Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = bulk density homogenization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5843 KB  
Article
Microstructure Evolution in Homogenization Heat Treatment of Inconel 718 Manufactured by Laser Powder Bed Fusion
by Fang Zhang, Yifu Shen and Haiou Yang
Metals 2025, 15(8), 859; https://doi.org/10.3390/met15080859 - 31 Jul 2025
Viewed by 582
Abstract
This study systematically investigates the homogenization-induced Laves phase dissolution kinetics and recrystallization mechanisms in laser powder bed fusion (L-PBF) processed IN718 superalloy. The as-built material exhibits a characteristic fine dendritic microstructure with interdendritic Laves phase segregation and high dislocation density, featuring directional sub-grain [...] Read more.
This study systematically investigates the homogenization-induced Laves phase dissolution kinetics and recrystallization mechanisms in laser powder bed fusion (L-PBF) processed IN718 superalloy. The as-built material exhibits a characteristic fine dendritic microstructure with interdendritic Laves phase segregation and high dislocation density, featuring directional sub-grain boundaries aligned with the build direction. Laves phase dissolution demonstrates dual-stage kinetics: initial rapid dissolution (0–15 min) governed by bulk atomic diffusion, followed by interface reaction-controlled deceleration (15–60 min) after 1 h at 1150 °C. Complete dissolution of the Laves phase is achieved after 3.7 h at 1150 °C. Recrystallization initiates preferentially at serrated grain boundaries through boundary bulging mechanisms, driven by localized orientation gradients and stored energy differentials. Grain growth kinetics obey a fourth-power time dependence, confirming Ostwald ripening-controlled boundary migration via grain boundary diffusion. Such a study is expected to be helpful in understanding the microstructural development of L-PBF-built IN718 under heat treatments. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

16 pages, 4000 KB  
Article
Microstructure Engineered Nanoporous Copper for Enhanced Catalytic Degradation of Organic Pollutants in Wastewater
by Taskeen Zahra, Saleem Abbas, Junfei Ou, Tuti Mariana Lim and Aumber Abbas
Materials 2025, 18(13), 2929; https://doi.org/10.3390/ma18132929 - 20 Jun 2025
Cited by 2 | Viewed by 1255
Abstract
Advanced oxidation processes offer bright potential for eliminating organic pollutants from wastewater, where the development of efficient catalysts revolves around deep understanding of the microstructure–property–performance relationship. In this study, we explore how microstructural engineering influences the catalytic performance of nanoporous copper (NPC) in [...] Read more.
Advanced oxidation processes offer bright potential for eliminating organic pollutants from wastewater, where the development of efficient catalysts revolves around deep understanding of the microstructure–property–performance relationship. In this study, we explore how microstructural engineering influences the catalytic performance of nanoporous copper (NPC) in degrading organic contaminants. By systematically tailoring the NPC microstructure, we achieve tunable three-dimensional porous architectures with nanoscale pores and macroscopic grains. This results in a homogeneous, bicontinuous pore–ligament network that is crucial for the oxidative degradation of the model pollutant methylene blue in the presence of hydrogen peroxide. The catalytic efficiency is assessed using ultraviolet–visible spectroscopy, which reveals first-order degradation kinetics with a rate constant κ = 44 × 10−3 min−1, a 30-fold improvement over bulk copper foil, and a fourfold increase over copper nanoparticles. The superior performance is attributed to the high surface area, abundant active sites, and multiscale porosity of NPC. Additionally, the high step-edge density, nanoscale curvature, and enhanced crystallinity contribute to the catalyst’s remarkable stability and reactivity. This study not only provides insights into microstructure–property–performance relationships in nanoporous catalysts but also offers an effective strategy for designing efficient and scalable materials for wastewater treatment and environmental applications. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

