Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = caffeic acid 3-O-methyltransferase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5094 KB  
Article
Genome-Wide Identification and Functional Characterization Under Abiotic Stress of Melatonin Biosynthesis Enzyme Family Genes in Poncirus trifoliata
by Jian Zhu, Ligang He, Fang Song, Zhijing Wang, Xiaofang Ma, Cui Xiao, Xin Song, Yanjie Fan, Ce Wang, Yun Xie, Yingchun Jiang, Liming Wu and Yu Zhang
Agronomy 2025, 15(10), 2246; https://doi.org/10.3390/agronomy15102246 - 23 Sep 2025
Viewed by 446
Abstract
Plant melatonin is widely recognized as a pleiotropic regulator. As a growth-regulating hormone, it extensively participates in various growth and developmental processes and has significant functions in stress responses and disease resistance. Plant melatonin is synthesized primarily through the catalytic actions of five [...] Read more.
Plant melatonin is widely recognized as a pleiotropic regulator. As a growth-regulating hormone, it extensively participates in various growth and developmental processes and has significant functions in stress responses and disease resistance. Plant melatonin is synthesized primarily through the catalytic actions of five enzymes: TDC (tryptophan decarboxylase), T5H (tryptamine-5-hydroxylase), SNAT (serotonin N-acetyltransferase), ASMT (N-acetylserotonin methyltransferase), and COMT (caffeic acid-O-methyltransferase). There are multiple genes for each of these five enzymes in citrus genomes, however, with the exception of COMT5—whose function has recently been elucidated—and SNAT, which has only been preliminarily identified, the remaining genes have not been unequivocally characterized or functionally annotated. Hence, we carried out a genome-wide analysis of melatonin biosynthesis enzyme-related gene families in trifoliate orange (Poncirus trifoliata), one of the most common citrus rootstock varieties. Through bioinformatics approaches, we identified 96 gene family members encoding melatonin biosynthetic enzymes and characterized their protein sequence properties, phylogenetic relationships, gene structures, chromosomal distributions, and promoter cis-acting elements. Furthermore, by analyzing expression patterns in different tissues and under various stresses, we identified multiple stress-responsive melatonin synthase genes. These genes likely participate in melatonin synthesis under adverse conditions, thereby enhancing stress adaptation. Specifically, PtCOMT5, PtASMT11, and PtTDC9 were significantly induced by low temperature; PtSNAT1, PtSNAT14, PtSNAT18, and PtTDC10 were markedly responsive to drought; and PtASMT15, PtSNAT15, PtASMT16, and PtSNAT3 were strongly induced by ABA. Among them, PtASMT23 expression was induced up to 120-fold under low temperature, while PtSNAT18 showed over 100-fold upregulation under dehydration treatment. These findings strongly suggest that PtASMT23 and PtSNAT18 play critical roles in regulating melatonin biosynthesis in response to cold and drought stress, respectively. Collectively, these findings pinpoint novel genetic targets for enhancing stress resilience in citrus breeding programs and lay the foundation for the functional characterization of specific melatonin biosynthesis pathway gene family members in citrus and other horticultural crop species. Full article
Show Figures

Figure 1

18 pages, 4789 KB  
Article
Combination of Metabolomic Analysis and Transcriptomic Analysis Reveals Differential Mechanism of Phenylpropanoid Biosynthesis and Flavonoid Biosynthesis in Wild and Cultivated Forms of Angelica sinensis
by Yuanyuan Wang, Jialing Zhang, Yiyang Chen, Juanjuan Liu, Ke Li and Ling Jin
Metabolites 2025, 15(9), 633; https://doi.org/10.3390/metabo15090633 - 22 Sep 2025
Viewed by 623
Abstract
Objectives: Angelica sinensis is a type of traditional Chinese medicine (TCM) used primarily as a blood tonic. The chemical components that exert their efficacy are mainly bioactive metabolites, such as ferulic acid, flavonoids, and volatile oils. The resources of wild Angelica sinensis (WA) [...] Read more.
Objectives: Angelica sinensis is a type of traditional Chinese medicine (TCM) used primarily as a blood tonic. The chemical components that exert their efficacy are mainly bioactive metabolites, such as ferulic acid, flavonoids, and volatile oils. The resources of wild Angelica sinensis (WA) are very scarce, and almost all the market circulation of TCM formulations relies on cultivated Angelica sinensis (CA). Some studies have shown that WA and CA differ in morphological features and chemical composition, but the reasons and mechanisms behind the differences have not been studied deeply. Methods: Herein, metabolomics analysis (MA) and transcriptomics analysis (TA) were used to reveal the differences in bioactive metabolites and genes between WA and CA. Expression of key genes was verified by real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results: Results showed that 12,580 differential metabolites (DMs) and 1837 differentially expressed genes (DEGs) were identified between WA and CA. Fourteen DMs (e.g., cinnamic acid, caffeic acid, ferulic acid, p-coumaroylquinic acid, and phlorizin) and 27 DEGs (e.g., cinnamic acid 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), shikimate O-hydroxycinnamoyltransferase (HCT), caffeic acid-O-methyltransferase (COMT), cinnamyl-alcohol dehydrogenase (CAD), flavonol synthase (FLS)) were screened in phenylpropanoid biosynthesis and flavonoid biosynthesis. A combined analysis of MA and TA was performed, and a network map of DMs regulated by DEGs was plotted. The results of real-time RT-qPCR showed that the transcriptome data were reliable. Conclusions: These findings provide a reference for further optimization of the development of WA cultivation and breeding of CA varieties. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Graphical abstract

