Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,021)

Search Parameters:
Keywords = calcium imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 17043 KB  
Article
A Semi-Automated and Unbiased Microglia Morphology Analysis Following Mild Traumatic Brain Injury in Rats
by Luke Sumberg, Rina Berman, Antoni Pazgier, Joaquin Torres, Jennifer Qiu, Bodhi Tran, Shannen Greene, Rose Atwood, Martin Boese and Kwang Choi
Int. J. Mol. Sci. 2025, 26(17), 8149; https://doi.org/10.3390/ijms26178149 - 22 Aug 2025
Viewed by 158
Abstract
Mild traumatic brain injury (mTBI) affects over 40 million people every year. One of its features includes the activation of microglia, the resident immune cells of the brain. Microglia assume different morphological states depending on their level of activation, such as surveilling ramified [...] Read more.
Mild traumatic brain injury (mTBI) affects over 40 million people every year. One of its features includes the activation of microglia, the resident immune cells of the brain. Microglia assume different morphological states depending on their level of activation, such as surveilling ramified and activated hypertrophic, ameboid, and rod-like microglia. These states can be distinguished by multiple features, including the shape, span, and branching of microglia. Male Sprague–Dawley rats sustained mTBI using the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) (3 times, 1.5 J per impact) or sham treatment. Four days after the injury, brains were collected and stained for microglia using the ionized calcium-binding adapter molecule-1 (Iba-1) antibody. Cortical injury sites were identified in a subset of CHIMERA animals. Using the MicrogliaMorphology ImageJ plugin and the MicrogliaMorphologyR package, 27 morphological features were quantified from individual microglia, and k-means clustering was used to classify microglia as ramified, rod-like, ameboid, and hypertrophic states. The CHIMERA injury altered microglia morphology features, which contributed to increased hypertrophic (activated) and decreased ramified (inactive) microglia compared to the sham controls. Combined with the clinically relevant mTBI paradigm and semi-automated/unbiased approach, the current findings may contribute to microglia morphology classification. Full article
Show Figures