15 pages, 3844 KB  
Article
Effervescent Tablet Preparation by Twin-Screw Melt Granulation with Sorbitol as a Melt Binder
by Zoltán Márk Horváth, Kirils Kukuls, Alīna Jaroslava Frolova, Marta Žogota, Elżbieta Maria Buczkowska, Līga Pētersone and Valentyn Mohylyuk
Pharmaceutics 2025, 17(5), 676; https://doi.org/10.3390/pharmaceutics17050676 - 21 May 2025
Viewed by 2895
Abstract
Methods: Effervescent granules containing citric acid and sodium bicarbonate were successfully prepared for the first time via TS-MG using a polyol (sorbitol) as a melt binder. Results: Processing parameters, specifically granulation temperature and screw speed, were systematically varied to investigate their [...] Read more.
Methods: Effervescent granules containing citric acid and sodium bicarbonate were successfully prepared for the first time via TS-MG using a polyol (sorbitol) as a melt binder. Results: Processing parameters, specifically granulation temperature and screw speed, were systematically varied to investigate their influence. The granulation efficiency, inversely related to the wt.% of fines, decreased in the following order across the tested conditions (granulation temperature–screw speed; ℃-rpm): 95-6 > 100-5 > 90-5 > 100-7 > 90-7. Granulation temperature had a minimal impact on the bulk and tapped densities of the uncalibrated granules, whereas increased screw speed led to higher densities, associated with a reduced proportion of fines. The tensile strength of the resulting effervescent tablets increased with granulation temperature and was generally higher for tablets derived from granules with higher granulation efficiency. The residence time within the TS-MG barrel decreased with increasing temperature and screw speed. Notably, the greatest effect of granulation temperature on tensile strength occurred between 90 and 95 °C, particularly under longer residence times. The disintegration time of the tablets was shortest for the 90 °C and 5 rpm condition, corresponding to the lowest tensile strength, while tablets across formulations showed consistent homogeneity as indicated by similar pH values post-disintegration. Conclusions: These findings underscore sorbitol’s suitability as a melt binder and highlight the interplay between TS-MG parameters and the physical characteristics of effervescent granules and tablets. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

17 pages, 5531 KB  
Article
Eco-Friendly Polypropylene Composites Reinforced with Cellulose Fibers and Silica Nanoparticles
by Rinat M. Iskakov, Aigul S. Bukanova, Altynay S. Kalauova, Fazilat B. Kairliyeva, Alimzhan N. Nauashev, Gulbarshin K. Shambilova, Ivan M. Obidin, Mikhail S. Kuzin, Dmitryi N. Chernenko, Timofey D. Patsaev, Pavel S. Gerasimenko, Igor S. Makarov and Ivan Yu. Skvortsov
Polymers 2025, 17(10), 1290; https://doi.org/10.3390/polym17101290 - 8 May 2025
Cited by 1 | Viewed by 1062
Abstract
In this study, polymer composites based on a polypropylene (PP) matrix with the addition of cellulose and ES-40, used as a silica precursor, were investigated. These composites were designed to achieve enhanced biodegradability through the incorporation of bioavailable cellulose and to enable subsequent [...] Read more.
In this study, polymer composites based on a polypropylene (PP) matrix with the addition of cellulose and ES-40, used as a silica precursor, were investigated. These composites were designed to achieve enhanced biodegradability through the incorporation of bioavailable cellulose and to enable subsequent carbonization into carbon–silicon carbide systems. Rheological investigations revealed that the multicomponent mixtures exhibited pseudoplastic behavior over the shear rate range typical of injection molding, ensuring process stability without additional plasticization. Morphological analysis demonstrated that an optimal balance of PP, cellulose, and ES-40 promoted the formation of a three-dimensional network structure, leading to a significant increase in flexural modulus at the equal flexural strength despite some reduction in tensile strength. It was further shown that substituting fibrous cellulose with microcrystalline cellulose improved the composite homogeneity, thereby enhancing the density and mechanical properties, especially in systems with low polymer contents. Preliminary pyrolysis experiments indicated that these injection-molded composites can serve as precursors for fabricating bulk thermally stable products containing silicon carbide particles. The obtained results underscore the high potential of the developed materials for applications in conventional injection molding, the possibility of additive manufacturing, and processes requiring subsequent carbonization. Full article
(This article belongs to the Special Issue Development in Carbon-Fiber-Reinforced Polymer Composites)
Show Figures