21 pages, 3766 KB  
Article
Comparative Genomic Analysis of COMT Family Genes in Three Vitis Species Reveals Evolutionary Relationships and Functional Divergence
by Yashi Liu, Zhiyuan Bian, Shan Jiang, Xiao Wang, Lin Jiao, Yun Shao, Chengmei Ma and Mingyu Chu
Plants 2025, 14(13), 2079; https://doi.org/10.3390/plants14132079 - 7 Jul 2025
Viewed by 891
Abstract
Caffeic acid-O-methyltransferase (COMT) is a key enzyme in lignin synthesis and secondary metabolism in plants, and it participates in the regulation of plant growth and development as well as plants’ stress response. To further investigate the function of COMT in grapevine, a total [...] Read more.
Caffeic acid-O-methyltransferase (COMT) is a key enzyme in lignin synthesis and secondary metabolism in plants, and it participates in the regulation of plant growth and development as well as plants’ stress response. To further investigate the function of COMT in grapevine, a total of 124 COMT family genes were identified from three Vitis species in this study, namely Pinot noir (Vitis vinifera L.), Vitis amurensis, and Vitis riparia. The amino acid sequence encoded by these genes ranged from 55 to 1422 aa, and their molecular mass ranged from 6640.82 to 77,034.43 Da. Subcellular localization prediction inferred that they were mainly located in the plasma membrane and cytoplasm. The prediction of secondary structures showed that α-helix and irregular coiled-coil were primary structural elements. These genes were unevenly distributed across 10 different chromosomes, respectively. Phylogenetic tree analysis of the amino acid sequences of VvCOMT, VaCOMT, VrCOMT, and AtCOMT proteins showed that they were closely related and were divided into four subgroups. The motif distribution was similar among the cluster genes, and the gene sequence was notably conserved. The 124 members of the COMT gene family possessed a variable number of exons, ranging from 2 to 13. The promoter region of all of these COMTs genes contained multiple cis-acting elements related to hormones (e.g., ABA, IAA, MeJA, GA, and SA), growth and development (e.g., endosperm, circadian, meristem, light response), and various stress responses (e.g., drought, low temperature, wounding, anaerobic, defense, and stress). The intraspecies collinearity analysis suggested that there were one pair, three pairs, and six pairs of collinear genes in Va, Pinot noir, and Vr, respectively, and that tandem duplication contributed more to the expansion of these gene family members. In addition, interspecific collinearity revealed that the VvCOMTs had the strongest homology with the VaCOMTs, followed by the VrCOMTs, and the weakest homology with the AtCOMTs. The expression patterns of different tissues and organs at different developmental stages indicated that the VvCOMT genes had obvious tissue expression specificity. The majority of VvCOMT genes were only expressed at higher levels in certain tissues. Furthermore, we screened 13 VvCOMT genes to conduct qRT-PCR verification according to the transcriptome data of VvCOMTs under abiotic stresses (NaCl, PEG, and cold). The results confirmed that these genes were involved in the responses to NaCl, PEG, and cold stress. This study lays a foundation for the exploration of the function of the COMT genes, and is of great importance for the genetic improvement of abiotic stress resistance in grapes. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

