Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = casein kinase 2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3271 KiB  
Article
The Effect of Valine on the Synthesis of α-Casein in MAC-T Cells and the Expression and Phosphorylation of Genes Related to the mTOR Signaling Pathway
by Min Yang, Xinyu Zhang, Yu Ding, Liang Yang, Wanping Ren, Yu Gao, Kangyu Yao, Yuxin Zhou and Wei Shao
Int. J. Mol. Sci. 2025, 26(7), 3179; https://doi.org/10.3390/ijms26073179 - 29 Mar 2025
Viewed by 502
Abstract
This study utilized MAC-T cells cultured in vitro as a model to investigate the effects of varying concentrations of valine on α-casein synthesis and its underlying regulatory mechanisms. In this experiment, MAC-T cells were subjected to a 12 h starvation period, followed by [...] Read more.
This study utilized MAC-T cells cultured in vitro as a model to investigate the effects of varying concentrations of valine on α-casein synthesis and its underlying regulatory mechanisms. In this experiment, MAC-T cells were subjected to a 12 h starvation period, followed by the addition of valine in a range of concentrations (a total of seven concentrations: 0.000, 1.596, 3.192, 6.384, 12.768, 25.536, and 51.072 mM, as well as in 10% Fetal Bovine Serum). The suitable range of valine concentrations was determined using enzyme-linked immunosorbent assays (ELISAs). Real-time fluorescent quantitative PCR (RT-qPCR) and Western blot analyses were employed to evaluate the expression levels and phosphorylation states of the casein alpha s1 gene (CSN1S1), casein alpha s2 gene (CSN1S2) and mTOR signaling pathway-related genes. The functionality of the mTOR signaling pathway was further validated through rapamycin (100.000 nM) inhibition experiments. Results indicated that 1× Val (6.384 mM), 2× Val (12.768 mM), 4× Val (25.536 mM), and 8× Val (51.072 mM) significantly enhanced α-casein synthesis (p < 0.01). Within this concentration range, valine significantly upregulated the expression of CSN1S1, CSN1S2, and mTOR signaling pathway-related genes including the RagA gene (RRAGA), RagB gene (RRAGB), RagC gene (RRAGC), RagD gene (RRAGD), mTOR, raptor gene (RPTOR), and 4EBP1 gene (EIF4EBP1), eukaryotic initiation factor 4E (EIF4E), and S6 Kinase 1 (S6K1) (p < 0.01). Notably, the expression of the eukaryotic elongation factor 2 (EEF2) gene peaked at 1× Val (6.384 mM), while the expression of other genes reached their maximum at 4× Val (25.536 mM). Additionally, valine significantly increased the phosphorylation levels of mTOR, S6K1, 4E-binding protein-1 (4EBP1), ribosomal protein S6 (RPS6), and eEF2 (p < 0.01), with the highest phosphorylation levels of mTOR, S6K1, and RPS6 observed at 4× Val (25.536 mM). Rapamycin treatment significantly inhibited mTOR phosphorylation and α-casein synthesis (p < 0.01); however, the addition of 4× Val (25.536 mM) partially mitigated this inhibitory effect. In conclusion, valine promotes α-casein synthesis by activating the mTOR signaling pathway, with an optimal concentration of 4× Val (25.536 mM). Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

21 pages, 4402 KiB  
Article
Transcriptome Sequencing Analysis of the Effects of Metformin on the Regeneration of Planarian Dugesia japonica
by Zelong Zhao, Dandan Yin, Kexin Yang, Chunmei Zhang, Linxia Song and Zhenbiao Xu
Genes 2025, 16(4), 365; https://doi.org/10.3390/genes16040365 - 22 Mar 2025
Viewed by 450
Abstract
Background: Metformin is a widely used oral hypoglycemic agent for treating type 2 diabetes. Planarians, with their remarkable regenerative abilities, are frequently employed as model organisms in stem cell and regeneration studies. This study aimed to investigate the effects of metformin on planarian [...] Read more.
Background: Metformin is a widely used oral hypoglycemic agent for treating type 2 diabetes. Planarians, with their remarkable regenerative abilities, are frequently employed as model organisms in stem cell and regeneration studies. This study aimed to investigate the effects of metformin on planarian regeneration, focusing on the regeneration of eyespots after amputation. Methods: Regenerating planarians with amputated eyespots were exposed to various concentrations of metformin. The regeneration time of the eyespots was measured to assess the effects of metformin. Subsequently, a 1 mmol/L metformin treatment for 24 h was applied to the planarians, followed by transcriptome analysis to identify differentially expressed genes (DEGs). The gene expression was validated through qPCR. The full-length gene of casein kinase 1α (DjCK1α) was cloned using RACE technology. DjCK1α interference was performed to examine its role in regeneration. Results: Low concentrations of metformin significantly reduced the regeneration time of planarians. Transcriptome analysis identified 113 DEGs, including 61 upregulated and 52 downregulated genes. GO and KEGG enrichment analyses were conducted. Notably, DjCK1α, a key gene involved in regeneration, was selected for further validation. qPCR confirmed that DjCK1α was significantly upregulated. The interference of DjCK1α prolonged the regeneration time of the eyespots of planarians cultured in water, while treatment with metformin did not promote the eyespot regeneration of the DjCK1α-interfered planarians. Conclusions: The results suggest that metformin accelerates planarian eyespot regeneration, potentially through the regulation of DjCK1α. This study provides the first transcriptome-based analysis of drug effects on regeneration in planarians, highlighting the role of metformin in the regeneration process. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

