ijms-logo

Journal Browser

Journal Browser

Neurodegenerative Diseases: New Insights into Mechanisms, Prevention, Markers, and Therapeutic Targets

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Neurobiology".

Deadline for manuscript submissions: closed (29 September 2024) | Viewed by 1221

Special Issue Editor


E-Mail Website
Guest Editor
Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
Interests: neurodegenerative disorders; breathing control; neurotransmitters; hypoxia; therapeutics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The most common neurodegenerative diseases associated with aging are Alzheimer's disease with its dominant dementia and Parkinson's disease featured by motor disorders. The incidence of both diseases has increased significantly in recent years and forecasts for future years indicate a further escalation in the morbidity rate. They are mainly the consequence of abnormalities in the processes of certain proteins that cause them to accumulate in or near neurons, reducing or destroying their functions. Despite growing knowledge of neurodegenerative diseases, progress in their treatment has not been satisfactory, and they are still treated mainly symptomatically.
The intent of this special issue is to harvest the latest information on both diseases, including new insights into molecular mechanisms, prevention strategies, markers, new targets. disease modeling and treatments that can help expand our knowledge and forge new potential therapeutic pathways. Original research, mini- and full reviews, short communications, and perspectives on any aspect related to Alzheimer's or Parkinson's disease are welcome.

Dr. Katarzyna Kaczyńska
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Alzheimer’s disease
  • Parkinson’s disease
  • molecular targets
  • biomarkers
  • disease modeling
  • therapeutic strategies
  • prevention
  • drug design

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

16 pages, 2519 KiB  
Article
A Novel Tetrahydroacridine Derivative with Potent Acetylcholinesterase Inhibitory Properties and Dissociative Capability against Aβ42 Fibrils Confirmed by In Vitro Studies
by Ilona Mojzych, Anna Zawadzka, Kryspin Andrzejewski, Monika Jampolska, Zuzana Bednarikova, Miroslav Gancar, Zuzana Gazova, Maciej Mazur and Katarzyna Kaczyńska
Int. J. Mol. Sci. 2024, 25(18), 10072; https://doi.org/10.3390/ijms251810072 - 19 Sep 2024
Viewed by 394
Abstract
Alzheimer’s disease (AD) is one of the most common causes of dementia, accounting for more than 60% of all cases. It is a neurodegenerative disease in which symptoms such as a decline in memory, thinking, learning, and organizing skills develop gradually over many [...] Read more.
Alzheimer’s disease (AD) is one of the most common causes of dementia, accounting for more than 60% of all cases. It is a neurodegenerative disease in which symptoms such as a decline in memory, thinking, learning, and organizing skills develop gradually over many years and eventually become more severe. To date, there is no effective treatment for the cause of Alzheimer’s disease, and the existing pharmacological options primarily help manage symptoms. Treatment is mainly based on acetylcholinesterase (AChE) inhibitors such as donepezil, rivastigmine, and galantamine, which exhibit numerous adverse cardiovascular and gastrointestinal effects due to excessive stimulation of peripheral cholinergic activity involving muscarinic receptors. Therefore, in addition to the obvious drugs that act on the cause of the disease, new drugs based on AChE inhibition that show the fewest side effects are needed. One potential drug could be a new compound under study, tetrahydroacridine derivative (CHDA), which showed significant potential to inhibit the AChE enzyme in previous in vitro studies. The present study shows that while having very potent AChE inhibitory properties, CHDA is a compound with low toxicity to nerve cell culture and living organisms. In addition, it exhibits dissociative activity against amyloid β fibrils, which is extremely important for applications in Alzheimer’s disease therapy. Full article
Show Figures

Figure 1

Other

Jump to: Research

9 pages, 5825 KiB  
Hypothesis
Alzheimer’s Disease as a Membrane Dysfunction Tauopathy? New Insights into the Amyloid Cascade Hypothesis
by Tomas Olejar, Nikol Jankovska and Radoslav Matej
Int. J. Mol. Sci. 2024, 25(17), 9689; https://doi.org/10.3390/ijms25179689 - 7 Sep 2024
Viewed by 484
Abstract
The amyloid cascade hypothesis postulates that extracellular deposits of amyloid β (Aβ) are the primary and initial cause leading to the full development of Alzheimer’s disease (AD) with intracellular neurofibrillary tangles; however, the details of this mechanism have not been fully described until [...] Read more.
The amyloid cascade hypothesis postulates that extracellular deposits of amyloid β (Aβ) are the primary and initial cause leading to the full development of Alzheimer’s disease (AD) with intracellular neurofibrillary tangles; however, the details of this mechanism have not been fully described until now. Our preliminary data, coming from our day-to-day neuropathology practice, show that the primary location of the hyperphosphorylated tau protein is in the vicinity of the cell membrane of dystrophic neurites. This observation inspired us to formulate a hypothesis that presumes an interaction between low-density lipoprotein receptor-related protein 1 (LRP1) and fibrillar aggregates of, particularly, Aβ42 anchored at the periphery of neuritic plaques, making internalization of the LRP1-Aβ42 complex infeasible and, thus, causing membrane dysfunction, leading to the tauopathy characterized by intracellular accumulation and hyperphosphorylation of the tau protein. Understanding AD as a membrane dysfunction tauopathy may draw attention to new treatment approaches not only targeting Aβ42 production but also, perhaps paradoxically, preventing the formation of LRP1-Aβ42. Full article
Show Figures

Figure 1

Back to TopTop