Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (150)

Search Parameters:
Keywords = carbon monoxide formation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1528 KiB  
Article
Non-Thermal Plasma-Catalytic Conversion of Biogas to Value-Added Liquid Chemicals via Ni-Fe/Al2O3 Catalyst
by Milad Zehtab Salmasi, Razieh Es’haghian, Ali Omidkar and Hua Song
Appl. Sci. 2025, 15(8), 4248; https://doi.org/10.3390/app15084248 - 11 Apr 2025
Viewed by 44
Abstract
This study investigates the transformation of biogas (methane and carbon dioxide) into high-value liquid products using Ni/Al2O3, Fe/Al2O3, and Ni-Fe/Al2O3 catalysts in a non-thermal plasma (NTP)-assisted process within a dielectric barrier discharge [...] Read more.
This study investigates the transformation of biogas (methane and carbon dioxide) into high-value liquid products using Ni/Al2O3, Fe/Al2O3, and Ni-Fe/Al2O3 catalysts in a non-thermal plasma (NTP)-assisted process within a dielectric barrier discharge (DBD) reactor, operating at room temperature and atmospheric pressure. We compared the effectiveness of these three catalysts, with the Ni-Fe/Al2O3 catalyst showing the highest enhancement in conversion rates, achieving 34.8% for CH4 and 19.7% for CO2. This catalyst also promoted the highest liquid yield observed at 38.6% and facilitated a significant reduction in coke formation to 10.4%, minimizing deactivation and loss of efficiency. These improvements underscore the catalyst’s pivotal role in enhancing the overall process efficiency, leading to the production of key gas products such as hydrogen (H2) and carbon monoxide (CO), alongside valuable liquid oxygenates including methanol, ethanol, formaldehyde, acetic acid, and propanoic acid. The findings from this study highlight the efficacy of combining NTP with the Ni-Fe/Al2O3 catalyst as a promising approach for boosting the production of valuable chemicals from biogas, offering a sustainable pathway for energy and chemical manufacturing. Full article
(This article belongs to the Special Issue Production, Treatment, Utilization and Future Opportunities of Biogas)
Show Figures

Figure 1

17 pages, 3447 KiB  
Article
Carbon Monoxide or Ruthenium: Will the Real Modulator of Coagulation and Fibrinolysis Please Stand Up!
by Vance G. Nielsen and Anthony R. Abeyta
Int. J. Mol. Sci. 2025, 26(8), 3567; https://doi.org/10.3390/ijms26083567 - 10 Apr 2025
Viewed by 72
Abstract
The discovery of carbon monoxide releasing molecules (CORMs) was one of the most impactful innovations in biochemistry, affecting multiple disciplines for the past few decades. Sixteen years ago, a ruthenium dimer-containing CORM, CORM-2, enhanced coagulation and diminished fibrinolysis in human plasma by modulation [...] Read more.
The discovery of carbon monoxide releasing molecules (CORMs) was one of the most impactful innovations in biochemistry, affecting multiple disciplines for the past few decades. Sixteen years ago, a ruthenium dimer-containing CORM, CORM-2, enhanced coagulation and diminished fibrinolysis in human plasma by modulation of fibrinogen, plasmin, and α2-antiplasmin via CO binding to putative heme groups attached to these proteins. This finding linked CO exposure in settings involving heme oxygenase-1 upregulation during inflammation or environmental exposure to thromboembolic disease in hundreds of subsequent manuscripts. However, CO-independent effects of CORM-2 involving a putative ruthenium radical (Ru•) formed during CO release was found to be responsible for many of effects by CORM-2 in other works. Using a novel approach with human plasmatic coagulation kinetic methods, Ru• was posited to bind to critical histidines and other amino acids to modulate function, and excess histidine to quench CORM-2-mediated effects. This paradigm of histidine addition would definitively address if CO or Ru• was responsible for CORM-2-mediated effects. Thus, plasma coagulation/fibrinolytic kinetic data were assessed via thrombelastography ±CORM-2, ±histidine added. Histidine nearly completely abrogated CORM-2-mediated hypercoagulation in a concentration-dependent fashion; further, histidine also nearly eliminated all kinetic effects on fibrinolysis. In conclusion, CORM-2 Ru• formation, not CO release, is the true molecular mechanism modulating coagulation and fibrinolysis. Full article
(This article belongs to the Special Issue Molecular Paradigm Iconoclasm)
Show Figures