Graphical abstract

20 pages, 3961 KB  
Article
Spatial Heterogeneity of Soil Respiration and Its Relationship with the Spatial Distribution of the Forest Ecosystem at the Fine Scale
by Zhihao Chen, Yue Cai, Chunyu Pan, Hangjun Jiang, Zichen Jia, Chong Li and Guomo Zhou
Forests 2025, 16(4), 678; https://doi.org/10.3390/f16040678 - 12 Apr 2025
Viewed by 661
Abstract
Forest soil respiration plays a crucial role in the global carbon cycle. However, accurately estimating regional soil carbon fluxes is challenging due to the spatial heterogeneity of soil respiration at the stand level. This study examines the spatial variation of soil respiration and [...] Read more.
Forest soil respiration plays a crucial role in the global carbon cycle. However, accurately estimating regional soil carbon fluxes is challenging due to the spatial heterogeneity of soil respiration at the stand level. This study examines the spatial variation of soil respiration and its driving factors in subtropical coniferous and broad-leaved mixed forests in southern China, aiming to provide insights into accurately estimating regional carbon fluxes. The findings reveal that the coefficient of variation (CV) of soil respiration at a scale of 50 m × 50 m is 18.82%, indicating a moderate degree of spatial variation. Furthermore, 52% of the spatial variation in soil respiration can be explained by the variables under investigation. The standardized total effects of the main influencing factors are as follows: soil organic carbon (0.71), diameter at breast height within a radius of 5 m (0.31), soil temperature (0.27), and soil bulk density (−0.25). These results imply that even in relatively homogeneous areas with flat terrain, fine-scale soil respiration exhibits significant spatial heterogeneity. The spatial distribution of woody plant resources predominantly regulates this variation, with root distribution, shading effects, and changes in soil physical and chemical properties being the main influencing mechanisms. The study emphasizes the importance of simulations at different microscales to unravel the potential mechanisms governing macroscopic phenomena. Additionally, it highlights the need for incorporating a more comprehensive range of variables to provide more meaningful references for regional soil carbon flux assessment. Full article
Show Figures

Figure 1

10 pages, 5938 KB  
Article
Improvement of Electrical Transport Performance of BiSbTeSe2 by Elemental Doping
by Peng Zhu, Xin Zhang, Liu Yang, Yuqi Zhang, Deng Hu, Fuhong Chen, Haoyu Qi and Zhiwei Wang
Materials 2025, 18(5), 1110; https://doi.org/10.3390/ma18051110 - 28 Feb 2025
Viewed by 733
Abstract
A topological insulator with large bulk-insulating behavior and high electron mobility of the surface state is needed urgently, not only because it would be a good platform for studying topological surface states but also because it is a prerequisite for potential future applications. [...] Read more.
A topological insulator with large bulk-insulating behavior and high electron mobility of the surface state is needed urgently, not only because it would be a good platform for studying topological surface states but also because it is a prerequisite for potential future applications. In this work, we demonstrated that tin (Sn) or indium (In) dopants could be introduced into a BiSbTeSe2 single crystal. The impacts of the dopants on the bulk-insulating property and electron mobility of the surface state were systematically investigated by electrical transport measurements. The doped single crystals had the same crystal structure as the pristine BiSbTeSe2, no impure phase was observed, and all elements were distributed homogeneously. The electrical transport measurements illustrated that slight Sn doping could improve the performance of BiSbTeSe2 a lot, as the longitudinal resistivity (ρxx), bulk carrier density (nb), and electron mobility of the surface state (μs) reached about 11 Ωcm, 7.40 × 1014 cm−3, and 6930 cm2/(Vs), respectively. By comparison, indium doping could also improve the performance of BiSbTeSe2 with ρxx, nb, and μs up to about 13 Ωcm, 1.29 × 1015 cm−3, and 4500 cm2/(Vs), respectively. Our findings suggest that Sn- or indium-doped BiSbTeSe2 crystals should be good platforms for studying novel topological properties, as well as promising candidates for low-dissipation electron transport, spin electronics, and quantum computing. Full article
Show Figures