19 pages, 4807 KiB  
Article
Optimization of Protoplast Preparation Conditions in Lyophyllum decastes and Transcriptomic Analysis Throughout the Process
by Xiaobin Li, Ying Qin, Yufei Kong, Samantha Chandranath Karunarathna, Yunjiang Liang and Jize Xu
J. Fungi 2024, 10(12), 886; https://doi.org/10.3390/jof10120886 - 21 Dec 2024
Cited by 2 | Viewed by 1118
Abstract
Protoplasts are essential tools for genetic manipulation and functional genomics research in fungi. This study systematically optimized protoplast preparation conditions and examined transcriptional changes throughout the preparation and regeneration processes to elucidate the molecular mechanisms underlying the formation and regeneration of protoplasts in [...] Read more.
Protoplasts are essential tools for genetic manipulation and functional genomics research in fungi. This study systematically optimized protoplast preparation conditions and examined transcriptional changes throughout the preparation and regeneration processes to elucidate the molecular mechanisms underlying the formation and regeneration of protoplasts in Lyophyllum decastes. The results indicated an optimal protoplast yield of 5.475 × 106 cells/mL under conditions of fungal age at 10 days, digestion time of 2.25 h, enzyme concentration of 2%, and digestion temperature of 28 °C. The Z5 medium supplemented with L. decastes mycelial extract achieved a high regeneration rate of 2.86. RNA-seq analysis revealed 2432 differentially expressed genes (DEGs) during protoplast formation and 5825 DEGs during regeneration. Casein kinase I, cytochrome P450 (CYP52), and redox-regulated input receptor (PEX5) were significantly upregulated during the protoplast stage, while β-1,3-glucan synthase (SKN1), chitin synthase (CHS2), hydrophobin-1, and hydrophobin-2 showed significant upregulation during the protoplast regeneration phase. These findings provide a reference for the efficient preparation and regeneration of protoplasts and offer new insights into the molecular mechanisms of protoplast formation and cell wall regeneration in fungi. Full article
(This article belongs to the Special Issue Current Trends in Mycological Research in Southeast Asia)
Show Figures

Figure 1

14 pages, 2047 KiB  
Article
Phenylalanine Regulates Milk Protein Synthesis via LAT1–mTOR Signaling Pathways in Bovine Mammary Epithelial Cells
by Long Guo, Chen Zheng, Jiao Chen, Ruifang Du and Fei Li
Int. J. Mol. Sci. 2024, 25(23), 13135; https://doi.org/10.3390/ijms252313135 - 6 Dec 2024
Cited by 2 | Viewed by 1248
Abstract
Phenylalanine (Phe) is a potentially limiting amino acid for lactating cows. The mechanism by which Phe regulates milk protein synthesis remains unclear. The present study elucidates the mechanisms by which phenylalanine affects milk protein synthesis, amino acid utilization, and related signaling pathways in [...] Read more.
Phenylalanine (Phe) is a potentially limiting amino acid for lactating cows. The mechanism by which Phe regulates milk protein synthesis remains unclear. The present study elucidates the mechanisms by which phenylalanine affects milk protein synthesis, amino acid utilization, and related signaling pathways in bovine mammary epithelial cells (BMECs). The BMECs were treated with five concentrations (0, 0.22, 0.44, 0.88, 1.76 mM, and serum free). Rapamycin inhibitors and RNA interference (RNAi) were used to inhibit the phosphorylation of the mammalian target of rapamycin (mTOR) signaling pathway and the expression of relevant amino acid transporters, respectively. The results showed that 4×Phe (0.88 mM) significantly increased (p < 0.05) both the mRNA and protein expression of α-casein (CSN1S1), β-casein (CSN2), and κ-casein (CSN3), as well as L-type amino acid transporter-1 (LAT1) mRNA expression. Protein expression and modification assays of mTOR-related proteins showed that 4×Phe could increase (p < 0.05) the expression of α-casein and eukaryotic initiation factor 4E-binding protein-1 (4EBP1) and tended to increase the expression of ribosomal protein S6 protein kinase (S6K1, p = 0.054). The general control nonderepressible 2 (GCN2) signaling pathway factor, eukaryotic initiation factor 2 (eIF2α), was downregulated by 4×Phe treatment (p < 0.05). The rapamycin inhibition test showed that Phe regulated casein synthesis via the mTOR signaling pathway. RNAi experiments showed that LAT1 mediated the entry of Phe into cells. Moreover, 4×Phe treatment tended to decrease (0.05 < p < 0.10) the consumption of valine, leucine, histidine, tyrosine, cysteine, alanine, asparagine, and serine in the medium. Collectively, phenylalanine enhanced α-casein synthesis by regulating the phosphorylation of 4EBP1 and eIF2α and promoting the formation of the mTOR-centered casein translation initiation complex. Full article
(This article belongs to the Special Issue Essential Molecules in Life: Regulation, Defense, and Longevity)
Show Figures