Figure 1

21 pages, 5430 KiB  
Article
Electrocatalytic Pathways and Efficiency of Cuprous Oxide (Cu2O) Surfaces in CO2 Electrochemical Reduction (CO2ER) to Methanol: A Computational Approach
by Zubair Ahmed Laghari, Wan Zaireen Nisa Yahya, Sulafa Abdalmageed Saadaldeen Mohammed and Mohamad Azmi Bustam
Catalysts 2025, 15(2), 130; https://doi.org/10.3390/catal15020130 - 29 Jan 2025
Viewed by 927
Abstract
Carbon dioxide (CO2) can be electrochemically, thermally, and photochemically reduced into valuable products such as carbon monoxide (CO), formic acid (HCOOH), methane (CH4), and methanol (CH3OH), contributing to carbon footprint mitigation. Extensive research has focused on catalysts, [...] Read more.
Carbon dioxide (CO2) can be electrochemically, thermally, and photochemically reduced into valuable products such as carbon monoxide (CO), formic acid (HCOOH), methane (CH4), and methanol (CH3OH), contributing to carbon footprint mitigation. Extensive research has focused on catalysts, combining experimental approaches with computational quantum mechanics to elucidate reaction mechanisms. Although computational studies face challenges due to a lack of accurate approximations, they offer valuable insights and assist in selecting suitable catalysts for specific applications. This study investigates the electrocatalytic pathways of CO2 reduction on cuprous oxide (Cu2O) catalysts, utilizing the computational hydrogen electrode (CHE) model based on density functional theory (DFT). The electrocatalytic performance of flat Cu2O (100) and hexagonal Cu2O (111) surfaces was systematically analysed, using the standard hydrogen electrode (SHE) as a reference. Key parameters, including free energy changes (ΔG), adsorption energies (Eads), reaction mechanisms, and pathways for various intermediates were estimated. The results showed that CO2 was reduced to CO(g) on both Cu2O surfaces at low energies. However, methanol (CH3OH) production was observed preferentially on Cu2O (111) at ΔG = −1.61 eV, whereas formic acid (HCOOH) and formaldehyde (HCOH) formation were thermodynamically unfavourable at interfacial sites. The CO2-to-methanol conversion on Cu2O (100) exhibited a total ΔG of −3.38 eV, indicating lower feasibility compared to Cu2O (111) with ΔG = −5.51 eV. These findings, which are entirely based on a computational approach, highlight the superior catalytic efficiency of Cu2O (111) for methanol synthesis. This approach also holds the potential for assessing the catalytic performance of other transition metal oxides (e.g., nickel oxide, cobalt oxide, zinc oxide, and molybdenum oxide) and their modified forms through doping or alloying with various elements. Full article
(This article belongs to the Special Issue Catalysis for CO2 Conversion, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 4519 KiB  
Article
In Vitro CO-Releasing and Antioxidant Properties of Sulfonamide-Based CAI-CORMs in a H2O2-Stimulated Human Achilles Tendon-Derived Cell Model
by Emanuela Berrino, Paolo Guglielmi, Fabrizio Carta, Simone Carradori, Cristina Campestre, Andrea Angeli, Francesca Arrighi, Virginia Pontecorvi, Paola Chimenti, Daniela Secci, Claudiu T. Supuran and Marialucia Gallorini
Molecules 2025, 30(3), 593; https://doi.org/10.3390/molecules30030593 - 28 Jan 2025
Viewed by 740
Abstract
Tendinopathy is often described as a complex and multifactorial condition which affects tendons. Tendon disorders are marked by a reduction in mechanical function, accompanied by pain and swelling. At the molecular level, tendinopathy leads to oxidative stress-driven inflammation, increased cell death, disruption of [...] Read more.
Tendinopathy is often described as a complex and multifactorial condition which affects tendons. Tendon disorders are marked by a reduction in mechanical function, accompanied by pain and swelling. At the molecular level, tendinopathy leads to oxidative stress-driven inflammation, increased cell death, disruption of extracellular matrix balance, abnormal growth of capillaries and arteries, and degeneration of collagen formation. Here, we report an innovative approach to modulate oxidative stress during tendinopathy based on sulfonamide-based Carbonic Anhydrase Inhibitors—carbon monoxide releasing molecules (CAI–CORMs) hybrids endowed with dual carbon monoxide (CO) releasing activity and carbonic anhydrase (CA) inhibition. The synthesised compounds have been studied in a model of human Achilles tendon-derived cells stimulated by H2O2. Among the library, compound 1c and, to a greater extent, compound 1a, showed to be extremely effective in terms of restoration of cell metabolic activity and cell proliferation due to their capacity to release CO and inhibit the CA isoforms involved in inflammatory processes in the nanomolar range. Moreover, 1a can restore collagen type 1 secretion under pro-oxidant conditions. Full article
(This article belongs to the Special Issue Progress in Drug Development for Inflammatory Diseases)
Show Figures