Graphical abstract

12 pages, 2296 KB  
Article
Effects of Homogeneous Doping on Electron–Phonon Coupling in SrTiO3
by Minwoo Park and Suk Bum Chung
Nanomaterials 2025, 15(2), 137; https://doi.org/10.3390/nano15020137 - 17 Jan 2025
Cited by 1 | Viewed by 1199
Abstract
Bulk n-type SrTiO3 (STO) has long been known to possess a superconducting ground state at an exceptionally dilute carrier density. This has raised questions about the applicability of the BCS-Eliashberg paradigm with its underlying adiabatic assumption. However, recent experimental reports have set [...] Read more.
Bulk n-type SrTiO3 (STO) has long been known to possess a superconducting ground state at an exceptionally dilute carrier density. This has raised questions about the applicability of the BCS-Eliashberg paradigm with its underlying adiabatic assumption. However, recent experimental reports have set the pairing gap to the critical temperature (Tc) ratio at the BCS value for superconductivity in Nb-doped STO, even though the adiabaticity condition the BCS pairing requires is satisfied over the entire superconducting dome only by the lowest branch of optical phonons. In spite of the strong implications these reports have on specifying the pairing glue, they have not proved sufficient in explaining the magnitude of the optimal doping. This motivated us to apply density functional theory to Nb-doped STO to analyze how the phonon band structures and the electron–phonon coupling evolve with doping. To describe the very low doping concentration, we tuned the homogeneous background charge, from which we obtained a first-principles result on the doping-dependent phonon frequency that is in good agreement with experimental data for Nb-doped STO. Using the EPW code, we obtain the doping-dependent phonon dispersion and the electron–phonon coupling strength. Within the framework of our calculation, we found that the electron–phonon coupling forms a dome in a doping range lower than the experimentally observed superconducting dome of the Nb-doped STO. Additionally, we examined the doping dependence of both the orbital angular momentum quenching in the electron–phonon coupling and the phonon displacement correlation length and found the former to have a strong correlation with our electron–phonon coupling in the overdoped region. Full article
(This article belongs to the Special Issue Low-Dimensional Perovskite Materials and Devices)
Show Figures

Figure 1

16 pages, 2718 KB  
Article
Optimization of the Homogenization Process of Ginseng Superfine Powder to Improve Its Powder Characteristics and Bioavailability
by Mei Sun, Keke Li, Yuanpei Zhang, Jiwen Li, Deqiang Dou, Xiaojie Gong and Zhongyu Li
Foods 2024, 13(20), 3332; https://doi.org/10.3390/foods13203332 - 20 Oct 2024
Viewed by 1646
Abstract
As consumer demands evolve for health supplements, traditional ginseng products are facing challenges in enhancing their powder characteristics and bioavailability. The objective of this study was to prepare a novel ginseng superfine powder using a high-pressure homogenization (HPH) process. Response surface methodology was [...] Read more.
As consumer demands evolve for health supplements, traditional ginseng products are facing challenges in enhancing their powder characteristics and bioavailability. The objective of this study was to prepare a novel ginseng superfine powder using a high-pressure homogenization (HPH) process. Response surface methodology was employed to determine the effects of HPH parameters (pressure, number of passes, and concentration) on particle size and the dissolution of the saponin components of the superfine powders. The Box–Behnken design of experiments was applied to ascertain the optimal HPH parameters for the smallest particle size and the highest dissolution of the saponin components. For the powders obtained at different parameters, the characterization of tap density, bulk density, flowability, water-holding capacity, appearance, and taste were observed. The optimized experimental conditions for the HPH process were as follows: 15,000 psi (pressure), 3 (number of passes), and 1 kg/L (concentration). The optimized values were 55 μm (particle size) and 83 mg/g (dissolution of the saponin components), respectively. The method offered technical support for the application of the HPH process in the preparation of ginseng powders. The objects of this research could be broadened to include a diverse array of botanical materials, addressing contemporary demands for cost-effectiveness and sustainability within the industry. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

