slabs through [...] Read more.
Engineering Cementitious Composites (ECC) has gained significant attention in civil engineering due to its excellent tensile strength, crack width control capability, and remarkable ductility. This study examines the influence of the ECC strength and reinforcement on the flexural behavior of ECC slabs through four-point flexural tests. The results demonstrate that ECC is well suited for flexural applications. During flexural tests, the fibers within the ECC provide a bridging effect, allowing the ECC in the tensile zone to sustain a load while developing a dense network of fine microcracks at failure. This characteristic significantly enhances the crack resistance of ECC slabs. Despite the relatively low flexural capacity of unreinforced ECC slabs, they achieve 59.2% of the capacity of reinforced ECC slabs with a reinforcement ratio of 1.02%, demonstrating the potential for using unreinforced ECC in low-load-bearing applications. Further findings reveal that high-strength ECC (HSECC) not only improves the flexural capacity of unreinforced ECC slabs but also maintains excellent ductility, enabling a better balance between the load-bearing capacity and deformation ability. However, while reinforcement enhances both the flexural capacity and energy absorption, an excessively high reinforcement ratio significantly compromises ductility. Additionally, this study proposes a simplified calculation method for the flexural capacity of ECC slabs based on the axial force and moment equilibrium, providing theoretical support for their design and application. Due to their excellent flexural behavior, ECC slabs exhibit significant potential for use in flexural components such as bridge deck slabs and link slabs in simply supported beam bridges. With continued research and optimization, their application in engineering practice is expected to become more widespread, thereby improving the cracking resistance and durability of concrete structures. Full article
Show Figures

Figure 1

30 pages, 9452 KB  
Article
Influence of Girder Flaring on Load Effect in Girders of Composite Steel Bridges
by Faress Hraib and Sami W. Tabsh
Appl. Sci. 2025, 15(9), 4674; https://doi.org/10.3390/app15094674 - 23 Apr 2025
Viewed by 527
Abstract
A flared or splayed girder bridge is a structure made up of a concrete slab on girders with linearly varying spacing along the length. For such an irregular bridge, the girder distribution factors in the AASHTO LRFD Bridge Design Specifications are not applicable. [...] Read more.
A flared or splayed girder bridge is a structure made up of a concrete slab on girders with linearly varying spacing along the length. For such an irregular bridge, the girder distribution factors in the AASHTO LRFD Bridge Design Specifications are not applicable. In lieu of using a refined method of analysis, the study at hand proposes a simple approach for computing the dead and live load effect in the girders. To do so, fifteen composite steel girder bridges are analyzed by the finite element method to determine the influence of the girder flaring angle, girder spacing, number of girders, deck slab thickness, span length, girder stiffness, and presence of cross-bracing on the load distribution within the bridge. This study showed that the tributary width concept is a reliable approach for determining the dead load effect on the splayed girders, especially for the case of shored construction. The girder distribution factors for flexure in the AASHTO specifications can be reasonably utilized for such irregular bridges if the girder spacing at the location of each truck axle is considered, leading to a maximum of 14% difference on the conservative side between the AASHTO approach and the finite element analysis. On the other hand, the lever rule can provide a good estimate of the live load distribution among the splayed girders when subjected to shear, as the maximum safe deviation from the finite element outcome in this situation is less than 10%. Full article
Show Figures

Figure 1

17 pages, 12087 KB  
Article
Experimental and Numerical Study on Dynamic Response of High-Pier Ballastless Continuous Beam Bridge in Mountainous Area
by Wenshuo Liu, Qiong Luo, Gonglian Dai and Xin Tang
Appl. Sci. 2025, 15(8), 4341; https://doi.org/10.3390/app15084341 - 15 Apr 2025
Cited by 1 | Viewed by 552
Abstract
The dynamic performance of a ballastless track on bridges affects the vibration performance of the vehicle–bridge coupling system, which, in turn, will affect safety, the smoothness of operating trains, and passenger comfort. However, in the existing literature, few studies focus on the coupled [...] Read more.
The dynamic performance of a ballastless track on bridges affects the vibration performance of the vehicle–bridge coupling system, which, in turn, will affect safety, the smoothness of operating trains, and passenger comfort. However, in the existing literature, few studies focus on the coupled vibration response analysis of large-span continuous beam bridges for high-speed railways, especially high-pier bridges. Dynamic response tests with multiple measurement points installed on the rail, concrete slab, and bridge deck are conducted. This study investigates the dynamic characteristics of bridges with high piers under train loads. A dynamic system is built by the co-simulation platform of SIMPACK v9 and ANSYS v2022, consisting of several models, a coupling mechanism, etc. The vibration response of a train passing through the bridge at 300 km/h is analyzed, and the influence of operating speed on the motivation performance of the coupled system is further studied. The results indicate that the simulation results are validated against experimental data, showing good agreement; the train–track–continuous beam bridge coupling system meets the specification limits and has some margins for further optimization with an operating speed of 300 km/h. The refined model of train–rail–bridge coupling vibration established in this paper provides theoretical guidance for the design and application of high-speed railways. Full article
Show Figures

