Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (179)

Search Parameters:
Keywords = carbonyl source

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4238 KB  
Article
The Multiple Recycling Process of Polypropylene Composites with Glass Fiber in Terms of Grinding Efficiency and Selected Properties of Recirculated Products
by Arkadiusz Kloziński, Paulina Jakubowska, Adam Piasecki and Dorota Czarnecka-Komorowska
Polymers 2025, 17(19), 2625; https://doi.org/10.3390/polym17192625 - 28 Sep 2025
Abstract
This study comprehensively discusses the effect of multiple material recycling (five recycling cycles with the same technological conditions: injection molding → grinding → drying → injection molding → …) of commercial polypropylene-glass fiber composites (PPGF) (PP + 10, 20 and 30 wt.% GF) [...] Read more.
This study comprehensively discusses the effect of multiple material recycling (five recycling cycles with the same technological conditions: injection molding → grinding → drying → injection molding → …) of commercial polypropylene-glass fiber composites (PPGF) (PP + 10, 20 and 30 wt.% GF) on the performance of the grinding process and the granulometric characteristics of the obtained regrinds, as well as selected surface, mechanical and thermal properties of the composites. An increase in mass (Em) and volume (Ev) grinding efficiency was confirmed, along with an increase in GF content in the composite and the number of recycling cycles. Both the GF additive and the number of recycling cycles contributed to the deterioration of the aesthetic qualities of the composites (darkening and reduction in gloss). Slight changes in the surface hardness of the test materials were observed as a function of the number of recycling cycles, from 3 to 4% after five recycling cycles. The adverse effect of multiple recycling on the mechanical and thermal properties of PP and PPGF composites has been confirmed. The occurrence and increase in carbonyl index (CI) values, as a function of multiples recycling, was confirmed for a composite containing 20 wt.% GF (CI in the range from 0.045 to 0.092) and for PPGF containing 30 wt.% GF (CI in the range from 0.193 to 0.272). The effect of multiple material recycling on the glass fiber structure in the tested composites was also investigated using scanning electron microscopy (SEM) and optical microscopy. The issues of grinding and changes in the surface properties of PPGF composites in multiple material recycling processes discussed in this article may constitute a source of practical knowledge that will contribute to increasing the use of this type of secondary composite in industrial plastics processing processes. Full article
Show Figures

Figure 1

17 pages, 1087 KB  
Article
Non-Invasive Redox Biomarkers Detected in Organ Preservation Outflow Solution Enable Early Prediction of Human Liver Allograft Dysfunction
by Daniel Vidal-Correoso, María José Caballero-Herrero, Ana M. Muñoz-Morales, Sandra V. Mateo, Marta Jover-Aguilar, Felipe Alconchel, Laura Martínez-Alarcón, Víctor López-López, Antonio Ríos-Zambudio, Pedro Cascales, José Antonio Pons, Pablo Ramírez, Kristine Stromsnes, Juan Gambini, Santiago Cuevas and Alberto Baroja-Mazo
Antioxidants 2025, 14(9), 1104; https://doi.org/10.3390/antiox14091104 - 10 Sep 2025
Viewed by 422
Abstract
Liver transplantation is commonly used for end-stage liver disease, but the demand for organs exceeds the supply, leading to the use of expanded criteria donors (ECDs). Organs from ECDs, especially from donors after circulatory death (DCD), encounter challenges like increased ischemia damage. Biomarkers, [...] Read more.
Liver transplantation is commonly used for end-stage liver disease, but the demand for organs exceeds the supply, leading to the use of expanded criteria donors (ECDs). Organs from ECDs, especially from donors after circulatory death (DCD), encounter challenges like increased ischemia damage. Biomarkers, especially oxidative stress markers, may provide valuable insights for understanding and monitoring post-transplant events. Here, we highlight the unique value of organ preservation solution (OPS) as a non-invasive and early source of redox biomarkers, directly reflecting graft status during critical cold storage. This study investigated oxidative stress in 74 donated livers using OPS samples collected after cold storage, and also liver biopsies obtained before and after storage. We measured lipid peroxidation, protein carbonylation, DNA oxidation, and total antioxidant capacity from OPS, and performed gene expression analysis of liver biopsies. Oxidative stress markers differed based on donation type, with higher lipid peroxidation in DCD samples compared with donation after brain death (18.51 ± 2.77 vs. 11.03 ± 1.31 nmoles malondialdehyde (MDA)/mg protein; p = 0.049). Likewise, oxidative damage markers were associated with clinical outcomes: lipid peroxidation was increased in patients who developed biliary complications (21.86 ± 5.91 vs. 11.97 ± 1.12 nmol MDA/mg protein; p = 0.05), and protein carbonylation was elevated in those experiencing acute rejection (199.6 ± 22.02 vs. 141.6 ± 15.94 nmol carbonyl/mg protein; p = 0.005). Moreover, higher protein carbonylation levels showed a trend toward reduced survival (p = 0.091). Transcriptomic analysis revealed overexpression of genes associated with reactive oxygen species production in DCD livers. A predictive model for acute rejection integrating OPS biomarkers with clinical variables achieved 83% accuracy. Hence, this study underscores the importance of assessing oxidative stress status in preservation fluid as a biomarker for evaluating liver transplant outcomes and highlights the need for validation in larger, independent cohorts. Full article
(This article belongs to the Special Issue Oxidative Stress and Liver Disease)
Show Figures