14 pages, 30297 KB  
Article
Production of Spheroidized Micropowders of W-Ni-Fe Pseudo-Alloy Using Plasma Technology
by Andrey Samokhin, Nikolay Alekseev, Aleksey Dorofeev, Andrey Fadeev and Mikhail Sinaiskiy
Metals 2024, 14(9), 1043; https://doi.org/10.3390/met14091043 - 13 Sep 2024
Cited by 2 | Viewed by 1103
Abstract
The process of obtaining powders from the 5–50 μm fraction of a W-Ni-Fe system consisting of particles with predominantly spherical shapes was investigated. Experimental studies on the plasma–chemical synthesis of a nanopowder composed of WNiFe-90 were carried out in a plasma reactor with [...] Read more.
The process of obtaining powders from the 5–50 μm fraction of a W-Ni-Fe system consisting of particles with predominantly spherical shapes was investigated. Experimental studies on the plasma–chemical synthesis of a nanopowder composed of WNiFe-90 were carried out in a plasma reactor with a confined jet flow. A mixture of tungsten trioxide, nickel oxide, and iron oxide powders interacted with a flow of hydrogen-containing plasma generated in an electric-arc plasma torch. The parameters of the spray-drying process and the composition of a suspension consisting of WNiFe-90 nanoparticles were determined, which provided mechanically strong nanopowder microgranules with a rounded shape and a homogeneous internal structure that contained no cavities. The yield of the granule fraction under 50 μm was 60%. The influence of the process parameters of the plasma treatment of the nanopowder microgranules in the thermal plasma flow on the degree of spheroidization and the microstructure of the obtained particles, seen as their bulk density and fluidity, was established. It was shown that the plasma spheroidization of the microgranules of the W-Ni-Fe system promoted the formation of a submicron internal structure in the obtained spherical particles, which were characterized by an average tungsten grain size of 0.7 μm. Full article
Show Figures

Figure 1

13 pages, 13807 KB  
Article
Simulation and Experimental Investigation on Additive Manufacturing of Highly Dense Pure Tungsten by Laser Powder Bed Fusion
by Enwei Qin, Wenli Li, Hongzhi Zhou, Chengwei Liu, Shuhui Wu and Gaolian Shi
Materials 2024, 17(16), 3966; https://doi.org/10.3390/ma17163966 - 9 Aug 2024
Cited by 6 | Viewed by 1994
Abstract
Tungsten and its alloys have a high atomic number, high melting temperature, and high thermal conductivity, which make them fairly appropriate for use in nuclear applications in an extremely harsh radioactive environment. In recent years, there has been growing research interest in using [...] Read more.
Tungsten and its alloys have a high atomic number, high melting temperature, and high thermal conductivity, which make them fairly appropriate for use in nuclear applications in an extremely harsh radioactive environment. In recent years, there has been growing research interest in using additive manufacturing techniques to produce tungsten components with complex structures. However, the critical bottleneck for tungsten engineering manufacturing is the high melting temperature and high ductile-to-brittle transition temperature. In this study, laser powder bed fusion has been studied to produce bulk pure tungsten. And finite element analysis was used to simulate the temperature and stress field during laser irradiation. The as-printed surface as well as transverse sections were observed by optical microscopy and scanning electron microscopy to quantitatively study processing defects. The simulated temperature field suggests small-sized powder is beneficial for homogenous melting and provides guidelines for the selection of laser energy density. The experimental results show that ultra-dense tungsten bulk has been successfully obtained within a volumetric energy density of 200–391 J/mm3. The obtained relative density can be as high as 99.98%. By quantitative analysis of the pores and surface cracks, the relationships of cracks and pores with laser volumetric energy density have been phenomenologically established. The results are beneficial for controlling defects and surface quality in future engineering applications of tungsten components by additive manufacturing. Full article
(This article belongs to the Special Issue Development and Applications of Laser-Based Additive Manufacturing)
Show Figures