Figure 1

19 pages, 3777 KB  
Article
Surrogate-Assisted Cost Optimization for Post-Tensioned Concrete Slab Bridges
by Lorena Yepes-Bellver, Alejandro Brun-Izquierdo, Julián Alcalá and Víctor Yepes
Infrastructures 2025, 10(2), 43; https://doi.org/10.3390/infrastructures10020043 - 18 Feb 2025
Cited by 1 | Viewed by 1002
Abstract
The study uses surrogate modeling techniques to evaluate cost optimization methodologies for post-tensioned concrete slab bridges. These structures are key components in transportation infrastructure, where design efficiency can yield significant economic benefits. The research focuses on a three-span slab bridge, with spans of [...] Read more.
The study uses surrogate modeling techniques to evaluate cost optimization methodologies for post-tensioned concrete slab bridges. These structures are key components in transportation infrastructure, where design efficiency can yield significant economic benefits. The research focuses on a three-span slab bridge, with spans of 24, 34, and 28 m, optimized through the Kriging surrogate model combined with heuristic algorithms such as simulated annealing. Input variables included deck depth, base geometry, and concrete grade, with Latin Hypercube Sampling ensuring diverse design exploration. Results reveal that the optimized design achieves a 6.54% cost reduction compared to conventional approaches, primarily by minimizing material usage—concrete by 14.8% and active steel by 11.25%. Among the predictive models analyzed, the neural network demonstrated the lowest prediction error but required multiple runs for stability, while the Kriging model offered accurate local optimum identification. This work highlights surrogate modeling as a practical and efficient tool for bridge design, reducing costs while adhering to structural and serviceability criteria. The methodology facilitates better-informed decision-making in structural engineering, supporting more economical bridge designs. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

15 pages, 4654 KB  
Article
Vehicle–Bridge Coupling Vibration Analysis of a Highway Pile–Slab Bridge Based on the Contact Constraint Method
by Shizhan Xu, Zhao Shi, Yinfeng Lu, Yongqiang Song, Zhantao Zhao and Chengyu Li
Buildings 2025, 15(3), 415; https://doi.org/10.3390/buildings15030415 - 28 Jan 2025
Viewed by 1194
Abstract
To investigate the impact of vehicle load on highway pile–slab bridges, the contact constraint method is employed to treat the vehicle and the bridge as two independent subsystems. Through the formulation of point-to-surface contact and constraint equations, a vehicle–bridge coupling vibration analysis is [...] Read more.
To investigate the impact of vehicle load on highway pile–slab bridges, the contact constraint method is employed to treat the vehicle and the bridge as two independent subsystems. Through the formulation of point-to-surface contact and constraint equations, a vehicle–bridge coupling vibration analysis is performed, incorporating the effects of bridge deck roughness. The finite element method is utilized to construct the pile–slab bridge model, while the five-axis heavy vehicle model is developed based on the multi-rigid-body dynamics method. The analysis and computational results of the model reveal the effects of pier height, vehicle number, and the friction coefficient on the dynamic response of the pile–slab bridge. The results indicate that pier height significantly influences the dynamic response, and the appropriate pier height should be carefully determined during the design phase. The vertical displacement impact coefficient surpasses the design value derived from the specification, highlighting the need to consider the vehicle’s impact on the bridge. Furthermore, vehicle number and the friction coefficient significantly affect the longitudinal dynamic response and transverse acceleration response of the pile–slab bridge. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 14012 KB  
Article
Optimizing UHPC Layers to Improve Punching Shear Performance in Concrete Slabs
by Ahmed A. Hassoon, Rafea F. Hassan and Husam H. Hussein
Buildings 2025, 15(2), 209; https://doi.org/10.3390/buildings15020209 - 12 Jan 2025
Cited by 1 | Viewed by 2207
Abstract
Flat slabs supported by columns without beams are widely used in construction owing to their economy and efficiency. However, brittle punching shear failure at slab–column connections can cause progressive collapse. UHPC has a higher tensile strength than NSC and, when appropriately reinforced with [...] Read more.
Flat slabs supported by columns without beams are widely used in construction owing to their economy and efficiency. However, brittle punching shear failure at slab–column connections can cause progressive collapse. UHPC has a higher tensile strength than NSC and, when appropriately reinforced with steel fibers, exhibits strain hardening after initial cracking. These properties make Ultra-High-Performance Concrete (UHPC) ideal for durable, thin, low-cost bridge decking and heavily loaded elements and an excellent choice for improving slab–column connections that have experienced punched shear failure. This study explores the impact of UHPC layers on the punching shear behavior of reinforced concrete slabs. Sixteen slab specimens were tested with variations in UHPC layer thickness, placement, and column shape. Results demonstrate that incorporating UHPC layers significantly enhances punching shear resistance, increasing ultimate load capacity by 27–91% compared to reference specimens. Notably, thicker UHPC layers (75 mm) and bottom-placed layers exhibited superior performance in terms of ductility and toughness. Square columns outperformed circular ones in resisting punching shear. Additionally, thicker layers reduced initial stiffness, while debonding issues in 25 mm layers adversely affected structural performance. This research provides valuable insights for optimizing UHPC configurations to improve the punching shear resistance of concrete slabs, offering promising solutions for high-load structures in modern construction. Full article
Show Figures