Figure 1

20 pages, 2277 KB  
Article
Investigation on the Concentration, Sources, and Photochemical Roles of Volatile Phenols in the Atmosphere in the North China Plain
by Ziyan Chen, Kaitao Chen, Min Cai and Xingru Li
Toxics 2025, 13(9), 744; https://doi.org/10.3390/toxics13090744 - 31 Aug 2025
Viewed by 495
Abstract
Volatile phenols in the atmosphere are important precursors of ozone and secondary organic aerosols (SOAs). Despite their importance, the lack of effective observation and analysis methods has led to less attention paid to them, leading to gaps in our understanding of their behavior [...] Read more.
Volatile phenols in the atmosphere are important precursors of ozone and secondary organic aerosols (SOAs). Despite their importance, the lack of effective observation and analysis methods has led to less attention paid to them, leading to gaps in our understanding of their behavior and effects on atmospheric chemistry. This study aimed to evaluate the concentration levels, sources, and environmental impacts of volatile phenols in ambient air, focusing on the urban area of Beijing and the suburban district of Heze in the North China Plain during winter. Samples were collected using an XAD-7 column and analyzed by high-performance liquid chromatography with ultraviolet detection (UPLC-UV). Results indicated that a higher concentration of 11 detected phenols was found in Beijing than that in Heze, with the average concentration of 23.60 ± 8.99 ppbv and 18.38 ± 2.34 ppbv. Phenol and cresol with strong photochemical activity were the predominant species, accounting for about 52% (Heze) and 66% (Beijing) of the total phenols, which indicates that more attention should be paid to volatile phenols in urban areas. Higher levels of LOH in Beijing (36.86 s−1) and Heze (22.06 s−1) compared to other studies about PAMS and carbonyls indicated that these volatile phenols play an undeniable role in atmospheric oxidation reactions. Positive Matrix Factorization (PMF) identified major sources as pesticide usage (15.6%), organic chemicals (31.9%), and combustion or secondary conversion (52.5%). These findings underscore the multifaceted impact of phenols, influencing both gaseous pollutant concentrations and particulate matter formation, with potential implications for environmental and public health. Full article
(This article belongs to the Special Issue Analysis of the Sources and Components of Aerosols in Air Pollution)
Show Figures