Graphical abstract

18 pages, 3748 KiB  
Article
An Investigation of the Catalytic Activity of Inconel and Stainless Steel Powders in Reforming Primary Syngas
by Claudia Bezerra Silva, Michael Lugo-Pimentel, Carlos M. Ceballos and Jean-Michel Lavoie
Sustainability 2025, 17(3), 980; https://doi.org/10.3390/su17030980 - 25 Jan 2025
Viewed by 868
Abstract
Biomass is perhaps the only renewable resource on the planet capable of delivering molecules similar to those derived from petroleum, and one of the most developed technologies to achieve this is gasification. When it comes to biomass conversion into fuels and commodities, supercritical [...] Read more.
Biomass is perhaps the only renewable resource on the planet capable of delivering molecules similar to those derived from petroleum, and one of the most developed technologies to achieve this is gasification. When it comes to biomass conversion into fuels and commodities, supercritical water gasification (SCWG) could offer promising solution for producing hydrogen-rich syngas. However, the presence of methane (CH4) and carbon dioxide (CO2) in the syngas could negatively impact downstream processes, particularly when carbon monoxide is also required. Hence, improving the quality of the syngas produced from biomass gasification is essential for promoting the sustainability of several industrial processes. In this context, understanding the principles of the dry reforming of methane (DRM) becomes essential for upgrading syngas with high CH4 and CO2 content, especially when the carbon monoxide content is low. In addition to the experimental conditions used in such process, it has been reported that the material composition of the reactor can impact on reforming performance. Hence, this work aims at comparing the catalytic efficacy of Inconel and stainless steel for reforming syngas derived from SCWG under standard DRM conditions. In this specific work, the metals were directly used as catalyst and results showed that when using Inconel powder, CH4 conversion increased from 3.03% to 37.67% while CO2 conversion went from 23.16% to 51.48% when compared to stainless steel. Elemental and structural analyses revealed that the Inconel’s superior performance might be due to its high nickel content and the formation of active oxide compounds, such as FeNiO, FeCrO3, Fe3O4, Cr2O3, and Cr2NiO4, during the reaction. In contrast, Fe3O4 was the only oxide found in stainless steel post-reaction. Additionally, increasing the total gas feed flow rate was shown to reduce CH4 and CO2 conversions, supporting the known impact of residency time on catalytic efficiency. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Graphical abstract