Figure 1

15 pages, 3464 KB  
Article
Retrofitting of a Multi-Span Simply Supported Bridge into a Semi-Integral Bridge
by Zhen Xu, Xiaoye Luo, Khaled Sennah, Baochun Chen and Yizhou Zhuang
Appl. Sci. 2025, 15(1), 455; https://doi.org/10.3390/app15010455 - 6 Jan 2025
Viewed by 1319
Abstract
Thousands of multi-span, simply supported beam bridges with short or medium spans have been built in China. They often suffer from problems of cracks in the link slabs over piers, and the deterioration and damage of deck expansion joints at abutments. To address [...] Read more.
Thousands of multi-span, simply supported beam bridges with short or medium spans have been built in China. They often suffer from problems of cracks in the link slabs over piers, and the deterioration and damage of deck expansion joints at abutments. To address these problems, one approach is to retrofit them by converting the simply supported box beams into continuous structures over the piers and jointless bridges over the abutments. This paper discusses the design methodology and details for retrofitting the Jinpu Bridge in Zhangzhou, Fujian, China, from a simply supported bridge into a semi-integral bridge, in which semi-fixed dowel joints are used to connect the superstructure and the substructure, including piers and abutments. Simultaneously, the finite element software is used to calculate the internal forces and displacements of the structure. The analysis reveals an 11.1% reduction in the maximum positive moment at the midspan of the main beam in the semi-integral bridge compared to the simply supported bridge. However, the shear forces at the interior pier increase by 6.4%. According to the response spectrum analysis, the maximum longitudinal displacement of the semi-integral bridge’s main beam is 11.6 mm, reduced by 80.1% compared to the simply supported bridge under a dead load and earthquake effects. The maximum bending moment and shear force on the pier of the semi-integral bridge are 984.7 kN·m and 312.6 kN, respectively, both below their ultimate bearing capacities. The maximum displacement at the top of the pier is 7.7 mm, which is below the allowable 52.4 mm displacement. The calculated results conform to the design requirements specified by the code. Full article
(This article belongs to the Special Issue Risk Control and Performance Design of Bridge Structures)
Show Figures