Figure 1

34 pages, 441 KB  
Review
Rescuing Fertilization Failure in ICSI: A Narrative Review of Calcium Ionophore Activation, PLCζ Testing, and Embryo Morphokinetics
by Charalampos Voros, Despoina Mavrogianni, Diamantis Athanasiou, Ioakeim Sapantzoglou, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Georgios Papadimas, Charalampos Tsimpoukelis, Ioannis Papapanagiotou, Dimitrios Vaitsis, Aristotelis-Marios Koulakmanidis, Maria Anastasia Daskalaki, Vasileios Topalis, Nikolaos Thomakos, Marianna Theodora, Panagiotis Antsaklis, Fotios Chatzinikolaou, Dimitrios Loutradis and Georgios Daskalakis
Biomedicines 2025, 13(8), 2007; https://doi.org/10.3390/biomedicines13082007 - 18 Aug 2025
Viewed by 374
Abstract
Fertilisation failure following intracytoplasmic sperm injection (ICSI) is a significant challenge in assisted reproductive technology (ART), particularly in the absence of an identifiable cause. Artificial oocyte activation (AOA), typically with calcium ionophores, has emerged as a potential solution in scenarios characterised by a [...] Read more.
Fertilisation failure following intracytoplasmic sperm injection (ICSI) is a significant challenge in assisted reproductive technology (ART), particularly in the absence of an identifiable cause. Artificial oocyte activation (AOA), typically with calcium ionophores, has emerged as a potential solution in scenarios characterised by a deficiency of phospholipase C zeta (PLCζ). This narrative review consolidates the latest clinical and experimental data regarding the application of calcium ionophores for oocyte activation, the significance of PLCζ testing in instances of unexplained fertilisation failure, and the impact of AOA on the morphokinetics and developmental potential of embryos. AOA has demonstrated an enhancement in fertilisation, cleavage, and pregnancy outcomes in specific patient populations, including individuals with diminished ovarian reserve or those who have previously attempted conception unsuccessfully. Although AOA appears to have no impact on embryo morphokinetics, certain studies indicate slight alterations in early cleavage features. The available statistics indicate that there are no significant safety concerns about outcomes for babies. This finding underscores the significance of tailored ART methodologies that incorporate molecular diagnostics and targeted AOA therapies. It emphasises the necessity for additional prospective trials to enhance patient selection and long-term safety surveillance. Full article
(This article belongs to the Special Issue New Advances in Human Reproductive Biology)
24 pages, 5385 KB  
Article
Highly Oligomeric DRP1 Strategic Positioning at Mitochondria–Sarcoplasmic Reticulum Contacts in Adult Murine Heart Through ACTIN Anchoring
by Celia Fernandez-Sanz, Sergio De la Fuente, Zuzana Nichtova, Marilen Federico, Stephane Duvezin-Caubet, Sebastian Lanvermann, Hui-Ying Tsai, Yanguo Xin, Gyorgy Csordas, Wang Wang, Arnaud Mourier and Shey-Shing Sheu
Cells 2025, 14(16), 1259; https://doi.org/10.3390/cells14161259 - 14 Aug 2025
Viewed by 592
Abstract
Mitochondrial fission and fusion appear to be relatively infrequent in cardiac cells compared to other cell types; however, the proteins involved in these events are highly expressed in adult cardiomyocytes (ACM). Therefore, these proteins likely have additional non-canonical roles. We have previously shown [...] Read more.
Mitochondrial fission and fusion appear to be relatively infrequent in cardiac cells compared to other cell types; however, the proteins involved in these events are highly expressed in adult cardiomyocytes (ACM). Therefore, these proteins likely have additional non-canonical roles. We have previously shown that DRP1 not only participates in mitochondrial fission processes but also regulates mitochondrial bioenergetics in cardiac tissue. However, it is still unknown where the DRP1 that does not participate in mitochondrial fission is located and what its role is at those non-fission spots. Therefore, this manuscript will clarify whether oligomeric DRP1 is located at the SR–mitochondria interface, a specific region that harbors the Ca2+ microdomains created by Ca2+ release from the SR through the RyR2. The high Ca2+ microdomains and the subsequent Ca2+ uptake by mitochondria through the mitochondrial Ca2+ uniporter complex (MCUC) are essential to regulate mitochondrial bioenergetics during excitation–contraction (EC) coupling. Herein, we aimed to test the hypothesis that mitochondria-bound DRP1 preferentially accumulates at the mitochondria–SR contacts to deploy its function on regulating mitochondrial bioenergetics and that this strategic position is modulated by calcium in a beat-to-beat manner. In addition, the mechanism responsible for such a biased distribution and its functional implications was investigated. High-resolution imaging approaches, cell fractionation, Western blot, 2D blue native gel electrophoresis, and immunoprecipitations were applied to both electrically paced ACM and Langendorff-perfused beating hearts to elucidate the mechanisms of the strategic DRP1 localization. Our data show that in ACM, mitochondria-bound DRP1 clusters in high molecular weight protein complexes at mitochondria-associated membrane (MAM). This clustering requires DRP1 interaction with β-ACTIN and is fortified by EC coupling-mediated Ca2+ transients. In ACM, DRP1 is anchored at the mitochondria–SR contacts through interactions with β-ACTIN and Ca2+ transients, playing a fundamental role in regulating mitochondrial physiology. Full article
(This article belongs to the Special Issue Cellular Mechanisms in Mitochondrial Function and Calcium Signaling)
Show Figures