Graphical abstract

22 pages, 4598 KB  
Article
Sustainable Bitumen Modification Using Bio-Based Adhesion Promoters
by Volodymyr Gunka, Olha Poliak, Yurii Hrynchuk, Vitalii Stadnik, Yuriy Demchuk, Khrystyna Besaha, Andrii Galkin and Yan Pyrig
Sustainability 2025, 17(16), 7187; https://doi.org/10.3390/su17167187 - 8 Aug 2025
Viewed by 570
Abstract
The growing emphasis on sustainable road construction has stimulated interest in environmentally friendly bitumen modifiers. This study presents the development of biodegradable adhesion promoters synthesized via the amidation of renewable raw materials (rapeseed oil and higher fatty acids) with polyethylene polyamine. The main [...] Read more.
The growing emphasis on sustainable road construction has stimulated interest in environmentally friendly bitumen modifiers. This study presents the development of biodegradable adhesion promoters synthesized via the amidation of renewable raw materials (rapeseed oil and higher fatty acids) with polyethylene polyamine. The main objective was to improve bitumen–aggregate adhesion while maintaining the essential physico-mechanical and rheological properties of the bitumen. The synthesized bio-based adhesion promoters were incorporated into penetration-grade bitumen at a dosage of 0.4 wt.%. Physico-mechanical testing confirmed that their inclusion does not significantly affect the fundamental properties of the bitumen, while substantially enhancing adhesion to both glass and mineral aggregates. Rheological analysis showed that the rapeseed oil-based adhesion promoter had minimal influence on viscoelastic behavior. In contrast, the fatty acid-based promoter increased the rutting resistance parameter (|G*|/sinδ) and decreased the phase angle (δ), indicating improved resistance to permanent deformation. FTIR spectroscopy further revealed that the fatty acid-based adhesion promoter significantly reduced the formation of carbonyl groups during short-term aging, suggesting a retardation in oxidative aging and potential rejuvenating effects. In conclusion, the proposed bio-based adhesion promoters, derived from renewable sources and fully biodegradable, represent a promising solution for enhancing bitumen performance and supporting the durability and sustainability of asphalt pavements. Full article
Show Figures

Figure 1

26 pages, 1165 KB  
Review
Maillard Reaction in Flour Product Processing: Mechanism, Impact on Quality, and Mitigation Strategies of Harmful Products
by Yajing Qi, Wenjun Wang, Tianxiang Yang, Wangmin Ding and Bin Xu
Foods 2025, 14(15), 2721; https://doi.org/10.3390/foods14152721 - 3 Aug 2025
Viewed by 2367
Abstract
The Maillard reaction refers to the reaction between carbonyl compounds with reducing properties and amino-containing compounds that undergo condensation and polymerization to produce melanoidins. In flour product processing, the Maillard reaction is a critical chemical reaction influencing color, flavor, nutrition, and safety. A [...] Read more.
The Maillard reaction refers to the reaction between carbonyl compounds with reducing properties and amino-containing compounds that undergo condensation and polymerization to produce melanoidins. In flour product processing, the Maillard reaction is a critical chemical reaction influencing color, flavor, nutrition, and safety. A moderate Maillard reaction contributes to desirable color and flavor profiles in flour products, whereas an excessive reaction leads to amino acid loss and the formation of harmful substances, posing potential health risks. This review summarizes the substrate sources, reaction stages, influencing factors, impact on quality, and mitigation strategies of harmful products, aiming to provide a reference for regulating the Maillard reaction in flour product processing. Currently, most existing mitigation strategies focus on inhibiting harmful products, while research on the synergistic optimization of color and flavor remains insufficient. Future research should focus on elucidating the molecular mechanisms of reaction pathways, understanding multi-factor synergistic effects, and developing composite regulation technologies to balance the sensory quality and safety of flour products. Full article
Show Figures