14 pages, 4930 KB  
Article
The Fiber Cell-Specific Overexpression of COMT2 Modulates Secondary Cell Wall Biosynthesis in Poplar
by Hanyu Chen, Hong Wang, Zhengjie Zhao, Jiarui Pan, Yao Yao, Yihan Wang, Keming Luo and Qin Song
Plants 2025, 14(12), 1739; https://doi.org/10.3390/plants14121739 - 6 Jun 2025
Cited by 1 | Viewed by 699
Abstract
Wood, as a natural and renewable resource, plays a crucial role in industrial production and daily life. Lignin, as one of the three major components of the plant cell secondary wall, plays a key role in conferring mechanical strength and enhancing stress resistance. [...] Read more.
Wood, as a natural and renewable resource, plays a crucial role in industrial production and daily life. Lignin, as one of the three major components of the plant cell secondary wall, plays a key role in conferring mechanical strength and enhancing stress resistance. The caffeic acid-O-methyltransferase (COMT) family of oxygen-methyltransferases is a core regulatory node in the downstream pathway of lignin biosynthesis. Here, our report shows that caffeic acid-O-methyltransferase 2 (COMT2) exhibits high conservation across several species. Tissue expression analysis reveals that COMT2 is specifically highly expressed in the secondary xylem of Populus tomentosa stems. We demonstrated that the specific overexpression of COMT2 in fiber cells of Populus tomentosa led to a significant increase in plant height, stem diameter, internode number, and stem dry weight. Furthermore, we found that the specific overexpression of COMT2 in fiber cells promotes xylem differentiation, lignin accumulation, and the thickening of the secondary cell wall (SCW) in fiber cells. Our results indicate that key downstream lignin biosynthesis enzyme genes are upregulated in transgenic plants. Additionally, mechanical properties of stem bending resistance, puncture resistance, and compressive strength in the transgenic lines are significantly improved. Moreover, we further created the DUFpro:COMT2 transgenic lines of Populus deltoides × Populus. euramericana cv ‘Nanlin895’ to verify the functional conservation of COMT2 in closely related poplar species. The DUFpro:COMT2 Populus deltoides × Populus. euramericana cv ‘Nanlin895’ transgenic lines exhibited phenotypes similar to those observed in the P. tomentosa transgenic plants, which showed enhanced growth, increased lignin accumulation, and greater wood strength. Overall, the specific overexpression of the caffeic acid O-methyltransferase gene COMT2 in poplar stem fiber cells has enhanced the wood biomass, wood properties, and mechanical strength of poplar stems. Full article
Show Figures

Figure 1

25 pages, 10880 KB  
Article
Differential Photosynthetic and Proteomics Responses Between Male and Female Populus deltoides W. Bartram ex Marshall Infected by Alternaria alternata (Fr.) Keissler
by Huimin Tian, Yaseen Khan, Lingfeng Miao and Fan Yang
Forests 2024, 15(12), 2093; https://doi.org/10.3390/f15122093 - 26 Nov 2024
Viewed by 1172
Abstract
Alternaria alternata (Fr.) Keissler is a widespread leaf blight pathogen that disrupts many plants; including poplars. Despite its broad impact, the sex-specific responses of male and female plants to this pathogen remain poorly studied. This study investigated sex differences in the morphological; photosynthetic; [...] Read more.
Alternaria alternata (Fr.) Keissler is a widespread leaf blight pathogen that disrupts many plants; including poplars. Despite its broad impact, the sex-specific responses of male and female plants to this pathogen remain poorly studied. This study investigated sex differences in the morphological; photosynthetic; and proteomic responses between male and female Populus deltoides W. Bartram ex Marshall infected with A. alternata. The results showed that the female plants had a faster onset of infection and more inhibited growth in comparison to males. In terms of photosynthetic parameters, the infected females were more severely affected, with 2 subunits in the photosynthetic electron transport chain expressed at higher levels and 12 subunits expressed at lower levels than in the infected males. Regarding the antioxidant system; the infected female plants exhibited higher reactive oxygen species (ROS) contents but lower antioxidant activities, with significantly lower expressions of 2 superoxide dismutases (SODs); 2 peroxidases (PODs); 2 ascorbate peroxidases (APXs); 2 glutathione peroxidases; and 4 glutathione S-transferases compared to the infected males. In the phenylpropanoid biosynthesis pathway, the expressions of shikimate O-hydroxycinnamoyl transferase and ferulate-5-hydroxylase were upregulated in both male and female plants after infection. However, the expression of shikimate O-hydroxycinnamoyl transferase in female plants was consistently higher, while the expression of caffeic acid 3-O-methyltransferase was lower in females compared to males. These indicate that A. alternata infection induces significant alterations in the photosynthetic capacity; antioxidant system; and phenylpropanoid biosynthetic pathway in both male and female poplars. Moreover, bimodal regulation was observed, with male poplars demonstrating greater stability in both photosynthetic and antioxidant systems. Full article
(This article belongs to the Special Issue Application of Molecular Genetic Tools for Forest Pathology)
Show Figures