Figure 1

23 pages, 1242 KB  
Review
Cancer Therapy-Related Left Ventricular Dysfunction: Are There New Gatekeepers?
by Mariagrazia Piscione, Maria Carmela Di Marcantonio, Barbara Pala and Gabriella Mincione
BioChem 2025, 5(3), 25; https://doi.org/10.3390/biochem5030025 - 12 Aug 2025
Viewed by 342
Abstract
The growing success of oncologic therapies has led to a significant improvement in patient survival; however, this has been accompanied by an increasing incidence of cardiovascular adverse events, particularly cancer therapy-related cardiac dysfunction (CTRCD). Among these, left ventricular impairment represents a major concern [...] Read more.
The growing success of oncologic therapies has led to a significant improvement in patient survival; however, this has been accompanied by an increasing incidence of cardiovascular adverse events, particularly cancer therapy-related cardiac dysfunction (CTRCD). Among these, left ventricular impairment represents a major concern due to its potential to compromise both cardiac and oncologic outcomes. This review provides an in-depth overview of the cardiotoxic adverse events associated with several classes of anticancer agents. Particular focus is given to the molecular mechanisms involved in myocardial injury, such as oxidative stress, mitochondrial dysfunction, calcium dysregulation, endothelial reticulum stress, autophagy, and apoptosis. In parallel, established and emerging cardioprotective strategies, from conventional to newer therapeutic approaches, are explored. The role of advanced imaging modalities, as well as cardiac biomarkers, is discussed in the context of early detection and monitoring of subclinical cardiac injury. Finally, the integration of pharmacogenomics and epigenetics is considered as a promising avenue to personalize risk stratification and preventive therapy. By elucidating the complex interplay between cancer treatments and cardiovascular health, this review underscores the importance of a multidisciplinary, precision medicine approach to optimizing the care of patients undergoing potentially cardiotoxic therapies. Full article
(This article belongs to the Special Issue Feature Papers in BioChem, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 3904 KB  
Article
MdCDPK24 Encoding Calcium-Dependent Protein Kinase Enhances Apple Resistance to Colletotrichum gloeosporioides
by Jiajun Shi, Yuxin Ma, Dajiang Wang and Feng Wang
Horticulturae 2025, 11(8), 942; https://doi.org/10.3390/horticulturae11080942 - 10 Aug 2025
Viewed by 333
Abstract
Calcium-dependent protein kinases (CDPKs) are unique serine/threonine kinases that play significant roles in response to environmental stresses in plants. In this study, we comprehensively characterized the CDPK gene family in the apple cultivar ‘Hanfu’ at the genome-wide level, and 38 MdCDPKs were identified. [...] Read more.
Calcium-dependent protein kinases (CDPKs) are unique serine/threonine kinases that play significant roles in response to environmental stresses in plants. In this study, we comprehensively characterized the CDPK gene family in the apple cultivar ‘Hanfu’ at the genome-wide level, and 38 MdCDPKs were identified. They were unevenly distributed across 14 chromosomes. Based on phylogenetic analysis, the MdCDPKs were classified into four subfamilies. Conserved domain analysis indicated that MdCDPKs contain the catalytic kinase domain and the Ca2+ binding domain. During Colletotrichum gloeosporioides infection, the expression level of MdCDPK24 was significantly upregulated. Subsequently, MdCDPK24 was fused to GFP to generate the MdCDPK24-GFP construct, and confocal microscopy imaging confirmed its cytoplasmic localization in Nicotiana benthamiana leaves. Using agrobacterium-mediated transformation, we generated the overexpression of MdCDPK24 transgenic calli. MdCDPK24-overexpressing calli demonstrated significantly reduced disease severity against C. gloeosporioides infection, indicating its positive role in apple bitter rot resistance. The analysis of the CDPK gene family in the apple cultivar ‘Hanfu’ provides a new insight into the identification of CDPK genes involved in biotic stress. MdCDPK24 represents a promising candidate for genetic manipulation to enhance apple bitter rot resistance. Full article
(This article belongs to the Special Issue Fruit Tree Physiology and Molecular Biology)
Show Figures