Figure 1

25 pages, 3460 KB  
Article
Morphometric, Nutritional, and Phytochemical Characterization of Eugenia (Syzygium paniculatum Gaertn): A Berry with Under-Discovered Potential
by Jeanette Carrera-Cevallos, Christian Muso, Julio C. Chacón Torres, Diego Salazar, Lander Pérez, Andrea C. Landázuri, Marco León, María López, Oscar Jara, Manuel Coronel, David Carrera and Liliana Acurio
Foods 2025, 14(15), 2633; https://doi.org/10.3390/foods14152633 - 27 Jul 2025
Viewed by 1205
Abstract
Magenta Cherry or Eugenia (Syzygium paniculatum Gaertn) is an underutilized berry species with an interesting source of functional components. This study aimed to evaluate these berries’ morphometric, nutritional, and phytochemical characteristics at two ripening stages, CM: consumer maturity (CM) and OM: over-maturity. Morphometric [...] Read more.
Magenta Cherry or Eugenia (Syzygium paniculatum Gaertn) is an underutilized berry species with an interesting source of functional components. This study aimed to evaluate these berries’ morphometric, nutritional, and phytochemical characteristics at two ripening stages, CM: consumer maturity (CM) and OM: over-maturity. Morphometric analysis revealed size and weight parameters comparable to commercial berries such as blueberries. Fresh fruits were processed into pulverized material, and in this, a proximate analysis was evaluated, showing high moisture content (88.9%), dietary fiber (3.56%), and protein (0.63%), with negligible fat, indicating suitability for low-calorie diets. Phytochemical screening by HPLC identified gallic acid, chlorogenic acid, hydroxycinnamic acid, ferulic acid, quercetin, rutin, and condensed tannins. Ethanol extracts showed stronger bioactive profiles than aqueous extracts, with significant antioxidant capacity (up to 803.40 µmol Trolox/g via Ferric Reducing Antioxidant Power (FRAP assay). Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopic analyses established structural transformations of hydroxyl, carbonyl, and aromatic groups associated with ripening. These changes were supported by observed variations in anthocyanin and flavonoid contents, both higher at the CM stage. A notable pigment loss in OM fruits could be attributed to pH changes, oxidative degradation, enzymatic activity loss, and biotic stressors. Antioxidant assays (DPPH, ABTS, and FRAP) confirmed higher radical scavenging activity in CM-stage berries. Elemental analysis identified minerals such as potassium, calcium, magnesium, iron, and zinc, although in moderate concentrations. In summary, Syzygium paniculatum Gaertn fruit demonstrates considerable potential as a source of natural antioxidants and bioactive compounds. These findings advocate for greater exploration and sustainable use of this native berry species in functional food systems. Full article
Show Figures

Graphical abstract

15 pages, 3057 KB  
Article
Noradrenaline and Adrenoreceptors Promote Prostaglandin F2α Generation in Lipopolysaccharide-Exposed Endometrial Epithelial Cells of Pigs (Sus scrofa domesticus)
by Barbara Jana, Jarosław Całka and Aleksandra Mówińska
Int. J. Mol. Sci. 2025, 26(12), 5874; https://doi.org/10.3390/ijms26125874 - 19 Jun 2025
Viewed by 473
Abstract
Severe kinds of uterine inflammation in animals cause reproductive and economic problems. Although there are changes in prostaglandin (PG) production and noradrenergic uterine innervation during endometritis, the role of noradrenaline (NA) and adrenoreceptors (ARs) in PGF2α formation is not yet fully understood. To [...] Read more.
Severe kinds of uterine inflammation in animals cause reproductive and economic problems. Although there are changes in prostaglandin (PG) production and noradrenergic uterine innervation during endometritis, the role of noradrenaline (NA) and adrenoreceptors (ARs) in PGF2α formation is not yet fully understood. To recognize noradrenergic control of the PGF2α generation on the cellular level during endometritis, the action of NA as well as α1-, α2- and β-ARs on protein abundances of PGF synthase (PGFS) and PG 9-ketoreductase/carbonyl reductase (CBR1) in the Escherichia coli lipopolysaccharide (LPS)-influenced pig endometrial epithelial cells and PGF2α release from these cells were studied. The epithelial cells were exposed to LPS and NA alone; LPS with NA; LPS with agonists of α1-, α2- and β-Ars; LPS with antagonists of β1-, β2- and β3-ARs with NA; and LPS with antagonists of β1-, β2- and β3-ARs in combinations with agonists of β1-, β2-, and β3-ARs for 24 h. PGFS and CBR1 protein abundances in cells were determined by Western blotting and PGF2α medium content by ELISA. LPS alone increased CBR1 protein abundance and PGF2α release by epithelial cells in reference to the control value. NA alone exerted a stimulatory effect on PGFS and CBR1 protein abundances and PGF2α secretion. After the exposure of cells to LPS with NA together, CBR1 protein abundance, as well as PGF2α release, was higher than in response to LPS and NA alone. PGFS protein abundance was increased by LPS with NA together compared to LPS action alone. In LPS-exposed endometrial epithelial cells, NA acting by β2- and β3-ARs leads to a rise in CBR1 protein abundance and PGF2α secretion. β2-ARs also participate in the NA excitatory effect on PGFS protein abundance. The NA effect on all the parameters tested is not mediated by α1- and α2-ARs. β2- and β3-ARs mediate the stimulatory effect of NA on PGF2α generation and secretion by the LPS-exposed pig endometrial epithelial cells. The results suggest that these cells may be a significant source of PGF2α under noradrenergic stimulation in the inflamed endometrium, and NA affects processes controlled by PGF2α during endometritis in an indirect manner. Full article
(This article belongs to the Special Issue Molecular Advances in Veterinary Science)
Show Figures