25 pages, 4154 KiB  
Article
Assessment of Air Pollution and Lagged Meteorological Effects in an Urban Residential Area of Kenitra City, Morocco
by Mustapha Zghaid, Abdelfettah Benchrif, Mounia Tahri, Amine Arfaoui, Malika Elouardi, Mohamed Derdaki, Ali Quyou and Moulay Laarbi Ouahidi
Atmosphere 2025, 16(1), 96; https://doi.org/10.3390/atmos16010096 - 16 Jan 2025
Viewed by 828
Abstract
Complex mixtures of air pollutants, including ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), black carbon (BC), and fine particulate matter (PM2.5), present significant health risks. To understand the factors influencing air [...] Read more.
Complex mixtures of air pollutants, including ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), black carbon (BC), and fine particulate matter (PM2.5), present significant health risks. To understand the factors influencing air pollution levels and their temporal variations, comprehensive high-resolution long-term air pollution data are essential. This study analyzed the characteristics, lagged meteorological effects, and temporal patterns of six air pollutant concentrations over a one-year period at an urban residential site in Kenitra, Morocco. The results reveal pronounced seasonal and diurnal variations in pollutant levels, shaped by meteorological factors, emission sources, and local geographic conditions. PM2.5, SO2, and CO concentrations peaked during winter, while NO2 and CO exhibited consistent diurnal peaks during morning and evening rush hours across all seasons, driven by traffic emissions and nocturnal pollutant accumulation. In contrast, O3 concentrations were highest during summer afternoons due to photochemical reactions fueled by strong UV radiation, while winter levels were the lowest due to reduced sunlight. Lagged meteorological effects further highlighted the complexity of air pollutant dynamics. Meteorological factors, including temperature, wind speed, humidity, and pressure, significantly influenced pollutant levels, with both immediate and lagged effects observed. Lag analyses revealed that PM2.5 and BC levels responded to wind speed, temperature, and humidity over time, highlighting the temporal dynamics of dispersion and accumulation. CO is sensitive to temperature and pressure changes, with delayed impacts, while O3 formation was primarily influenced by temperature and wind speed, reflecting complex photochemical processes. SO2 concentrations were shaped by both immediate and lagged meteorological effects, with wind direction playing a key role in pollutant transport. These findings emphasize the importance of considering both immediate and lagged meteorological effects, as well as seasonal and diurnal variations, in developing air quality management strategies. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

28 pages, 1132 KiB  
Review
Theory and Practice of Burning Solid Biofuels in Low-Power Heating Devices
by Małgorzata Dula and Artur Kraszkiewicz
Energies 2025, 18(1), 182; https://doi.org/10.3390/en18010182 - 3 Jan 2025
Cited by 3 | Viewed by 920
Abstract
Combustion is the most advanced and proven method on the market for using agricultural by-product residues and waste from the agri-food industry. Currently, a wide range of combustion technologies is used to produce heat and electricity in low-power heating devices (>50 kW) using [...] Read more.
Combustion is the most advanced and proven method on the market for using agricultural by-product residues and waste from the agri-food industry. Currently, a wide range of combustion technologies is used to produce heat and electricity in low-power heating devices (>50 kW) using various types of biofuels from biomass (woody biomass, herbaceous biomass, waste and residues from the agri-food industry). Combustion of biomass fuels, especially those of wood origin, causes lower carbon dioxide (CO2) and sulfur oxides (SOx) emissions into the atmosphere compared to coal combustion. The growing interest in solid biofuels has contributed to intensive activities on improving the combustion process and energy devices enabling effective and economic conversion of chemical energy contained in biomass into other usable forms such as heat, electricity. Having good quality fuel, it is necessary to ensure an appropriate, clean combustion technique, which allows to achieve the highest thermal efficiency of the heating device and at the same time the lowest emission of pollutants. The article presents issues related to the theory, characteristics of the combustion process and problems related to the formation of harmful chemical compounds nitrogen oxides (NOx), SOx, carbon monoxide (CO), particulate matter (PM) emitted to the atmosphere during the combustion process in low-power heating devices. The analysis indicates the possibility of minimizing undesirable phenomena during the combustion of these biofuels related to ash sintering, the formation of deposits, corrosion and improving the amount of condensable solid particles formed and therefore reducing the emission of gaseous products to the environment. Full article
(This article belongs to the Special Issue Advanced Combustion Technologies and Emission Control)
Show Figures