Figure 1

20 pages, 3213 KB  
Article
Impact of 5-HT4 Receptors on Neuron–Glial Network Activity In Vitro
by Elena V. Mitroshina, Ekaterina A. Marasanova and Maria V. Vedunova
Int. J. Mol. Sci. 2025, 26(16), 7718; https://doi.org/10.3390/ijms26167718 - 9 Aug 2025
Viewed by 303
Abstract
5-HT4 receptors play an important role in the regulation of synaptic plasticity. However, the effect of 5-HT4Rs on neural network activity and intercellular calcium signaling remains enigmatic. Using calcium imaging and original software, we determined the network-level characteristics of calcium dynamics within primary [...] Read more.
5-HT4 receptors play an important role in the regulation of synaptic plasticity. However, the effect of 5-HT4Rs on neural network activity and intercellular calcium signaling remains enigmatic. Using calcium imaging and original software, we determined the network-level characteristics of calcium dynamics within primary hippocampal cultures. We found that the single activation of 5-HT4 receptors by BIMU8 significantly reduced the correlation of activity within neuron–glial networks of primary cultures, without altering the proportion of active cells or the frequency of calcium events. In contrast, chronic stimulation of 5-HT4Rs promoted greater cell involvement in Ca2+ signal generation and increased the frequency of calcium events, while maintaining the connectivity level of the neuron–glial network. Moreover, our immunocytochemical labeling results indicated that chronic stimulation of 5-HT4Rs increased the size of both presynaptic and postsynaptic terminals. The acute blockade of 5-HT4Rs by RS23597-190 exerted a marked inhibitory effect on calcium activity in primary hippocampal cultures. Network connectivity and correlation of calcium activity were disrupted, and the number of functional connections among cells sharply declined. Our study showed that 5-HT4 receptors exhibit diverse effects based on the type and duration of activation, mediating several key functions in regulating neural network calcium activity. Full article
(This article belongs to the Special Issue Neuromodulatory Effects of Serotonin, 2nd Edition)
Show Figures

Graphical abstract

20 pages, 740 KB  
Article
Virtual Non-Contrast Reconstructions Derived from Dual-Energy CTA Scans in Peripheral Arterial Disease: Comparison with True Non-Contrast Images and Impact on Radiation Dose
by Fanni Éva Szablics, Ákos Bérczi, Judit Csőre, Sarolta Borzsák, András Szentiványi, Máté Kiss, Georgina Juhász, Dóra Papp, Ferenc Imre Suhai and Csaba Csobay-Novák
J. Clin. Med. 2025, 14(15), 5571; https://doi.org/10.3390/jcm14155571 - 7 Aug 2025
Viewed by 348
Abstract
Background/Objectives: Virtual non-contrast (VNC) images derived from dual-energy CTA (DE-CTA) could potentially replace true non-contrast (TNC) scans while reducing radiation exposure. This study evaluated the image quality of VNC compared to TNC for assessing native arteries and bypass grafts in patients with [...] Read more.
Background/Objectives: Virtual non-contrast (VNC) images derived from dual-energy CTA (DE-CTA) could potentially replace true non-contrast (TNC) scans while reducing radiation exposure. This study evaluated the image quality of VNC compared to TNC for assessing native arteries and bypass grafts in patients with peripheral arterial disease (PAD). Methods: We retrospectively analyzed 175 patients (111 men, 64 women, mean age: 69.3 ± 9.5 years) with PAD who underwent lower extremity DE-CTA. Mean attenuation and image noise values of TNC and VNC images were measured in native arteries and bypass grafts at six arterial levels, from the aorta to the popliteal arteries, using circular regions of interest (ROI). Signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) were calculated. Three independent radiologists evaluated the subjective image quality of VNC images compared to baseline TNC scans for overall quality (4-point Likert scale), and for residual contrast medium (CM), calcium subtractions, and bypass graft visualization (3-point Likert scales). Radiation dose parameters (DLP, CTDIvol) were recorded to estimate effective dose values (ED) and the potential radiation dose reduction. Differences between TNC and VNC measurements and radiation dose parameters were compared using a paired t-test. Interobserver agreement was assessed with Gwet’s AC2. Results: VNC attenuation and noise values were significantly lower across all native arterial levels (p < 0.05, mean difference: 4.7 HU–10.8 HU) and generally lower at all bypass regions (mean difference: 2.2 HU–13.8 HU). Mean image quality scores were 3.03 (overall quality), 2.99 (residual contrast), 2.04 (subtracted calcifications), and 3.0 (graft visualization). Inter-reader agreement was excellent for each assessment (AC2 ≥ 0.81). The estimated radiation dose reduction was 36.8% (p < 0.0001). Conclusions: VNC reconstructions demonstrated comparable image quality to TNC in a PAD assessment and offer substantial radiation dose reduction, supporting their potential as a promising alternative in clinical practice. Further prospective studies and optimization of reconstruction algorithms remain essential to confirm diagnostic accuracy and address remaining technical limitations. Full article
(This article belongs to the Section Vascular Medicine)
Show Figures