Figure 1

21 pages, 1684 KB  
Review
Marine-Derived Astaxanthin: Molecular Mechanisms, Biomedical Applications, and Roles in Stem Cell Biology
by Aretha Rambaldi, Francesca Paris, Pasquale Marrazzo, Roberta Costa, Stefano Ratti and Francesco Alviano
Mar. Drugs 2025, 23(6), 235; https://doi.org/10.3390/md23060235 - 29 May 2025
Viewed by 1428
Abstract
Astaxanthin (ASX) is a xanthophyll carotenoid mainly derived from marine microalgae such as Haematococcus pluvialis and Chlorella zofingiensis, as well as the yeast Phaffia rhodozyma. Its chemical nature structure, rich in conjugated double bonds, carbonyl, and hydroxyl groups, confers potent antioxidant [...] Read more.
Astaxanthin (ASX) is a xanthophyll carotenoid mainly derived from marine microalgae such as Haematococcus pluvialis and Chlorella zofingiensis, as well as the yeast Phaffia rhodozyma. Its chemical nature structure, rich in conjugated double bonds, carbonyl, and hydroxyl groups, confers potent antioxidant and anti-inflammatory properties. ASX modulates oxidative stress via the PI3K/Akt-Nrf2 pathway and suppresses NF-κB-mediated inflammatory responses, reducing cytokine levels such as TNF-α, IL-6, and iNOS. ASX exerts dual apoptotic effects, cytoprotective in non-transformed cells and pro-apoptotic in cancer cells through p53 activation. Sustainable extraction techniques, especially supercritical CO2, have improved its industrial applicability. Recent findings highlight ASX’s role in stem cell biology, enhancing proliferation, supporting lineage-specific differentiation, and protecting against oxidative and inflammatory damage, which is a crucial issue for regenerative medicine applications. These multifaceted molecular effects support ASX’s therapeutic potential in chronic diseases, including diabetes, cardiovascular pathologies, and cancer. This review outlines ASX’s natural sources, extraction methods, and biological mechanisms, emphasizing its application in oxidative stress- and inflammation-related conditions. Full article
(This article belongs to the Special Issue Recent Advances in Marine-Derived Pigments)
Show Figures

Figure 1

27 pages, 2647 KB  
Article
Investigating the Polystyrene (PS) Biodegradation Potential of Phanerochaete chrysosporium Strain NA3: A Newly Isolated Soil Fungus
by Muhammad Adnan Shereen, Sadia Mehmood Satti, Asim Abbasi, Naima Atiq, Qudsia Yousafi, Safia Ahmed, Kousar Parveen and Nazih Y. Rebouh
Life 2025, 15(6), 869; https://doi.org/10.3390/life15060869 - 28 May 2025
Cited by 1 | Viewed by 1508
Abstract
Biochemical monomer upcycling of plastic waste and its conversion into value-added products is deemed necessary, as it provides a greener and more sustainable solution to plastic waste management. In the current study, the polystyrene (PS) biodegradation potential of the fungus Phanerochaete chrysosporium NA3 [...] Read more.
Biochemical monomer upcycling of plastic waste and its conversion into value-added products is deemed necessary, as it provides a greener and more sustainable solution to plastic waste management. In the current study, the polystyrene (PS) biodegradation potential of the fungus Phanerochaete chrysosporium NA3 was evaluated using various analytical techniques, such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), gel permeation chromatography (GPC), and high-performance liquid chromatography (HPLC). The biodegradation capacity of the fungal strain was further evaluated using a carbon dioxide (CO2) evolution test, which showed that the PS films treated with NA3 produced more CO2, indicating the strain’s ability to successfully utilize PS as a carbon source. The FTIR analysis of the PS films treated with NA3 showed modifications in the polymer chemical structure, including the formation of carbonyl and hydroxyl groups, which suggests the enzymatic dissociation of the polymer and the associated biodegradation mechanism. Pretreatments were found to be effective in modifying the polymer’s properties, making it more susceptible to microbial degradation, thus further accelerating the biodegradation process. The current study strongly advocates that P. chrysosporium (NA3) can be effectively used for the biochemical monomer recovery of PS waste and could be further utilized in the upcycling of plastic waste for its conversion into value-added products under the concept of circular economy. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