Figure 1

24 pages, 2794 KiB  
Article
CO2-Assisted Oxidative Dehydrogenation of Propane to Propylene over Modified SiO2 Based Catalysts
by Alexandra Florou, Aliki Kokka, Georgios Bampos and Paraskevi Panagiotopoulou
Catalysts 2024, 14(12), 933; https://doi.org/10.3390/catal14120933 - 18 Dec 2024
Viewed by 982
Abstract
The oxidative dehydrogenation of propane with CO2 (CO2-ODP) was investigated over different metal oxides MxOy (M: Ca, Sn, Cr, Ga) supported on a SiO2 surface. Catalysts were characterized employing nitrogen adsorption/desorption, X-ray diffraction (XRD), CO2 [...] Read more.
The oxidative dehydrogenation of propane with CO2 (CO2-ODP) was investigated over different metal oxides MxOy (M: Ca, Sn, Cr, Ga) supported on a SiO2 surface. Catalysts were characterized employing nitrogen adsorption/desorption, X-ray diffraction (XRD), CO2 temperature programmed desorption (CO2-TPD) and pyridine adsorption/desorption experiments in order to identify their physicochemical properties and correlate them with their activity and selectivity for the CO2-ODP reaction. The effect of operating reaction conditions on catalytic performance was also examined, aiming to improve the propylene yield and suppress side reactions. Surface acidity and basicity were found to be affected by the nature of MxOy, which in turn affected the conversion of propane to propylene, which was in all cases higher compared to that of bare SiO2. Propane conversion, reaction rate and selectivities towards propylene and carbon monoxide were maximized for the Ga- and Cr-containing catalysts characterized by moderate surface basicity, which were also able to limit the undesired reactions leading to ethylene and methane byproducts. High surface acidity was found to be beneficial for the CO2-ODP reaction, which, however, should not be excessive to ensure high catalytic activity. The silica-supported Ga2O3 catalyst exhibited sufficient stability with time and better than that of the most active Cr2O3-SiO2 catalyst. Decreasing the weight gas hourly space velocity resulted in a significant improvement in both propane conversion and propylene yield as well as a suppression of undesired product formation. Increasing CO2 concentration in the feed did not practically affect propane conversion, while led to a decrease in propylene yield. The ratio of propylene to ethylene selectivity was optimized for CO2:C3H8 = 5:1 and space velocity of 6000 mL g?1 h?1, most possibly due to facilitation of the C–H bond cleavage against that of the C–C bond. Results of the present study provided evidence that the efficient conversion of propane to propylene is feasible over silica-based composite metal oxides, provided that catalyst characteristics have been optimized and reaction conditions have been properly selected. Full article
(This article belongs to the Special Issue Feature Papers in "Industrial Catalysis" Section, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 2644 KiB  
Article
Co-Ce Clay-Based Materials: Their Feasibility as Catalysts for Soot and CO Oxidation Reactions
by Natalia L. Courtalón, Viviana G. Milt, María L. Dieuzeide, Eduardo E. Miró, Ezequiel D. Banús and Juan P. Bortolozzi
Catalysts 2024, 14(12), 882; https://doi.org/10.3390/catal14120882 - 3 Dec 2024
Viewed by 795
Abstract
A series of Co-Ce clay-based catalysts were prepared via the wet impregnation method and tested for the catalytic combustion of diesel soot and carbon monoxide. The objective of this work was to find a suitable catalyst with an optimized active phase composition in [...] Read more.
A series of Co-Ce clay-based catalysts were prepared via the wet impregnation method and tested for the catalytic combustion of diesel soot and carbon monoxide. The objective of this work was to find a suitable catalyst with an optimized active phase composition in order to structure this system using a 3D-printing technique. The physicochemical characterization indicated that the support was mainly composed of kaolinite and quartz. When supported on commercial clay, the mixture of oxides (Co3O4 spinel and CeO2 fluorite) had higher activity than the individual oxides. The formation of a solid Co-Ce solution was verified along with a synergistic effect between these two selected metal oxides. The optimal molar composition was Co:Ce = 90:10. The corresponding catalyst showed the highest catalytic activity for soot combustion, with 335 °C being the temperature of the maximum combustion rate. Also, it produced the best system for CO oxidation. This formulation showed a balanced proportion of Co3+ and Co2+ on the surface and had the highest content of Ce3+ surface species among the catalysts prepared, which played a key role in the oxidation reactions studied. Full article
Show Figures