Figure 1

16 pages, 332 KB  
Systematic Review
Blood Biomarkers as Optimization Tools for Computed Tomography in Mild Traumatic Brain Injury Management in Emergency Departments: A Systematic Review
by Ángela Caballero Ballesteros, María Isabel Alonso Gallardo and Juan Mora-Delgado
J. Pers. Med. 2025, 15(8), 350; https://doi.org/10.3390/jpm15080350 - 3 Aug 2025
Viewed by 460
Abstract
Background/Objectives: Traumatic brain injury (TBI), especially mild TBI (mTBI), is frequently caused by traffic accidents, falls, or sports injuries. Although computed tomography (CT) is the gold standard for diagnosis, overuse can lead to unnecessary radiation exposure, increased healthcare costs, and emergency department saturation. [...] Read more.
Background/Objectives: Traumatic brain injury (TBI), especially mild TBI (mTBI), is frequently caused by traffic accidents, falls, or sports injuries. Although computed tomography (CT) is the gold standard for diagnosis, overuse can lead to unnecessary radiation exposure, increased healthcare costs, and emergency department saturation. Blood-based biomarkers have emerged as potential tools to optimize CT scan use. This systematic review aims to evaluate recent evidence on the role of specific blood biomarkers in guiding CT decisions in patients with mTBI. Methods: A systematic search was conducted in the PubMed, Cochrane, and CINAHL databases for studies published between 2020 and 2024. Inclusion criteria focused on adult patients with mTBI evaluated using both CT imaging and at least one of the following biomarkers: glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), and S100 calcium-binding protein B (S100B). After screening, six studies were included in the final review. Results: All included studies reported high sensitivity and negative predictive value for the selected biomarkers in detecting clinically relevant intracranial lesions. GFAP and UCH-L1, particularly in combination, consistently identified low-risk patients who could potentially forgo CT scans. While S100B also showed high sensitivity, discrepancies in cutoff values across studies highlighted the need for harmonization. Conclusions: Blood biomarkers such as GFAP, UCH-L1, and S100B demonstrate strong potential to reduce unnecessary CT imaging in mTBI by identifying patients at low risk of significant brain injury. Future research should focus on standardizing biomarker thresholds and validating protocols to support their integration into clinical practice guidelines. Full article
Show Figures

Figure 1

17 pages, 17758 KB  
Article
Piezo1 Channel Activators Yoda1 and Yoda2 in the Context of Red Blood Cells
by Min Qiao, Reetta Penttinen, Ariel Coli, Nicoletta Murciano, Felix M. Maurer, Christian Wagner, Maria Giustina Rotordam and Lars Kaestner
Biomolecules 2025, 15(8), 1110; https://doi.org/10.3390/biom15081110 - 1 Aug 2025
Viewed by 470
Abstract
Piezo1 is a mechanosensitive non-selective cation channel. Genetic alterations of the channel result in a hematologic phenotype named Hereditary Xerocytosis. With Yoda1 and, more recently, Yoda2, compounds to increase the activity of Piezo1 have become available. However, their concrete effect depends on the [...] Read more.
Piezo1 is a mechanosensitive non-selective cation channel. Genetic alterations of the channel result in a hematologic phenotype named Hereditary Xerocytosis. With Yoda1 and, more recently, Yoda2, compounds to increase the activity of Piezo1 have become available. However, their concrete effect depends on the nano environment of the channel and hence on the cell type. Here we compare the potency of Yoda1 and Yoda2 in red blood cells (RBCs). We investigate the effect of the compounds on direct channel activity using automated patch clamp, as well as the secondary effects of channel activation on signalling molecules and cellular response. In terms of signalling, we investigate the temporal response of the second messenger Ca2+, and in terms of cellular response, the activity of the Gárdos channel. The opening of the Gárdos channel leads to a hyperpolarisation of the RBCs, which is measured by the Macey–Bennekou–Egée (MBE) method. Although the interpretation of the data is not straightforward, we discuss the results in a physiological context and provide recommendations for the use of Yoda1 and Yoda2 to investigate RBCs. Full article
(This article belongs to the Special Issue Mechanosensitivity and Ion Channels)
Show Figures