12 pages, 2196 KB  
Article
Effect of Glyoxal on Plasma Membrane and Cytosolic Proteins of Erythrocytes
by Michal Kopera, Malgorzata Adamkiewicz and Anna Pieniazek
Int. J. Mol. Sci. 2025, 26(9), 4328; https://doi.org/10.3390/ijms26094328 - 2 May 2025
Cited by 1 | Viewed by 625
Abstract
Glyoxal (GO) is a reactive dicarbonyl derived endogenously from sugars and other metabolic reactions within cells. Numerous exogenous sources of this compound include tobacco smoking, air pollution, and food processing. GO is toxic to cells mainly due to its high levels and reactivity [...] Read more.
Glyoxal (GO) is a reactive dicarbonyl derived endogenously from sugars and other metabolic reactions within cells. Numerous exogenous sources of this compound include tobacco smoking, air pollution, and food processing. GO is toxic to cells mainly due to its high levels and reactivity towards proteins, lipids, and nucleic acids. We speculate that glyoxal could be involved in erythrocyte protein damage and lead to cell dysfunction. The osmotic fragility and level of amino and carbonyl groups of membrane proteins of erythrocytes incubated for 24 h with GO were identified. The amount of thiol, amino, and carbonyl groups was also measured in hemolysate proteins after erythrocyte treatment with GO. In hemolysate, the level of glutathione, non-enzymatic antioxidant capacity (NEAC), TBARS, and activity of antioxidant enzymes was also determined. The study’s results indicated that GO increases erythrocyte osmotic sensitivity, alters the levels of glutathione and free functional groups in hemolysate proteins, and modifies the activity of antioxidant enzymes. Our findings indicate that GO is a highly toxic compound to human erythrocytes. Glyoxal at concentrations above 5 mM can cause functional changes in erythrocyte proteins and disrupt the oxidoreductive balance in cells. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 2020 KB  
Systematic Review
Berry Fruit Extracts as Topical Cosmeceuticals for Skin Health Applications: A Systematic Review
by Filipe Silveira Azevedo, Allan Rodrigues Pires, Mary Ann Lila, Giuseppe Valacchi, Roberta Targino Hoskin, Mariaurea Matias Sarandy, Rômulo Dias Novaes and Reggiani Vilela Goncalves
Cosmetics 2025, 12(3), 87; https://doi.org/10.3390/cosmetics12030087 - 23 Apr 2025
Viewed by 2864
Abstract
Berries are a popular source of natural bioactive compounds with distinctive aspects and sensory attributes. In this review, the term “berry” refers to generally round, small, colorful, and juicy fruits with English common names ending in “berry”. They have high phenolic content, which [...] Read more.
Berries are a popular source of natural bioactive compounds with distinctive aspects and sensory attributes. In this review, the term “berry” refers to generally round, small, colorful, and juicy fruits with English common names ending in “berry”. They have high phenolic content, which has been linked to their health-relevant properties. To gather information on the potential of berries for treating skin inflammatory diseases, this systematic review was conducted following PRISMA guidelines (PROSPERO registration number CRD 42024549567), based on studies from PubMed, Scopus, Web of Science, and Embase. It focused on preclinical murine model studies, with bias and methodological quality assessed using SYRCLE’s RoB tool. Studies showed evidence that berries have anti-inflammatory and antioxidant properties due to compounds like anthocyanins, cyanidins, polyphenols, and catechins. Berry exposure reduced oxidative stress markers, such as malondialdehyde, carbonylated proteins, nitric oxide, 8-OHdG, and pyrimidine dimers. This stress reduction was associated with NF-κB and COX-2 pathway downregulation, lower IL-6, IL-1β, TNF-α, and MAPK, and increased IL-10. Morphological outcomes included increased collagen, elastin, glycosaminoglycans, and proteoglycans and reduced metalloproteinases. Bias analysis revealed a low risk, suggesting reliable studies. Berry treatments improved wound healing and extracellular matrix (ECM) production, supporting their potential in pharmaceutical topical formulation. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Graphical abstract