Figure 1

12 pages, 3410 KB  
Article
Genome-Wide Identification of the COMT Gene Family in Juglans regia L. and Response to Drought Stress
by Xiaolan Ma, Hongjia Luo, Jianhong Li, Zhiyue Wei, Yanlong Gao, Zhongxing Zhang and Yanxiu Wang
Plants 2024, 13(19), 2690; https://doi.org/10.3390/plants13192690 - 25 Sep 2024
Cited by 2 | Viewed by 1634
Abstract
Caffeic acid O-methyltransferase (COMT), as a multifunctional enzyme involved in various physiological and biochemical processes in lignin metabolism, plays an important role in a plant’s response to stress. In this study, we isolated COMT family members from the walnut genome by [...] Read more.
Caffeic acid O-methyltransferase (COMT), as a multifunctional enzyme involved in various physiological and biochemical processes in lignin metabolism, plays an important role in a plant’s response to stress. In this study, we isolated COMT family members from the walnut genome by bioinformatics and analyzed their physicochemical properties and their expression under drought stress to provide gene resources for drought resistance in walnut. The results showed that 33 COMT genes were identified from walnuts and distributed on different chromosomes. The molecular weight of proteins varies greatly. According to the phylogenetic tree, the family can be divided into seven subgroups, which are relatively conservative in evolution and closely related to Arabidopsis thaliana. Promoter analysis showed that the promoter of the walnut COMT gene contains rich cis-elements of plant hormone response and stress response, and the real-time fluorescence scale name can be significantly induced by drought stress. Compared with wild-type Arabidopsis, overexpression JrCOMT19 significantly increased the enzyme activity (SOD, POD, and CAT) and proline content. Meanwhile, overexpression of JrCOMT19 significantly increased the lignin content and expression of related genes. Therefore, JrCOMT plays an important role in responding to drought in walnuts, and overexpression JrCOMT19 can improve the resistance to drought stress by increasing lignin content, antioxidant enzyme activity, and osmotic substance content. Full article
Show Figures

Figure 1

27 pages, 9686 KB  
Article
Genome-Wide Identification of Caffeic Acid O-Methyltransferase Gene Family in Medicago truncatula: MtCOMT13-Mediated Salt and Drought Tolerance Enhancement
by Kailun Cui, Yanzhen Lv, Zhao Zhang, Qingying Sun, Xingjie Yao and Huifang Yan
Agriculture 2024, 14(8), 1305; https://doi.org/10.3390/agriculture14081305 - 7 Aug 2024
Cited by 2 | Viewed by 1737
Abstract
Legumes are important grains and forages, providing high-quality proteins, vitamins, and micronutrients to humans and animals. Medicago truncatula is a close relative of alfalfa (Medicago sativa). Caffeic acid O-methyltransferase (COMT), a key gene that is identified to be essential [...] Read more.
Legumes are important grains and forages, providing high-quality proteins, vitamins, and micronutrients to humans and animals. Medicago truncatula is a close relative of alfalfa (Medicago sativa). Caffeic acid O-methyltransferase (COMT), a key gene that is identified to be essential for melatonin synthesis, plays a significant role in plant growth, development, and abiotic stress responses. However, a systematic study on the COMT gene family in M. truncatula has still not been reported. In this study, 63 MtCOMT genes were identified and categorized into three groups. Gene structure and conserved motif analyses revealed the relative conservation of closely clustered MtCOMTs within each group. Duplicated events in MtCOMT members were identified, and segmental duplication was the main mean. Cis-acting element prediction revealed the involvement of MtCOMTs in growth and development and response to light, stress, and plant hormones. RNA-seq data analysis showed that 57 MtCOMTs varied under salt and drought stresses. The RT-qPCR expression patterns showed that MtCOMT9, MtCOMT13, MtCOMT22, MtCOMT24, MtCOMT43, and MtCOMT46 were related to salt and drought responses in M. truncatula. Additionally, Arabidopsis thaliana overexpressing MtCOMT13 displayed superior plant growth phenotypes and enhanced tolerance to salt and drought stresses through higher photosynthetic parameters and activities of antioxidant enzymes, which indicated that MtCOMT13 played an important role in positively regulating plant salt and drought tolerance. These findings contribute to an improved understanding of MtCOMTs’ roles in abiotic stress responses in M. truncatula, providing an important theoretical basis and genetic resource for legume species resistance breeding in the future. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