Graphical abstract

28 pages, 17468 KB  
Article
Characterisation of Large-Sized REBaCuO Bulks for Application in Flux Modulation Machines
by Quentin Nouailhetas, Yiteng Xing, Rémi Dorget, Walid Dirahoui, Santiago Guijosa, Frederic Trillaud, Jean Lévêque, Jacques Guillaume Noudem, Julien Labbé and Kévin Berger
Materials 2024, 17(15), 3827; https://doi.org/10.3390/ma17153827 - 2 Aug 2024
Cited by 3 | Viewed by 1172
Abstract
High temperature superconductors (HTSs) are enablers of extensive electrification for aircraft propulsion. Indeed, if used in electrical machines, HTS materials can drastically improve their performance in terms of the power-to-weight ratio. Among the different topologies of superconducting electrical machines, a flux modulation machine [...] Read more.
High temperature superconductors (HTSs) are enablers of extensive electrification for aircraft propulsion. Indeed, if used in electrical machines, HTS materials can drastically improve their performance in terms of the power-to-weight ratio. Among the different topologies of superconducting electrical machines, a flux modulation machine based on HTS bulks is of interest for its compactness and light weight. Such a machine is proposed in the FROST (Flux-barrier Rotating Superconducting Topology) project led by Airbus to develop new technologies as part of their decarbonization goals driven by international policies. The rotor of the machine will house large ring-segment-shaped HTS bulks in order to increase the output power. However, the properties of those bulks are scarcely known and have barely been investigated in the literature. In this context, the present work aims to fill out partially this scarcity within the framework of FROST. Thus, a thorough characterisation of the performances and homogeneity of 11 large REBaCuO bulks was carried out. Ten of the bulks are to be utilized in the machine prototype, originally keeping the eleventh bulk as a spare. A first set of characterisation was conducted on the eleven bulks. For this set, the trapped field mapping and the critical current were estimated. Then, a series of in-depth characterisations on the eleventh bulk followed. It included critical current measurement, X-ray diffraction, and scanning electron microscopy on different millimetre-size samples cut out from the bulk at various locations. The X-ray diffraction and scanning electron microscopy showed weakly oxygenated regions inside the bulk explaining the local drop or loss in superconducting properties. The objective was to determine the causes of the inhomogeneities found in the trapped field measured on all the bulks, sacrificing one of them, here the spare one. To help obtain a clearer picture, a numerical model was then elaborated to reproduce the field map of the eleventh bulk using the experimental data obtained from the characterisation of its various small samples. It is concluded that further characterisations, including the statistics on various bulks, are still needed to understand the underlying reasons for inhomogeneity in the trapped field. Nonetheless, all the bulks presented enough current density to be usable in the construction of the proposed machine. Full article
(This article belongs to the Special Issue Characterization and Application of Superconducting Materials)
Show Figures