Figure 1

23 pages, 5448 KiB  
Article
Casein Kinase 2 Inhibitor, CX-4945, Induces Apoptosis and Restores Blood-Brain Barrier Homeostasis in In Vitro and In Vivo Models of Glioblastoma
by Valentina Bova, Deborah Mannino, Ayomide E. Salako, Emanuela Esposito, Alessia Filippone and Sarah A. Scuderi
Cancers 2024, 16(23), 3936; https://doi.org/10.3390/cancers16233936 - 24 Nov 2024
Viewed by 1465
Abstract
Background: In oncology, casein kinase 2 (CK2), a serine/threonine kinase, has a dual action, regulating cellular processes and acting as an oncogenic promoter. Methods: This study examined the effect of CX-4945, a selective CK2 inhibitor, in a human U-87 glioblastoma (GBM) cell [...] Read more.
Background: In oncology, casein kinase 2 (CK2), a serine/threonine kinase, has a dual action, regulating cellular processes and acting as an oncogenic promoter. Methods: This study examined the effect of CX-4945, a selective CK2 inhibitor, in a human U-87 glioblastoma (GBM) cell line, treated with CX-4945 (5, 10, and 15 μM) for 24 h. Similarly, the hCMEC/D3 cell line was used to mimic the blood–brain barrier (BBB), examining the ability of CX-4945 to restore BBB homeostasis, after stimulation with lipopolysaccharide (LPS) and then treated with CX-4945 (5, 10, and 15 μM). Results: We reported that CX-4945 reduced the proliferative activity and modulated the main pathways involved in tumor progression including apoptosis. Furthermore, in confirmation of the in vitro study, performing a xenograft model, we demonstrated that CX-4945 exerted promising antiproliferative effects, also restoring the tight junctions’ expression. Conclusions: These new insights into the molecular signaling of CK2 in GBM and BBB demonstrate that CX-4945 could be a promising approach for future GBM therapy, not only in the tumor microenvironment but also at the BBB level. Full article
(This article belongs to the Special Issue Targeting the Tumor Microenvironment (Volume II))
Show Figures

Figure 1

20 pages, 1698 KiB  
Review
CK and LRRK2 Involvement in Neurodegenerative Diseases
by Valentina Bova, Deborah Mannino, Anna Paola Capra, Marika Lanza, Nicoletta Palermo, Alessia Filippone and Emanuela Esposito
Int. J. Mol. Sci. 2024, 25(21), 11661; https://doi.org/10.3390/ijms252111661 - 30 Oct 2024
Cited by 1 | Viewed by 1798
Abstract
Neurodegenerative diseases (NDDs) are currently the most widespread neuronal pathologies in the world. Among these, the most widespread are Alzheimer’s disease (AD), dementia, Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD)—all characterized by a progressive loss of neurons in specific [...] Read more.
Neurodegenerative diseases (NDDs) are currently the most widespread neuronal pathologies in the world. Among these, the most widespread are Alzheimer’s disease (AD), dementia, Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD)—all characterized by a progressive loss of neurons in specific regions of the brain leading to varied clinical symptoms. At the basis of neurodegenerative diseases, an emerging role is played by genetic mutations in the leucine-rich repeat kinase 2 (LRRK2) gene that cause increased LRRK2 activity with consequent alteration of neuronal autophagy pathways. LRRK2 kinase activity requires GTPase activity which functions independently of kinase activity and is required for neurotoxicity and to potentiate neuronal death. Important in the neurodegeneration process is the upregulation of casein kinase (CK), which causes the alteration of the AMPK pathway by enhancing the phosphorylation of α-synuclein and huntingtin proteins, known to be involved in PD and HD, and increasing the accumulation of the amyloid-β protein (Aβ) for AD. Recent research has identified CK of the kinases upstream of LRRK2 as a regulator of the stability of the LRRK2 protein. Based on this evidence, this review aims to understand the direct involvement of individual kinases in NDDs and how their crosstalk may impact the pathogenesis and early onset of neurodegenerative diseases. Full article
(This article belongs to the Special Issue Molecular Pathways in Neurodegenerative Pathologies)
Show Figures