13 pages, 6216 KB  
Article
Exogenous Melatonin Application Accelerated the Healing Process of Oriental Melon Grafted onto Squash by Promoting Lignin Accumulation
by Yulei Zhu, Jieying Guo, Fang Wu, Hanqi Yu, Jiahuan Min, Yingtong Zhao, Changhua Tan, Yuanwei Liu and Chuanqiang Xu
Int. J. Mol. Sci. 2024, 25(7), 3690; https://doi.org/10.3390/ijms25073690 - 26 Mar 2024
Cited by 6 | Viewed by 1772
Abstract
Melatonin (MT) is a vital hormone factor in plant growth and development, yet its potential to influence the graft union healing process has not been reported. In this study, we examined the effects of MT on the healing of oriental melon scion grafted [...] Read more.
Melatonin (MT) is a vital hormone factor in plant growth and development, yet its potential to influence the graft union healing process has not been reported. In this study, we examined the effects of MT on the healing of oriental melon scion grafted onto squash rootstock. The studies indicate that the exogenous MT treatment promotes the lignin content of oriental melon and squash stems by increasing the enzyme activities of hydroxycinnamoyl CoA ligase (HCT), hydroxy cinnamaldehyde dehydrogenase (HCALDH), caffeic acid/5-hydroxy-conifer aldehyde O-methyltransferase (COMT), caffeoyl-CoA O-methyltransferase (CCoAOMT), phenylalanine ammonia-lyase (PAL), 4-hydroxycinnamate CoA ligase (4CL), and cinnamyl alcohol dehydrogenase (CAD). Using the oriental melon and squash treated with the exogenous MT to graft, the connection of oriental melon scion and squash rootstock was more efficient and faster due to higher expression of wound-induced dedifferentiation 1 (WIND1), cyclin-dependent kinase (CDKB1;2), target of monopteros 6 (TMO6), and vascular-related NAC-domain 7 (VND7). Further research found that the exogenous MT increased the lignin content of the oriental melon scion stem by regulating CmCAD1 expression, and then accelerated the graft healing process. In addition, the root growth of grafted seedlings treated with the exogenous MT was more vigorous. Full article
(This article belongs to the Special Issue Advances in Research on Fruit Crop Breeding and Genetics: 3rd Edition)
Show Figures

Figure 1

18 pages, 4590 KB  
Article
Caffeic Acid O-Methyltransferase Gene Family in Mango (Mangifera indica L.) with Transcriptional Analysis under Biotic and Abiotic Stresses and the Role of MiCOMT1 in Salt Tolerance
by Huiliang Wang, Zhuoli Chen, Ruixiong Luo, Chen Lei, Mengting Zhang, Aiping Gao, Jinji Pu and He Zhang
Int. J. Mol. Sci. 2024, 25(5), 2639; https://doi.org/10.3390/ijms25052639 - 24 Feb 2024
Cited by 10 | Viewed by 2395
Abstract
Caffeic acid O-methyltransferase (COMT) participates in various physiological activities in plants, such as positive responses to abiotic stresses and the signal transduction of phytohormones. In this study, 18 COMT genes were identified in the chromosome-level reference genome of mango, named [...] Read more.
Caffeic acid O-methyltransferase (COMT) participates in various physiological activities in plants, such as positive responses to abiotic stresses and the signal transduction of phytohormones. In this study, 18 COMT genes were identified in the chromosome-level reference genome of mango, named MiCOMTs. A phylogenetic tree containing nine groups (I-IX) was constructed based on the amino acid sequences of the 71 COMT proteins from seven species. The phylogenetic tree indicated that the members of the MiCOMTs could be divided into four groups. Quantitative real-time PCR showed that all MiCOMT genes have particularly high expression levels during flowering. The expression levels of MiCOMTs were different under abiotic and biotic stresses, including salt and stimulated drought stresses, ABA and SA treatment, as well as Xanthomonas campestris pv. mangiferaeindicae and Colletotrichum gloeosporioides infection, respectively. Among them, the expression level of MiCOMT1 was significantly up-regulated at 6–72 h after salt and stimulated drought stresses. The results of gene function analysis via the transient overexpression of the MiCOMT1 gene in Nicotiana benthamiana showed that the MiCOMT1 gene can promote the accumulation of ABA and MeJA, and improve the salt tolerance of mango. These results are beneficial to future researchers aiming to understand the biological functions and molecular mechanisms of MiCOMT genes. Full article
Show Figures

Figure 1

10 pages, 5721 KB  
Communication
Identification of One O-Methyltransferase Gene Involved in Methylated Flavonoid Biosynthesis Related to the UV-B Irradiation Response in Euphorbia lathyris
by Wanli Zhao, Long Huang, Shu Xu, Junzhi Wu, Fan Wang, Pirui Li, Linwei Li, Mei Tian, Xu Feng and Yu Chen
Int. J. Mol. Sci. 2024, 25(2), 782; https://doi.org/10.3390/ijms25020782 - 8 Jan 2024
Cited by 5 | Viewed by 2371
Abstract
Flavonoids are ubiquitous polyphenolic compounds that play a vital role in plants’ defense response and medicinal efficacy. UV-B radiation is a vital environmental regulator governing flavonoid biosynthesis in plants. Many plants rapidly biosynthesize flavonoids as a response to UV-B stress conditions. Here, we [...] Read more.
Flavonoids are ubiquitous polyphenolic compounds that play a vital role in plants’ defense response and medicinal efficacy. UV-B radiation is a vital environmental regulator governing flavonoid biosynthesis in plants. Many plants rapidly biosynthesize flavonoids as a response to UV-B stress conditions. Here, we investigated the effects of flavonoid biosynthesis via UV-B irradiation in Euphorbia lathyris. We found that exposure of the E. lathyris callus to UV-B radiation sharply increased the level of one O-methyltransferase (ElOMT1) transcript and led to the biosynthesis of several methylated flavonoids. The methyltransferase ElOMT1 was expressed heterologously in E. coli, and we tested the catalytic activity of recombinant ElOMT1 with possible substrates, including caffeic acid, baicalin, and luteolin, in vitro. ElOMT1 could efficiently methylate when the hydroxyl groups were contained in the core nucleus of the flavonoid. This molecular characterization identifies a methyltransferase responsible for the chemical modification of the core flavonoid structure through methylation and helps reveal the mechanism of methylated flavonoid biosynthesis in Euphorbiaceae. This study identifies the O-methyltransferase that responds to UV-B irradiation and helps shed light on the mechanism of flavonoid biosynthesis in Euphorbia lathyris. Full article
Show Figures