Figure 1

13 pages, 1168 KB  
Article
Importance of Imaging Assessment Criteria in Predicting the Need for Post-Dilatation in Transcatheter Aortic Valve Implantation with a Self-Expanding Bioprosthesis
by Matthias Hammerer, Philipp Hasenbichler, Nikolaos Schörghofer, Christoph Knapitsch, Nikolaus Clodi, Uta C. Hoppe, Klaus Hergan, Elke Boxhammer and Bernhard Scharinger
J. Cardiovasc. Dev. Dis. 2025, 12(8), 296; https://doi.org/10.3390/jcdd12080296 - 1 Aug 2025
Viewed by 236
Abstract
Background: Transcatheter aortic valve implantation (TAVI) has revolutionized the treatment of severe aortic valve stenosis (AS). Balloon post-dilatation (PD) remains an important procedural step to optimize valve function by resolving incomplete valve expansion, which may lead to paravalvular regurgitation and other potentially adverse [...] Read more.
Background: Transcatheter aortic valve implantation (TAVI) has revolutionized the treatment of severe aortic valve stenosis (AS). Balloon post-dilatation (PD) remains an important procedural step to optimize valve function by resolving incomplete valve expansion, which may lead to paravalvular regurgitation and other potentially adverse effects. There are only limited data on the predictors, incidence, and clinical impact of PD during TAVI. Methods: This retrospective, single-center study analyzed 585 patients who underwent TAVI (2016–2022). Pre-procedural evaluations included transthoracic echocardiography and CT angiography to assess key parameters, including the aortic valve calcium score (AVCS); aortic valve calcium density (AVCd); aortic valve maximal systolic transvalvular flow velocity (AV Vmax); and aortic valve mean systolic pressure gradient (AV MPG). We identified imaging predictors of PD and evaluated associated clinical outcomes by analyzing procedural endpoints (according to VARC-3 criteria) and long-term survival. Results: PD was performed on 67 out of 585 patients, with elevated AV Vmax (OR: 1.424, 95% CI: 1.039–1.950; p = 0.028) and AVCd (OR: 1.618, 95% CI: 1.227–2.132; p = 0.001) emerging as a significant independent predictor for PD in TAVI. Kaplan–Meier survival analysis revealed no significant differences in short- and mid-term survival between patients who underwent PD and those who did not. Interestingly, patients requiring PD exhibited a lower incidence of adverse events regarding major vascular complications, permanent pacemaker implantations and stroke. Conclusions: The study highlights AV Vmax and AVCd as key predictors of PD. Importantly, PD was not associated with increased procedural adverse events and did not predict adverse events in this contemporary cohort. Full article
(This article belongs to the Special Issue Clinical Applications of Cardiovascular Computed Tomography (CT))
Show Figures