Figure 1

24 pages, 11032 KB  
Article
Systematic Rehabilitation Techniques and Dynamic Analysis of Bridge Deck System with Concrete-Filled Steel Tube Arches
by Jie Cai, Zikang Zou and Zhipeng Wang
Buildings 2024, 14(12), 3891; https://doi.org/10.3390/buildings14123891 - 5 Dec 2024
Viewed by 1180
Abstract
Due to prolonged heavy traffic, the Wuhan Changfeng Bridge has experienced extensive cracking in its main girder structure. Of the bridge’s 60 crossbeams, 51 (85%) have developed cracks, while the deck pavement over the steel beams has accumulated a total of 648.8 m [...] Read more.
Due to prolonged heavy traffic, the Wuhan Changfeng Bridge has experienced extensive cracking in its main girder structure. Of the bridge’s 60 crossbeams, 51 (85%) have developed cracks, while the deck pavement over the steel beams has accumulated a total of 648.8 m of transverse cracks. Additionally, two T-beams exhibit structural vertical cracks of 0.3 mm at the mid-span, exceeding the maximum allowable width of 0.2 mm. This recurrent pavement damage not only compromises driving safety and comfort but also increases maintenance costs. To address these issues, this paper proposes a systematic upgrade plan for the bridge deck system. The plan involves welding additional high transverse beams onto the existing steel transverse beams, removing the original deck slab and replacing it entirely with an orthotropic steel deck. Additionally, two new steel longitudinal beams will be installed. The original simply supported concrete longitudinal beams in the deck will be transformed into an integrally connected continuous steel structure deck system. Using Midas/Civil finite element software, 3D models of Changfeng Bridge, pre and post renovation, were created to analyze the overall dynamic characteristics under five loading scenarios. The ambient vibration test and vehicle field test were conducted to measure the bridge’s natural frequency and impact factor, verifying the dynamic performance and driving comfort of the bridge after the upgrade. The results indicate that the retrofitted bridge experienced a 19.9% increase in overall stiffness. The dynamic performance of the bridge structure was significantly enhanced, and the most notable improvement was observed in dynamic stress, which decreased by 19.4% to 76.9%. Additionally, the steel deck reduced the bridge’s dead load, and the driving comfort on the bridge deck improved. Full article
(This article belongs to the Special Issue Inspection, Maintenance and Retrofitting of Existing Buildings)
Show Figures

Figure 1

14 pages, 17158 KB  
Article
In Situ Testing and Finite Element Analysis of a Discontinuous Mortise and Tenon Stone Bridge Under Natural Excitation
by Jiaxing Hu, Shilong Wang, Ming Sun and Ji Zhou
Buildings 2024, 14(11), 3596; https://doi.org/10.3390/buildings14113596 - 12 Nov 2024
Viewed by 924
Abstract
To study the dynamic response of multi-span mortise and tenon stone bridges under natural excitation, a bluestone multi-span stone bridge with a main span of 2.56 m in southern China was taken as the research object. Based on the collected pulsating signals of [...] Read more.
To study the dynamic response of multi-span mortise and tenon stone bridges under natural excitation, a bluestone multi-span stone bridge with a main span of 2.56 m in southern China was taken as the research object. Based on the collected pulsating signals of bridge piers and slabs, the natural frequencies and damping ratios of the main span bridge slab and pier were analyzed using the half-power broadband method (HPBM) and random decrement technique (RDT). Modal analysis was conducted using ANSYS, and the results were compared with those obtained from on-site experiments for further performance analysis. The research results of this article indicate that the natural frequency range of the 2.56-m bridge slab identified by measured signals is 48–49 Hz, and the damping ratio range is 33.33–36.61%. The natural frequency of the central pier is 75–76 Hz, and the damping ratio range is 26.39–27.83%. Through finite element modal analysis, the natural frequency of the bridge slab is 54.401 Hz, with an error of 10.5%. The natural frequency of the overall stone bridge is about 82.2 Hz, with an error of about 8.2%. The validated finite element model was subjected to normal water flow impact and erosion simulation. The results indicate that under erosion with fewer particles and lower flow rates, the upstream pier bottom at the center receives the highest relative erosion mass and displacement per unit area. The bridge deck near the main span also experienced relative displacement. Therefore, in the subsequent protection work, special attention should be paid to these components. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

28 pages, 13055 KB  
Article
Structural Behavior of Full-Depth Deck Panels Having Developed Closure Strips Reinforced with GFRP Bars and Filled with UHPFRC
by Mahmoud Sayed Ahmed, Khaled Sennah and Hamdy M. Afefy
J. Compos. Sci. 2024, 8(11), 468; https://doi.org/10.3390/jcs8110468 - 12 Nov 2024
Cited by 6 | Viewed by 1314
Abstract
The adoption of prefabricated elements and systems (PBES) in accelerating bridge construction (ABC) and rapidly replacing aging infrastructure has attracted considerable attention from bridge authorities. These prefabricated components facilitate quick assembly, which diminishes the environmental footprint at the construction site, alleviates delays and [...] Read more.
The adoption of prefabricated elements and systems (PBES) in accelerating bridge construction (ABC) and rapidly replacing aging infrastructure has attracted considerable attention from bridge authorities. These prefabricated components facilitate quick assembly, which diminishes the environmental footprint at the construction site, alleviates delays and lane closures, reduces disruption for the traveling public, and ultimately conserves both time and taxpayer resources. The current paper explores the structural behavior of a reinforced concrete (RC) precast full-depth deck panel (FDDP) having 175 mm projected glass-fiber-reinforced polymer (GFRP) bars embedded into a 200 mm wide closure strip filled with ultra-high-performance fiber-reinforced concrete (UHPFRC). Three joint details for moment-resisting connections (MRCs), named the angle joint, C-joint, and zigzag joint, were constructed and loaded to collapse. The controlled slabs and mid-span-connected precast FDDPs were statically loaded to collapse under concentric or eccentric wheel loading. The moment capacity of the controlled slab reinforced with GFRP bars compared with the concrete slab reinforced with steel reinforcing bars was less than 15% for the same reinforcement ratio. The precast FDDPs showed very similar results to those of the controlled slab reinforced with GFRP bars. The RC slab reinforced by steel reinforcing bars failed in the flexural mode, while the slab reinforced by GFRP bars failed in flexural-shear one. Full article
(This article belongs to the Special Issue Novel Cement and Concrete Materials)
Show Figures