Figure 1

13 pages, 8022 KB  
Article
Phenolic Acids and Flavonoids Play Important Roles in Flower Bud Differentiation in Mikania micrantha: Transcriptomics and Metabolomics
by Ling Pei, Yanzhu Gao, Lichen Feng, Zihan Zhang, Naiyong Liu, Bin Yang and Ning Zhao
Int. J. Mol. Sci. 2023, 24(23), 16550; https://doi.org/10.3390/ijms242316550 - 21 Nov 2023
Cited by 11 | Viewed by 2454
Abstract
Mikania micrantha is a highly invasive vine, and its ability to sexually reproduce is a major obstacle to its eradication. The long-distance dissemination of M. micrantha depends on the distribution of seeds; therefore, inhibiting M. micrantha flowering and seed production is an effective [...] Read more.
Mikania micrantha is a highly invasive vine, and its ability to sexually reproduce is a major obstacle to its eradication. The long-distance dissemination of M. micrantha depends on the distribution of seeds; therefore, inhibiting M. micrantha flowering and seed production is an effective control strategy. The number of blooms of M. micrantha differs at different altitudes (200, 900, and 1300 m). In this study, we used a combination of metabolomics and transcriptomics methods to study the patterns of metabolite accumulation in the flower buds of M. micrantha. Using LC-MS/MS, 658 metabolites were found in the flower buds of M. micrantha at three different altitudes (200, 900, and 1300 m). Flavonoids and phenolic acids were found to be the main differential metabolites, and their concentrations were lower at 900 m than at 200 m and 1300 m, with the concentrations of benzoic acid, ferulic acid, and caffeic acid being the lowest. The biosynthesis pathways for flavonoids and phenolic compounds were significantly enriched for differentially expressed genes (DEGs), according to the results of transcriptome analysis. The production of flavonoid and phenolic acids was strongly linked with the expressions of phenylalanine ammonia-lyase (PAL), caffeoyl-CoA O-methyltransferase (COMT), and 4-coumarate-CoA ligase (4CL), according to the results of the combined transcriptome and metabolome analysis. These genes’ roles in the regulation of distinct phenolic acids and flavonoids during M. micrantha bud differentiation are still unknown. This study adds to our understanding of how phenolic acids and flavonoids are regulated in M. micrantha flower buds at various altitudes and identifies regulatory networks that may be involved in this phenomenon, offering a new approach for the prevention and management of M. micrantha. Full article
(This article belongs to the Special Issue Plant Metabolome and Molecular Mechanisms of Synthesis)
Show Figures