Figure 1

15 pages, 4061 KiB  
Article
A Viability Study of Thermal Pre-Treatment for Recycling of Pharmaceutical Blisters
by Mertol Gökelma, Fabian Diaz, İrem Yaren Çapkın and Bernd Friedrich
Sustainability 2024, 16(20), 8968; https://doi.org/10.3390/su16208968 - 16 Oct 2024
Cited by 2 | Viewed by 1283
Abstract
Pharmaceutical packaging is one of the most used packaging types which contains aluminum and plastics. Due to increasing amounts of waste and rising environmental concerns, recycling approaches are being investigated. Since blisters usually contain a balanced amount of plastics and metals, most of [...] Read more.
Pharmaceutical packaging is one of the most used packaging types which contains aluminum and plastics. Due to increasing amounts of waste and rising environmental concerns, recycling approaches are being investigated. Since blisters usually contain a balanced amount of plastics and metals, most of the approaches focus on recycling only one material. Therefore, more sustainable recycling approaches which recover both plastic and aluminum fractions are needed. This study investigates the thermal behavior and degradation mechanisms of plastic-rich and aluminum-rich pharmaceutical blisters using various analytical techniques. Structural characterization revealed that plastic-rich blisters have a thicker profile with plastic and aluminum layers, while aluminum-rich blisters consist of plastic layers between aluminum sheets. Thermal degradation analysis showed two main stages for both types: plastic-rich blisters (polyvinyl chloride) exhibited significant weight loss and long-chain hydrocarbon formation between 210 and 285 °C, and aluminum-rich blisters (polyamide/nylon) degraded from 240 to 270 °C. Differential Scanning Calorimetry and Fourier Transform Infrared Spectroscopy analyses confirmed the endothermic behavior of such a transformation. The gas emissions analysis indicated an increased formation of gasses from the thermal treatment of plastic-rich blisters, with the presence of oxygen leading to the formation of carbon dioxide, water, and carbon monoxide. Thermal treatment with 5% O2 in the carrier gas benefited plastic-rich blister treatment, reducing organic waste by up to 80% and minimizing burning risk, leveraging pyrolytic carbon for protection. This method is unsuitable for aluminum-rich blisters, requiring reduced oxygen or temperature to prevent pyrolytic carbon combustion and aluminum oxidation. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

15 pages, 483 KiB  
Article
Integrating Flow Field Dynamics and Chemical Atmosphere Predictions for Enhanced Sulfur Corrosion Risk Assessment in Power Boilers
by Dariusz Kardaś, Sylwia Polesek-Karczewska and Izabela Wardach-Świȩcicka
Materials 2024, 17(19), 4919; https://doi.org/10.3390/ma17194919 - 8 Oct 2024
Viewed by 925
Abstract
In this work, we attempt to explain the phenomenon of sulfur corrosion of power boiler water walls under the conditions of large fluctuations in carbon monoxide concentrations. To assess the conditions required for corrosion formation, a criterion based on the chemical and flow [...] Read more.
In this work, we attempt to explain the phenomenon of sulfur corrosion of power boiler water walls under the conditions of large fluctuations in carbon monoxide concentrations. To assess the conditions required for corrosion formation, a criterion based on the chemical and flow field parameters of the flue gas is proposed. The formulated sulfur corrosion criterion is based on the mixture fraction variance and the turbulence time scale. Numerical modeling of coal combustion in a 250 MW power boiler is performed using ANSYS. Two cases of combustion in a boiler are analyzed, with the first simulating the boiler operated using classic high-swirl burners and the second one accounting for boiler operation with modified low-swirl burners. Calculations of pulverized coal combustion are performed using the standard k-ε turbulence model and the combustion described by the mixture fraction. The simulation results reveal that the low-swirl burner is characterized by higher values of the mixture fraction variance and a higher frequency of fluctuation of the velocity field, which is strongly related to an increased corrosion rate. The study outcomes show the validity of using the criterion of the mixture fraction variance and velocity field fluctuations to determine the areas at risk of sulfur corrosion. Full article
Show Figures