Figure 1

23 pages, 10696 KB  
Article
Optimizing Alkali-Activated Mortars with Steel Slag and Eggshell Powder
by Behailu Zerihun Hailemariam, Mitiku Damtie Yehualaw, Woubishet Zewdu Taffese and Duy-Hai Vo
Buildings 2024, 14(8), 2336; https://doi.org/10.3390/buildings14082336 - 28 Jul 2024
Cited by 4 | Viewed by 2254
Abstract
The cement industry is known for being highly energy-intensive and a significant contributor to global CO2 emissions. To address this environmental challenge, this study explores the potential of using the waste materials of steel slag (SS) and eggshell powder (ESP) as partial [...] Read more.
The cement industry is known for being highly energy-intensive and a significant contributor to global CO2 emissions. To address this environmental challenge, this study explores the potential of using the waste materials of steel slag (SS) and eggshell powder (ESP) as partial replacements for cement in alkali-activated mortars (AAMs) production, activated by NaOH and Na2SiO3. Mortar samples are prepared with 50% of ordinary Portland cement (OPC) as part of the total binder, and the remaining 50% is composed of ESP, incrementally replaced by SS at levels of 10%, 20%, 40%, and 50%. The activation process was performed with an 8% NaOH concentration and a silica modulus of 2. Key findings include that the workability of AAMs decreased with increasing SS content, requiring admixtures like superplasticizers or additional water to maintain workability. At 50% SS replacement, the water consistency and slump flow values were 32.56% and 105.73 mm, respectively, with a setting time reduction of approximately 36%, losing plasticity within 2 h. Both absorption capacity and porosity decreased as SS content increased from 10% to 50% of ESP. Additionally, the bulk density, compressive strength, and uniformity of the hardened mortar samples were enhanced with higher SS content, achieving maximum compressive strength (28.53 MPa) at 50% SS replacement after 56 days of curing. Furthermore, OPC-based AAMs incorporating SS and ESP demonstrate good resistance to sulfate attack and thermal heating. Microstructural analysis reveals the presence of C–S–H, C–A–S–H, and N–A–S–H phases, along with minor amounts of unreacted particles, and the microstructure shows a dense, highly compacted, and homogeneous morphology. These findings suggest that replacing eggshell powder with up to 50% steel slag enhances the hardened properties of AAMs. Further research is recommended to explore cement-free alkali-activated granular ground blast furnace slag (GGBFS) with ESP for more sustainable construction solutions. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

12 pages, 7443 KB  
Article
The Effect of Flux on a Waste-Derived Foamed Ceramic: Analysis of Microstructure and Properties
by Zhiwu Zuo, Minghao Mu, Xue Liu and Congcong Jiang
Crystals 2024, 14(8), 682; https://doi.org/10.3390/cryst14080682 - 26 Jul 2024
Cited by 4 | Viewed by 1150
Abstract
Foamed ceramics with high closed porosity were prepared using granite scrap as the raw material and silicon carbide as a foaming agent, and the effects of Na2O, K2O, and MgO on the pore structure and properties of the foamed [...] Read more.
Foamed ceramics with high closed porosity were prepared using granite scrap as the raw material and silicon carbide as a foaming agent, and the effects of Na2O, K2O, and MgO on the pore structure and properties of the foamed ceramics were investigated. The results show that both Na2O and K2O could reduce the viscosity of the melt and promote the formation of the liquid phase, and the increase in content could enhance the foaming ability of the blank. When the dosage of Na2O was 4–6 wt% and the dosage of K2O was 6–8 wt%, the homogeneity of the pore structure of the foamed ceramics could be effectively improved, and the samples exhibited an optimal performance, including a bulk density of 510.36–593.33 kg/m3, a closed porosity of 68.24–78.04%, a compressive strength of 1.33–2.66 MPa, and a water absorption capacity of 0.57–1.31%. A further increase in the Na2O and K2O dosages destroyed the uniformity of the pore structure, resulting in a large number of irregular macropores. MgO had a slight effect on regulating the pore structure of the foamed ceramics, and the increase in dosage promoted the precipitation of forsterite crystals, creating conditions suitable for the preparation of foamed ceramics with small pores. Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