Figure 1

17 pages, 19610 KB  
Article
Molecular Mechanisms Regulating Phenylpropanoid Metabolism in Exogenously-Sprayed Ethylene Forage Ramie Based on Transcriptomic and Metabolomic Analyses
by Hongdong Jie, Pengliang He, Long Zhao, Yushen Ma and Yucheng Jie
Plants 2023, 12(22), 3899; https://doi.org/10.3390/plants12223899 - 18 Nov 2023
Cited by 8 | Viewed by 2391
Abstract
Ramie (Boehmeria nivea [L.] Gaud.), a nutritious animal feed, is rich in protein and produces a variety of secondary metabolites that increase its palatability and functional composition. Ethylene (ETH) is an important plant hormone that regulates the growth and development of various [...] Read more.
Ramie (Boehmeria nivea [L.] Gaud.), a nutritious animal feed, is rich in protein and produces a variety of secondary metabolites that increase its palatability and functional composition. Ethylene (ETH) is an important plant hormone that regulates the growth and development of various crops. In this study, we investigated the impact of ETH sprays on the growth and metabolism of forage ramie. We explored the mechanism of ETH regulation on the growth and secondary metabolites of forage ramie using transcriptomic and metabolomic analyses. Spraying ramie with ETH elevated the contents of flavonoids and chlorogenic acid and decreased the lignin content in the leaves and stems. A total of 1076 differentially expressed genes (DEGs) and 51 differentially expressed metabolites (DEMs) were identified in the leaves, and 344 DEGs and 55 DEMs were identified in the stems. The DEGs that affect phenylpropanoid metabolism, including BGLU41, LCT, PER63, PER42, PER12, PER10, POD, BAHD1, SHT, and At4g26220 were significantly upregulated in the leaves. Ethylene sprays downregulated tyrosine and chlorogenic acid (3-O-caffeoylquinic acid) in the leaves, but lignin biosynthesis HCT genes, including ACT, BAHD1, and SHT, were up- and downregulated. These changes in expression may ultimately reduce lignin biosynthesis. In addition, the upregulation of caffeoyl CoA-O-methyltransferase (CCoAOMT) may have increased the abundance of its flavonoids. Ethylene significantly downregulated metabolites, affecting phenylpropanoid metabolism in the stems. The differential 4CL and HCT metabolites were downregulated, namely, phenylalanine and tyrosine. Additionally, ETH upregulated 2-hydroxycinnamic acid and the cinnamyl hydroxyl derivatives (caffeic acid and p-coumaric acid). Cinnamic acid is a crucial intermediate in the shikimic acid pathway, which serves as a precursor for the biosynthesis of flavonoids and lignin. The ETH-decreased gene expression and metabolite alteration reduced the lignin levels in the stem. Moreover, the HCT downregulation may explain the inhibited lignin biosynthesis to promote flavonoid biosynthesis. In conclusion, external ETH application can effectively reduce lignin contents and increase the secondary metabolites of ramie without affecting its growth and development. These results provide candidate genes for improving ramie and offer theoretical and practical guidance for cultivating ramie for forage. Full article
Show Figures

Figure 1

14 pages, 2276 KB  
Article
Effects of Endogenous Melatonin Deficiency on the Growth, Productivity, and Fruit Quality Properties of Tomato Plants
by Zhuo He, Cen Wen and Wen Xu
Horticulturae 2023, 9(8), 851; https://doi.org/10.3390/horticulturae9080851 - 26 Jul 2023
Cited by 8 | Viewed by 2195
Abstract
Caffeic acid O-methyltransferase 1 (COMT1) is a key enzyme that is involved in melatonin synthesis, affecting the melatonin content in plants. In this experiment, tomato plants (slcomt1) with silenced SlCOMT1 gene expression were used to investigate the effects of SlCOMT1 deficiency [...] Read more.
Caffeic acid O-methyltransferase 1 (COMT1) is a key enzyme that is involved in melatonin synthesis, affecting the melatonin content in plants. In this experiment, tomato plants (slcomt1) with silenced SlCOMT1 gene expression were used to investigate the effects of SlCOMT1 deficiency on fruit growth, development, and quality formation. The results show that the slcomt1 plants exhibited prolonged fruit development, with reductions in the relative expression levels of SlCOMT1 by 71.1%, 79.7%, 83.9%, and 90.6% during the green fruit, breaker, orange ripening, and red ripening stages, respectively. The endogenous melatonin content also decreased by 29.4%, 43%, 45%, and 61.4% in the corresponding stages. Furthermore, the slcomt1 plants showed a decrease in the individual fruit weight, seed number per fruit, and fruit set rate by approximately 51.1%, 48.2%, and 30.4%, respectively. The slcomt1 plants exhibited an increase in the titratable acid content by 32.1%, 22.1%, 10.3%, and 24.4% during the green fruit, breaker, orange ripening, and red ripening stages, while the sugar-to-acid ratio decreased by 44.9%, 32.6%, 22.7%, and 36.8%. The slcomt1 plants also displayed increased fruit firmness, along with reductions in the relative expression levels of the cell wall and carotenoid-related genes and carotenoid content. Specifically, the Vc content in the slcomt1 plants decreased by 80.7% during the green fruit stage, and by 11.5%, 17.1%, and 2.6% during the breaker, orange ripening, and red ripening stages, respectively. The soluble protein content exhibited a decreasing trend in the corresponding stages. This study highlights the important role of endogenous melatonin in fruit physiology and quality formation, providing insights for further research and application of melatonin in agriculture. Full article
Show Figures