Figure 1

21 pages, 5503 KiB  
Article
Harnessing the Potential of Hollow Graphitic Carbon Nanocages for Enhanced Methanol Oxidation Using PtRu Nanoparticles
by Zatil Amali Che Ramli, Jagadeesh Pasupuleti, Siti Kartom Kamarudin, Azran Mohd Zainoodin, Wan Nor Roslam Wan Isahak, S. P. Koh and Sieh Tiong Kiong
Polymers 2024, 16(19), 2684; https://doi.org/10.3390/polym16192684 - 24 Sep 2024
Cited by 1 | Viewed by 1048
Abstract
Direct Methanol Fuel Cell (DMFC) is a powerful system for generating electrical energy for various applications. However, there are several limitations that hinder the commercialization of DMFCs, such as the expense of platinum (Pt) at market price, sluggish methanol oxidation reaction (MOR) due [...] Read more.
Direct Methanol Fuel Cell (DMFC) is a powerful system for generating electrical energy for various applications. However, there are several limitations that hinder the commercialization of DMFCs, such as the expense of platinum (Pt) at market price, sluggish methanol oxidation reaction (MOR) due to carbon monoxide (CO) formation, and slow electrooxidation kinetics. This work introduces carbon nanocages (CNCs) that were obtained through the pyrolysis of polypyrrole (Ppy) as the carbon source. The CNCs were characterized using BET, XRD, HRTEM, TEM, SEM, and FTIR techniques. The CNCs derived from the Ppy source, pyrolyzed at 750 °C, exhibited the best morphologies with a high specific surface area of 416 m2g−1, allowing for good metal dispersion. Subsequently, PtRu catalyst was doped onto the CNC-Ppy750 support using chemical reduction and microwave-assisted methods. In electrochemical tests, the PtRu/CNC-Ppy750 electrocatalyst demonstrated improved CO tolerance and higher performance in MOR compared to PtRu-supported commercial carbon black (CB), with values of 427 mA mg−1 and 248 mA mg−1, respectively. The superior MOR performance of PtRu/CNC-Ppy750 was attributed to its high surface area of CNC support, uniform dispersion of PtRu catalyst, and small PtRu nanoparticles on the CNC. In DMFC single-cell tests, the PtRu/CNC-Ppy750 exhibited higher performance, approximately 1.7 times higher than PtRu/CB. In conclusion, the PtRu/CNC-PPy750 represents a promising electrocatalyst candidate for MOR and anodic DMFC applications. Full article
Show Figures

Figure 1

22 pages, 2859 KiB  
Article
Comparative Analysis of Primary and Secondary Emission Mitigation Measures for Small-Scale Wood Chip Combustion
by Christian Gollmer, Theresa Siegmund, Vanessa Weigel and Martin Kaltschmitt
Energies 2024, 17(17), 4403; https://doi.org/10.3390/en17174403 - 3 Sep 2024
Cited by 1 | Viewed by 915
Abstract
The objective of this study is to systematically investigate not only the influence of different additive types—beyond the much-considered case of aluminum-silicate-based additives—but also to carry out an additional comparison between primary and secondary emission mitigation measures during small-scale wood-chip combustion. Hence, combustion [...] Read more.
The objective of this study is to systematically investigate not only the influence of different additive types—beyond the much-considered case of aluminum-silicate-based additives—but also to carry out an additional comparison between primary and secondary emission mitigation measures during small-scale wood-chip combustion. Hence, combustion trials are realized within a 33-kW combustion plant. Pine wood chips additivated with 1.0 wt%a.r. of four additives have shown promising emission reduction effects in the past; namely kaolin (i.e., aluminum-silicate-based), anorthite (i.e., aluminum-silicate- and calcium-based), aluminum hydroxide (i.e., aluminum-based), and titanium dioxide (i.e., titanium-based). In addition to the primary mitigation measure (i.e., (fuel) additivation), an electrostatic precipitator (ESP) as a common secondary mitigation measure for total particulate matter (TPM) reduction is used for comparison. In addition to standard analyses (e.g., gravimetric determination of TPM emissions), an extended methodology (e.g., characterization of the elemental composition and ultrafine particle fraction of TPM emissions) is applied. The results show that the additivation of wood chips with kaolin and anorthite can lead to an operation of the combustion plant in compliance with the German legal TPM limit values by undercutting the absolute emission level achievable by the ESP. Additionally, kaolin and anorthite achieve significant reductions in carbon monoxide (CO) emissions, while kaolin simultaneously, and similarly to ESP, also leads to a shift in the particle size number distribution of PM emissions towards coarser particles. All additives show a significant reduction of potassium (K) emissions by the formation of high-temperature stable K compounds in the resulting ashes. Full article
Show Figures