17 pages, 4600 KB  
Article
Catalytic Reduction of SO2 with CO over LaCoO3 Perovskites Catalysts: Effect of Fe Doping and Pre-Sulfurization
by Liang Yao, Hao Wang, Shuangde Li and Yunfa Chen
Catalysts 2025, 15(3), 291; https://doi.org/10.3390/catal15030291 - 19 Mar 2025
Viewed by 642
Abstract
SO2 emissions are a major source of air pollution, and the catalytic reduction of SO2 to elemental sulfur by CO represents a promising solution. This study investigates the effects of Fe doping and pre-sulfurization on the catalytic performance of LaCoO₃ perovskite [...] Read more.
SO2 emissions are a major source of air pollution, and the catalytic reduction of SO2 to elemental sulfur by CO represents a promising solution. This study investigates the effects of Fe doping and pre-sulfurization on the catalytic performance of LaCoO₃ perovskite catalysts. A series of Fe-doped LaCoO3 perovskites were synthesized via the sol–gel method and evaluated for the catalytic reduction of SO2 by CO. The results showed that LaCo0.8Fe0.2O3 exhibited the highest catalytic performance, achieving 84.0% SO2 conversion at 500 °C. The oxygen-free sulfurization (OFS) treatment compared with oxygen-assisted sulfurization (OAS) treatment significantly enhanced the activity, reaching a SO2 conversion of 95.9% from 80.0% at 450 °C with the lower byproduct generation. Characterization analyses demonstrated that the OFS treatment facilitated the formation of active sulfur species and oxygen vacancies on the catalyst surface while also enhancing the adsorption capacity of the catalyst for the reactant gases. These factors were identified as key contributors to the improved catalytic performance, driven by the combination of redox and carbonyl sulfide (COS) intermediate mechanism. The findings suggest that the OFS treatment is an effective strategy to improve the catalytic reduction of SO2 by CO, offering a more environmentally friendly solution for SO2 emission control through resource utilization. Full article
(This article belongs to the Special Issue Advances in Catalysis for a Sustainable Future)
Show Figures

Figure 1

19 pages, 7516 KB  
Article
An Investigation of Benzene, Toluene, Ethylbenzene, m,p-xylene; Biogenic Volatile Organic Compounds; and Carbonyl Compounds in Chiang Mai’s Atmosphere and Estimation of Their Emission Sources During the Episode Period
by Da-Hyun Baek, Ye-Bin Seo, Jun-Su Gil, Mee-Hye Lee, Ji-Seon Lee, Gang-Woong Lee, Duangduean Thepnuan, In-Young Choi, Sang-Woo Lee, Trieu-Vuong Dinh and Jo-Chun Kim
Atmosphere 2025, 16(3), 342; https://doi.org/10.3390/atmos16030342 - 18 Mar 2025
Cited by 1 | Viewed by 848
Abstract
Air pollution in Chiang Mai during the dry winter season is extremely severe. During this period, high levels of fine particles are primarily generated by open biomass burning in Thailand and neighboring countries. In this study, ambient VOC(Volatile Organic Compounds) samples were collected [...] Read more.
Air pollution in Chiang Mai during the dry winter season is extremely severe. During this period, high levels of fine particles are primarily generated by open biomass burning in Thailand and neighboring countries. In this study, ambient VOC(Volatile Organic Compounds) samples were collected using an adsorbent tube from 13 March to 26 March 2024, with careful consideration of sampling uncertainties to ensure data reliability. Furthermore, while interannual variability exists, the findings reflect atmospheric conditions during this specific period, allowing for an in-depth VOC assessment. A comprehensive approach to VOCs was undertaken, including benzene, toluene, ethylbenzene, m,p-xylene (BTEX); biogenic volatile organic compounds (BVOCs); and carbonyl compounds. Regression analysis was performed to analyze the correlation between isoprene concentrations and wind direction. The results showed a significant variation in isoprene levels, indicating their high concentrations due to biomass burning originating from northern areas of Chiang Mai. The emission sources of BTEX and carbonyl compounds were inferred through their ratio analysis. Additionally, correlation analyses between PM2.5, BTEX, and carbonyl compounds were conducted to identify common emission pathways. The ratio of BTEX among compounds suggested that long-range pollutant transport contributed more significantly than local traffic emissions. Carbonyl compounds were higher during the episode period, which was likely due to local photochemical reactions and biological contributions. Previous studies in Chiang Mai have primarily focused on PM2.5, whereas this study examined individual VOC species, their temporal trends, and their interrelationships to identify emission sources. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