29 pages, 19368 KB  
Article
Mechanical Properties of Rock Salt from the Kłodawa Salt Dome—A Statistical Analysis of Geomechanical Data
by Malwina Kolano, Marek Cała and Agnieszka Stopkowicz
Materials 2024, 17(14), 3564; https://doi.org/10.3390/ma17143564 - 18 Jul 2024
Cited by 2 | Viewed by 2068
Abstract
Rock salt is a potential medium for underground storage of energy resources and radioactive substances due to its physical and mechanical properties, distinguishing it from other rock media. Designing storage facilities that ensure stability, tightness, and safety requires understanding the geomechanical properties of [...] Read more.
Rock salt is a potential medium for underground storage of energy resources and radioactive substances due to its physical and mechanical properties, distinguishing it from other rock media. Designing storage facilities that ensure stability, tightness, and safety requires understanding the geomechanical properties of rock salt. Despite numerous research efforts on the behaviour of rock salt mass, many cases still show unfavourable phenomena occurring within it. Therefore, the formulation of strength criteria in a three-dimensional stress state and the prediction of deformation processes significantly impact the functionality of storage in salt caverns. This article presents rock salt’s mechanical properties from the Kłodawa salt dome and a statistical analysis of the determined geomechanical data. The analysis is divided into individual mining fields (Fields 1–6). The analysis of numerical parameter values obtained in uniaxial compression tests for rock salt from mining Fields 1–6 indicates an average variation in their strength and deformation properties. Upon comparing the results of Young’s modulus (E) with uniaxial compressive strength (UCS), its value was observed with a decrease in uniaxial compressive strength (E = 4.19968·UCS2, R-square = −0.61). The tensile strength of rock salt from mining Fields 1–6 also exhibits moderate variability. An increasing trend in tensile strength was observed with increased bulk density (σt = 0.0027697·ρ − 4.5892, r = 0.60). However, the results of triaxial tests indicated that within the entire range of normal stresses, the process of increasing maximum shear stresses occurs linearly ((σ1 − σ3)/2 = ((σ1 + σ3)/2)·0.610676 + 2.28335, r = 0.92). A linear relationship was also obtained for failure stresses as a function of radial stresses (σ1 = σ3·2.51861 + 32.9488, r = 0.73). Based on the results, the most homogeneous rock salt was from Field 2 and Field 6, while the most variable rock salt was from Field 3. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

11 pages, 5719 KB  
Article
Towards 3D Pore Structure of Porous Gypsum Cement Pozzolan Ternary Binder by Micro-Computed Tomography
by Girts Bumanis, Laura Vitola, Xiangming Zhou, Danutė Vaičiukynienė and Diana Bajare
J. Compos. Sci. 2024, 8(7), 264; https://doi.org/10.3390/jcs8070264 - 8 Jul 2024
Cited by 2 | Viewed by 1767
Abstract
A sophisticated characterisation of a porous material structure has been challenging in material science. Three-dimensional (3D) structure analysis allows the evaluation of a material’s homogeneity, pore size distribution and pore wall properties. Micro-computed tomography (micro-CT) offers a non-destructive test method for material evaluation. [...] Read more.
A sophisticated characterisation of a porous material structure has been challenging in material science. Three-dimensional (3D) structure analysis allows the evaluation of a material’s homogeneity, pore size distribution and pore wall properties. Micro-computed tomography (micro-CT) offers a non-destructive test method for material evaluation. This paper characterises a novel ternary binder’s porous structure using micro-CT. Gypsum–cement–pozzolan (GCP) ternary binders are low-carbon footprint binders. Both natural and industrial gypsum were evaluated as a major components of GCP binders. Porous GCP binder was obtained by a foaming admixture, and the bulk density of the material characterised ranged from 387 to 700 kg/m3. Micro-CT results indicate that pores in the range from 0.017 to 3.0 mm can be effectively detected and described for porous GCP binders. The GCP binder structure proved to be dominant by 0.1 to 0.2 mm micropores. For GCP binders produced with natural gypsum, macropores from 2.2 to 2.9 mm are formed, while GCP binders with phosphogypsum possess pores from 0.2 to 0.6 mm. Micro-CT proved to be an effective instrument for characterising the homogeneity and hierarchical pore structure of porous ternary binders. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

Back to TopTop