Figure 1

15 pages, 2676 KB  
Article
Conjunctive Analyses of BSA-Seq and BSR-Seq to Identify Candidate Genes Controlling the Black Lemma and Pericarp Trait in Barley
by Yajie Liu, Pengzheng Chen, Wenshuo Li, Xinchun Liu, Guowu Yu, Hui Zhao, Shuhua Zeng, Mao Li, Genlou Sun and Zongyun Feng
Int. J. Mol. Sci. 2023, 24(11), 9473; https://doi.org/10.3390/ijms24119473 - 30 May 2023
Cited by 10 | Viewed by 3328
Abstract
Black barley seeds are a health-beneficial diet resource because of their special chemical composition and antioxidant properties. The black lemma and pericarp (BLP) locus was mapped in a genetic interval of 0.807 Mb on chromosome 1H, but its genetic basis remains unknown. In [...] Read more.
Black barley seeds are a health-beneficial diet resource because of their special chemical composition and antioxidant properties. The black lemma and pericarp (BLP) locus was mapped in a genetic interval of 0.807 Mb on chromosome 1H, but its genetic basis remains unknown. In this study, targeted metabolomics and conjunctive analyses of BSA-seq and BSR-seq were used to identify candidate genes of BLP and the precursors of black pigments. The results revealed that five candidate genes, purple acid phosphatase, 3-ketoacyl-CoA synthase 11, coiled-coil domain-containing protein 167, subtilisin-like protease, and caffeic acid-O-methyltransferase, of the BLP locus were identified in the 10.12 Mb location region on the 1H chromosome after differential expression analysis, and 17 differential metabolites, including the precursor and repeating unit of allomelanin, were accumulated in the late mike stage of black barley. Phenol nitrogen-free precursors such as catechol (protocatechuic aldehyde) or catecholic acids (caffeic, protocatechuic, and gallic acids) may promote black pigmentation. BLP can manipulate the accumulation of benzoic acid derivatives (salicylic acid, 2,4-dihydroxybenzoic acid, gallic acid, gentisic acid, protocatechuic acid, syringic acid, vanillic acid, protocatechuic aldehyde, and syringaldehyde) through the shikimate/chorismite pathway other than the phenylalanine pathway and alter the metabolism of the phenylpropanoid-monolignol branch. Collectively, it is reasonable to infer that black pigmentation in barley is due to allomelanin biosynthesis in the lemma and pericarp, and BLP regulates melanogenesis by manipulating the biosynthesis of its precursors. Full article
(This article belongs to the Special Issue Molecular Research for Cereal Grain Quality 2.0)
Show Figures

Figure 1

15 pages, 4540 KB  
Article
Transcriptome Analysis Reveals Regulatory Networks and Hub Genes in the Flavonoid Metabolism of Rosa roxburghii
by Xiaolong Huang, Guilian Sun, Qiaohong Li and Huiqing Yan
Horticulturae 2023, 9(2), 233; https://doi.org/10.3390/horticulturae9020233 - 9 Feb 2023
Cited by 10 | Viewed by 2774
Abstract
Rosa roxburghii Tratt, the most popular fruit that blooms in the southwest of China, has high antioxidant properties and is rich in different flavonoids. However, the regulatory network and critical genes that regulate the flavonoid biosynthesis of R. roxburghii are still unknown. In [...] Read more.
Rosa roxburghii Tratt, the most popular fruit that blooms in the southwest of China, has high antioxidant properties and is rich in different flavonoids. However, the regulatory network and critical genes that regulate the flavonoid biosynthesis of R. roxburghii are still unknown. In this study, HPLC analysis revealed that total flavonoids, anthocyanins, and catechin were enriched in mature fruits, flowers, and leaves, respectively. Differentially expressed genes (DEGs) between five organs of R. roxburghii involved in flavonoid metabolism were obtained by transcriptome sequencing. A total of 1130 DEGs were identified, including 166 flavonoid pathway biosynthesis genes, 622 transcription factors (TFs), 301 transporters, and 221 cytochrome P450 proteins. A weighted gene co-expression network analysis (WGCNA) of the DEGs was conducted to construct co-expression networks. Regarding enzymes in the biosynthesis of flavonoids, cytochrome P450 CYP749A22 and CYP72A219 were highlighted in the regulation of total flavonoids of mature fruits. Anthocyanin 3-O-glucosyltransferase and F3′H were the top two critical enzymes for anthocyanin accumulation in flowers. By contrast, caffeic acid 3-O-methyltransferase, 4-coumarate-CoA ligase, and shikimate O-hydroxycinnamoyltransferase were essential for catechin accumulation in leaves. Additionally, we analyzed the eigengene network of the “black” module, which had high correlations with total flavonoids (r = 0.9, p = 5 × 10−6). There were 26 eigengenes in the “black” module, consisting of 6 flavonoid biosynthesis, 14 TFs, and 6 transporters. Among them, the transcription factors RrWRKY45 (DN142829_c1_g5), RrTCP20 (DN146443_c1_g1), and RrERF118 (DN141507_c3_g2) were screened as the hub genes, which significantly correlated with total flavonoids in R. roxburghii. The present biochemical and transcriptomic data provide insights into functional genomics for breeding R. roxburghii with flavonoid accumulation. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

Back to TopTop