Figure 1

26 pages, 2416 KiB  
Review
Inhibitors of NLRP3 Inflammasome Formation: A Cardioprotective Role for the Gasotransmitters Carbon Monoxide, Nitric Oxide, and Hydrogen Sulphide in Acute Myocardial Infarction
by Fergus M. Payne, Alisha R. Dabb, Joanne C. Harrison and Ivan A. Sammut
Int. J. Mol. Sci. 2024, 25(17), 9247; https://doi.org/10.3390/ijms25179247 - 26 Aug 2024
Cited by 2 | Viewed by 1918
Abstract
Myocardial ischaemia reperfusion injury (IRI) occurring from acute coronary artery disease or cardiac surgical interventions such as bypass surgery can result in myocardial dysfunction, presenting as, myocardial “stunning”, arrhythmias, infarction, and adverse cardiac remodelling, and may lead to both a systemic and a [...] Read more.
Myocardial ischaemia reperfusion injury (IRI) occurring from acute coronary artery disease or cardiac surgical interventions such as bypass surgery can result in myocardial dysfunction, presenting as, myocardial “stunning”, arrhythmias, infarction, and adverse cardiac remodelling, and may lead to both a systemic and a localised inflammatory response. This localised cardiac inflammatory response is regulated through the nucleotide-binding oligomerisation domain (NACHT), leucine-rich repeat (LRR)-containing protein family pyrin domain (PYD)-3 (NLRP3) inflammasome, a multimeric structure whose components are present within both cardiomyocytes and in cardiac fibroblasts. The NLRP3 inflammasome is activated via numerous danger signals produced by IRI and is central to the resultant innate immune response. Inhibition of this inherent inflammatory response has been shown to protect the myocardium and stop the occurrence of the systemic inflammatory response syndrome following the re-establishment of cardiac circulation. Therapies to prevent NLRP3 inflammasome formation in the clinic are currently lacking, and therefore, new pharmacotherapies are required. This review will highlight the role of the NLRP3 inflammasome within the myocardium during IRI and will examine the therapeutic value of inflammasome inhibition with particular attention to carbon monoxide, nitric oxide, and hydrogen sulphide as potential pharmacological inhibitors of NLRP3 inflammasome activation. Full article
Show Figures

Figure 1

15 pages, 14348 KiB  
Article
Molecular Dynamics Simulations Guide the Gasification Process of Carbon-Supported Nickel Catalysts in Biomass Supercritical Water
by Yuhui Wu, Liang Wu, Fan Liu, Yue Qiu, Runqiu Dong, Jingwei Chen, Daoxiu Liu, Le Wang and Lei Yi
Materials 2024, 17(17), 4192; https://doi.org/10.3390/ma17174192 - 24 Aug 2024
Viewed by 1122
Abstract
In this study, the Density Functional Theory (DFT) Calculations for Molecules and Clusters—ADF module is employed to model carbon-supported nickel catalysts and lignin monomers, integrating the ReaxFF module to simulate molecular dynamics under supercritical water conditions, with a focus on lignin decomposition reactions. [...] Read more.
In this study, the Density Functional Theory (DFT) Calculations for Molecules and Clusters—ADF module is employed to model carbon-supported nickel catalysts and lignin monomers, integrating the ReaxFF module to simulate molecular dynamics under supercritical water conditions, with a focus on lignin decomposition reactions. Molecular dynamics models for supercritical water gasification are established under various conditions such as catalyst presence, water molecule quantities, and reaction temperature. By comparing simulation systems under different conditions, the yields of and variations in combustible gases (hydrogen and carbon monoxide) are summarized. Introducing heteroatoms into the lattice of the carbon support can alter the electronic structure within graphene, thereby influencing its electrical and electrochemical properties, increasing the number of active sites, and significantly enhancing electrocatalytic activity. Simulation results indicate that carbon-supported nickel metal catalysts can promote the cleavage of C–C bonds in lignin monomers, thereby increasing the rate of water–gas shift reactions and boosting hydrogen production in the system by 105%. Increasing water molecule quantities favored water–gas shift reactions and hydrogen generation while lowering carbon monoxide formation. Moreover, elevating reaction temperatures led to increased hydrogen and carbon monoxide production rates, which were particularly pronounced between 2500 K and 3500 K. These findings offer crucial theoretical insights for advancing efficient hydrogen production through biomass supercritical water gasification. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

Back to TopTop