Figure 1

23 pages, 13815 KB  
Article
Vibration Measurement and Numerical Simulation of the Effect of Non-Structural Elements on Dynamic Properties of Large-Span Structures
by Jialiang Chen, Wei He, Congbo Sun, Sen Hou, Junjie Chen and Zhe Wang
Buildings 2024, 14(11), 3589; https://doi.org/10.3390/buildings14113589 - 12 Nov 2024
Viewed by 1228
Abstract
Non-structural elements have been demonstrated to be essential for the dynamic performance of large-span structures. However, how to quantify their effect has not yet been fully understood. In this study, the contribution of non-structural elements to dynamic properties of large-span structures is systematically [...] Read more.
Non-structural elements have been demonstrated to be essential for the dynamic performance of large-span structures. However, how to quantify their effect has not yet been fully understood. In this study, the contribution of non-structural elements to dynamic properties of large-span structures is systematically investigated via both field measurement and numerical simulation methods. Modal testing of an indoor stadium and an elevated highway bridge was conducted during different construction phases, and the corresponding modal characteristics were identified. Results show that the traditional capacity-based models are incapable of reflecting the actual dynamic characteristics of in-service structures since neglecting the effect of non-structural elements would result in remarkable discrepancies in modal properties. A general modeling framework incorporating the contribution of slab/deck pavement, infill walls (or crash barriers), and joints/connections for large-span structures is developed to quantitatively consider the effect of non-structural elements based on the principle of equivalence of stiffness and mass to the actual structure. The effectiveness of the method is validated by vibration measurement results. Full article
(This article belongs to the Special Issue Vibration Prediction and Noise Assessment of Building Structures)
Show Figures

Figure 1

17 pages, 8713 KB  
Article
Flexural Behavior of Concrete-Filled Steel Tube Beams Composite with Concrete Slab Deck
by Salam Maytham AlObaidi, Mohammed Abbas Mousa, Aqil M. Almusawi, Muhaned A. Shallal and Saif Alzabeebee
Infrastructures 2024, 9(10), 187; https://doi.org/10.3390/infrastructures9100187 - 17 Oct 2024
Viewed by 1969
Abstract
Concrete-filled steel tube (CFST) beams have shown their flexural effectiveness in terms of stiffness, strength, and ductility. On the other hand, composite bridge girders demand durable and ductile girders to serve as tension members, while the concrete deck slab resists the compression stresses. [...] Read more.
Concrete-filled steel tube (CFST) beams have shown their flexural effectiveness in terms of stiffness, strength, and ductility. On the other hand, composite bridge girders demand durable and ductile girders to serve as tension members, while the concrete deck slab resists the compression stresses. In this study, six composite CFST beams with concrete slab decks with a span of 170 cm were investigated under a four-point bending test. The main variables of the study were the compressive strength of the concrete deck, the size of CFST beams, and the composite mechanism between the CFST girder and the concrete deck. The results showed that the flexural strength and ductility of the composite system increased by 20% with increasing concrete compressive strength. The study revealed that the higher-strength concrete slab deck enabled the CFST beam to exhibit improved flexural behavior with reduced deflections and enhanced resistance to cracking. The findings also highlighted the importance of considering the interactions between the steel tube and concrete slab deck in determining the flexural behavior of the composite system revealed by strain distribution along the composite beam profile as determined using the digital image correlation DIC technique, where a 40% increase in the flexural strength was obtained when a channel section was added to the joint of the composite section. Full article
Show Figures

Figure 1

Back to TopTop