10 pages, 1337 KB  
Article
Degradation Kinetics of Common Odorants Emitted from WWTPs: A Methodological Approach for Estimating Half-Life Through Reactions with Hydroxyl Radicals
by Marouane Dhia Eddine Bouguerra, Bartłomiej Witkowski, Tomasz Gierczak and Radosław J. Barczak
Atmosphere 2025, 16(3), 340; https://doi.org/10.3390/atmos16030340 - 18 Mar 2025
Cited by 1 | Viewed by 683
Abstract
In contemporary times, wastewater treatment plants (WWTPs) were recognized as substantial sources of odorous emissions, potentially impacting nearby communities’ sensory experience. This study investigates the half-lives (T½) of odorous compounds emitted from WWTPs and their degradation due to atmospheric hydroxyl radicals (•OH) in [...] Read more.
In contemporary times, wastewater treatment plants (WWTPs) were recognized as substantial sources of odorous emissions, potentially impacting nearby communities’ sensory experience. This study investigates the half-lives (T½) of odorous compounds emitted from WWTPs and their degradation due to atmospheric hydroxyl radicals (•OH) in different environmental settings. The calculated half-lives of specific odorants in rural areas ranged from 31.36 min to 517.33 days, in urban areas from 42.50 min to 1550 days, and in the marine boundary layer from 42.50 min to 129,861 days. These results show that compounds with high reactivity and short T½, such as methanethiol and ethanethiol, degrade rapidly and are less likely to contribute to long-term odor nuisances. In contrast, compounds with longer half-lives, such as carbonyl sulfide and ammonia, persist longer in the atmosphere, with higher potential for sustained odor issues. The findings suggest that •OH plays a significant role in degrading odorous compounds. These insights into odorant–oxidant kinetics may aid in predicting atmospheric half-lives and their contribution to secondary aerosol formation, thus informing regulatory and mitigation strategies to improve air quality. Full article
Show Figures

Figure 1

27 pages, 3899 KB  
Article
Biochemical Response of Maize Plants Grown in the Field Under Different Water Availability: Evaluating the Influence of Leaf Position and Growth Stage
by Carina Sá, Etelvina Figueira and Paulo Cardoso
Agronomy 2025, 15(3), 629; https://doi.org/10.3390/agronomy15030629 - 28 Feb 2025
Viewed by 1325
Abstract
Drought is a major abiotic stress factor in agriculture and could greatly affect the production of maize, which is a key food source. Understanding the biochemical response of maize throughout the length of the plant and its life cycle when exposed to water [...] Read more.
Drought is a major abiotic stress factor in agriculture and could greatly affect the production of maize, which is a key food source. Understanding the biochemical response of maize throughout the length of the plant and its life cycle when exposed to water deficit is an important step when exploring new agricultural approaches to minimizing crop losses. In this study, maize plants grown in the field were exposed to three different water regimes (100%, 50%, and 0% irrigation). The biochemical status of the top, middle, and basal leaves was assessed at two different stages of their life cycle (vegetative and reproductive) to evaluate how plants respond to different water deficits. The results showed that, in the presence of water stress, maize development was affected and crop production decreased. Antioxidant enzyme activity, oxidative damage, and osmolyte levels were influenced not only by the irrigation levels but also by the plant section sample. Throughout the maize life cycle, lipid peroxidation, ascorbate peroxidase, and starch levels increased in all leaf sections. However, several biochemical responses are specific to the section: top leaves increase their protein carbonylation, superoxide dismutase, and sugar levels; middle leaves increase their proline and sugar levels; and base leaves increase their superoxide dismutase and proline levels throughout the life cycle. These findings suggest that efforts to minimize the damage caused by water deficits in crop production must consider the different plant sections and phases of the maize life cycle. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

Back to TopTop