Figure 1

12 pages, 1773 KB  
Article
Low-Frequency rTMS and Diazepam Exert Synergistic Effects on the Excitability of an SH-SY5Y Model of Epileptiform Activity
by Ioannis Dardalas, Efstratios K. Kosmidis, Roza Lagoudaki, Vasilios K. Kimiskidis, Theodoros Samaras, Theodoros Moysiadis, Dimitrios Kouvelas and Chryssa Pourzitaki
Biomedicines 2025, 13(8), 1857; https://doi.org/10.3390/biomedicines13081857 - 30 Jul 2025
Viewed by 433
Abstract
Background/Objectives: Epilepsy is a brain condition that affects millions of people worldwide. Although there are many antiepileptic drugs with different mechanisms of action, many patients still fail to control their agonizing symptoms, a situation that highlights the need for more strategies to address [...] Read more.
Background/Objectives: Epilepsy is a brain condition that affects millions of people worldwide. Although there are many antiepileptic drugs with different mechanisms of action, many patients still fail to control their agonizing symptoms, a situation that highlights the need for more strategies to address this issue. In this in vitro study, we elucidated and characterized the alterations in intracellular Ca2+ levels in cell cultures where diazepam and repetitive transcranial magnetic stimulation were implemented, alone or in combination. Methods: Using the differentiated human-derived neuroblastoma cell line SH-SY5Y, we measured the alterations in intracellular Ca2+ levels under the impact of either low-frequency repetitive transcranial magnetic stimulation (1 Hz), diazepam (14 μM), or their combination. We used the Ca2+-sensitive fluorescent indicator Fluo-4 acetoxymethyl ester for calcium imaging, while neuronal excitation was achieved with 50 mM KCl. Results: The highest median fluorescence intensity increase (%ΔF/F = 24.80) was observed in control cell cultures, followed by rTMS cultures (%ΔF/F = 16.96) and diazepam cultures (%ΔF/F = 11.46). The lowest median fluorescence intensity value (%ΔF/F =−0.44) was observed when diazepam was used concomitantly with repetitive transcranial magnetic stimulation. Post hoc analysis assessed pairwise differences, showing statistically significant differentiation between the control group and all other groups. Additionally, statistically significant results were observed between repetitive transcranial magnetic stimulation or diazepam and their combination, but not between them. Conclusions: The combination of diazepam and repetitive transcranial magnetic stimulation resulted in the most significant reduction in intracellular Ca2+ levels, as indicated by the lowest fluorescence values compared with the control group. Individually, each treatment produced a notable but less pronounced effect. We conclude that both diazepam and low-frequency repetitive transcranial magnetic stimulation can control epileptiform activity in vitro, while their combination is the most effective treatment. Full article
(This article belongs to the Special Issue Epilepsy: From Mechanisms to Therapeutic Approaches)
Show Figures

Figure 1

25 pages, 1301 KB  
Review
Going with the Flow: Sensorimotor Integration Along the Zebrafish GI Tract
by Millie E. Rogers, Lidia Garcia-Pradas, Simone A. Thom, Roberto A. Vazquez and Julia E. Dallman
Cells 2025, 14(15), 1170; https://doi.org/10.3390/cells14151170 - 30 Jul 2025
Viewed by 803
Abstract
Sensorimotor integration along the gastrointestinal (GI) tract is crucial for normal gut function yet remains poorly understood in the context of neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD). The genetic tractability of zebrafish allows investigators to generate molecularly defined models that [...] Read more.
Sensorimotor integration along the gastrointestinal (GI) tract is crucial for normal gut function yet remains poorly understood in the context of neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD). The genetic tractability of zebrafish allows investigators to generate molecularly defined models that provide a means of studying the functional circuits of digestion in vivo. Optical transparency during development allows for the use of optogenetics and calcium imaging to elucidate the mechanisms underlying GI-related symptoms associated with ASD. The array of commonly reported symptoms implicates altered sensorimotor integration at various points along the GI tract, from the pharynx to the anus. We will examine the reflex arcs that facilitate swallowing, nutrient-sensing, absorption, peristalsis, and evacuation. The high level of conservation of these processes across vertebrates also enables us to explore potential therapeutic avenues to mitigate GI distress in ASD and other NDDs. Full article
(This article belongs to the Special Issue Modeling Developmental Processes and Disorders in Zebrafish)
Show Figures

Figure 1

12 pages, 1916 KB  
Article
Electrical Conductivity of High-Entropy Calcium-Doped Six- and Seven-Cation Perovskite Materials
by Geoffrey Swift, Sai Ram Gajjala and Rasit Koc
Crystals 2025, 15(8), 686; https://doi.org/10.3390/cryst15080686 - 28 Jul 2025
Viewed by 360
Abstract
Novel high-entropy perovskite oxide powders were synthesized using a sol-gel process. The B-site contained five cations: chromium, cobalt, iron, manganese, and nickel. The B-site cations were present on an equiatomic basis. The A-site cation was lanthanum, with calcium doping. The amount of A-site [...] Read more.
Novel high-entropy perovskite oxide powders were synthesized using a sol-gel process. The B-site contained five cations: chromium, cobalt, iron, manganese, and nickel. The B-site cations were present on an equiatomic basis. The A-site cation was lanthanum, with calcium doping. The amount of A-site doping varied from 0 to 30 at%, yielding a composition of La1−xCax(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3−δ. The resulting perovskite powders were pressurelessly sintered in air at 1400 °C for 2 h. Sintered densities were measured, and the grain structure was imaged via scanning electron microscopy to investigate the effect of doping. Samples were cut and polished, and their resistance was measured at varying temperatures in air to obtain the electrical conductivity and the mechanism that governs it. Plots of electrical conductivity as a function of composition and temperature indicate that the increased configurational entropy of the perovskite materials has a demonstrable effect. Full article
Show Figures

Figure 1

10 pages, 2021 KB  
Article
Evaluation of Pre-Sterilization Cleaning Protocols on Endodontic Files Using SEM: Effects on Elemental Composition and Surface Roughness
by Rahaf A. Almohareb, Reem M. Barakat, Hadeel Alzahrani, Raghad Alkhattabi, Renad Alsaeed, Sarah Faludah and Reem Alsaqat
Crystals 2025, 15(8), 684; https://doi.org/10.3390/cryst15080684 - 27 Jul 2025
Viewed by 319
Abstract
This study evaluated the efficacy of various cleaning protocols on two nickel–titanium (NiTi) file systems—RaCe EVO(RE) and EdgeFile X7(EE)—using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Eighty-four NiTi files (42RE, 42EE) were divided into seven groups (n = 12), including a [...] Read more.
This study evaluated the efficacy of various cleaning protocols on two nickel–titanium (NiTi) file systems—RaCe EVO(RE) and EdgeFile X7(EE)—using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Eighty-four NiTi files (42RE, 42EE) were divided into seven groups (n = 12), including a group with unused, sterilized files and a group of used files without cleaning. The remaining files were subjected to simulated clinical use, followed by different cleaning methods, such as soaking in sodium hypochlorite (NaOCl), ethanol wiping (with or without magnification), enzymatic spray, and enzymatic solution. SEM images were imported into ImageJ to quantify surface changes, while EDX assessed elemental composition. The p-value was set to ≤0.05 for significance. Apart from the unused files, calcium and phosphorus—indicators of dentin debris—were present in all groups, especially those cleaned with enzymatic spray (p ≤ 0.0001). Their percentage in RE files soaked in NaOCl or wiped with ethanol was statistically lower than the positive control (p ≤ 0.0001). Post-use, all files showed significantly higher surface asymmetry in Groups 2 and 6 (p = 0.001). Cleaning efficacy depends on the type of NiTi file. RE files responded well to both wiping and soaking, while EE required soaking for effective debris removal. Enzymatic spray was ineffective. Full article
Show Figures

Figure 1

24 pages, 2883 KB  
Article
AI-Powered Mice Behavior Tracking and Its Application for Neuronal Manifold Analysis Based on Hippocampal Ensemble Activity in an Alzheimer’s Disease Mice Model
by Evgenii Gerasimov, Viacheslav Karasev, Sergey Umnov, Viacheslav Chukanov and Ekaterina Pchitskaya
Int. J. Mol. Sci. 2025, 26(15), 7180; https://doi.org/10.3390/ijms26157180 - 25 Jul 2025
Viewed by 422
Abstract
Investigating brain area functions requires advanced technologies, but meaningful insights depend on correlating neural signals with behavior. Traditional mice behavior annotation methods, including manual and semi-automated approaches, are limited by subjectivity and time constraints. To overcome these limitations, our study employs the YOLO [...] Read more.
Investigating brain area functions requires advanced technologies, but meaningful insights depend on correlating neural signals with behavior. Traditional mice behavior annotation methods, including manual and semi-automated approaches, are limited by subjectivity and time constraints. To overcome these limitations, our study employs the YOLO neural network for precise mice tracking and composite RGB frames for behavioral scoring. Our model, trained on over 10,000 frames, accurately classifies sitting, running, and grooming behaviors. Additionally, we provide statistical metrics and data visualization tools. We further combined AI-powered behavior labeling to examine hippocampal neuronal activity using fluorescence microscopy. To analyze neuronal circuit dynamics, we utilized a manifold analysis approach, revealing distinct functional patterns corresponding to transgenic 5xFAD Alzheimer’s model mice. This open-source software enhances the accuracy and efficiency of behavioral and neural data interpretation, advancing neuroscience research. Full article
Show Figures

Figure 1

Back to TopTop