Figure 1

14 pages, 2037 KiB  
Communication
Influence of Acute Inflammation on the Expression of Clock Genes in the Ovine Pars Tuberalis Under Different Photoperiodic Conditions
by Karolina Wojtulewicz, Monika Tomczyk, Maciej Wójcik, Hanna Antushevich, Joanna Bochenek and Andrzej Przemysław Herman
Int. J. Mol. Sci. 2024, 25(21), 11471; https://doi.org/10.3390/ijms252111471 - 25 Oct 2024
Viewed by 978
Abstract
The pars tuberalis (PT) plays an important role in the photoperiodic regulation of the secretory activity of the pituitary gland. Additionally, PT secretory activity may be influenced by the animal’s immune status. The melatonin signal processing in PT cells occurs through the presence [...] Read more.
The pars tuberalis (PT) plays an important role in the photoperiodic regulation of the secretory activity of the pituitary gland. Additionally, PT secretory activity may be influenced by the animal’s immune status. The melatonin signal processing in PT cells occurs through the presence of melatonin receptors and the expression of molecular clock genes. This study aimed to define the effects of acute inflammation induced by intravenous administration of lipopolysaccharide (LPS) on the expression of clock genes in the PT of ewes under different photoperiodic conditions. Two analogous experiments were conducted in different photoperiods: short-day and long-day. Both experiments included 24 sheep divided into two groups: day (n = 12) and night (n = 12), further subdivided into a control group (n = 6) and a group treated with LPS (n = 6) at a dose of 400 ng/kg. Under short-day conditions, the expression of clock circadian regulator, basic helix-loop-helix ARNT like 1, cryptochrome circadian regulator (CRY) 1, 2, and casein kinase 1 epsilon genes was lower during inflammation. LPS injection increased expression of the period circadian regulator 1 gene during the night. Under long-day conditions, CRY1 mRNA level was lower during the night, while diurnal CRY2 mRNA expression was decreased after LPS injection. Our results showed that inflammation disturbed the expression of molecular clock genes in the PT; however, this influence was partly dependent on photoperiod conditions. Full article
(This article belongs to the Special Issue Molecular Advances in Circadian Rhythm and Metabolism)
Show Figures

Figure 1

23 pages, 3356 KiB  
Article
Strategic Fluorination to Achieve a Potent, Selective, Metabolically Stable, and Orally Bioavailable Inhibitor of CSNK2
by Han Wee Ong, Xuan Yang, Jeffery L. Smith, Sharon Taft-Benz, Stefanie Howell, Rebekah J. Dickmander, Tammy M. Havener, Marcia K. Sanders, Jason W. Brown, Rafael M. Couñago, Edcon Chang, Andreas Krämer, Nathaniel J. Moorman, Mark Heise, Alison D. Axtman, David H. Drewry and Timothy M. Willson
Molecules 2024, 29(17), 4158; https://doi.org/10.3390/molecules29174158 - 2 Sep 2024
Cited by 1 | Viewed by 1501
Abstract
The host kinase casein kinase 2 (CSNK2) has been proposed to be an antiviral target against β-coronaviral infection. To pharmacologically validate CSNK2 as a drug target in vivo, potent and selective CSNK2 inhibitors with good pharmacokinetic properties are required. Inhibitors based on the [...] Read more.
The host kinase casein kinase 2 (CSNK2) has been proposed to be an antiviral target against β-coronaviral infection. To pharmacologically validate CSNK2 as a drug target in vivo, potent and selective CSNK2 inhibitors with good pharmacokinetic properties are required. Inhibitors based on the pyrazolo[1,5-a]pyrimidine scaffold possess outstanding potency and selectivity for CSNK2, but bioavailability and metabolic stability are often challenging. By strategically installing a fluorine atom on an electron-rich phenyl ring of a previously characterized inhibitor 1, we discovered compound 2 as a promising lead compound with improved in vivo metabolic stability. Compound 2 maintained excellent cellular potency against CSNK2, submicromolar antiviral potency, and favorable solubility, and was remarkably selective for CSNK2 when screened against 192 kinases across the human kinome. We additionally present a co-crystal structure to support its on-target binding mode. In vivo, compound 2 was orally bioavailable, and demonstrated modest and transient inhibition of CSNK2, although antiviral activity was not observed, possibly attributed to its lack of prolonged CSNK2 inhibition. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

18 pages, 4127 KiB  
Article
The Discovery of a Specific CKIP-1 Ligand for the Potential Treatment of Disuse Osteoporosis
by Yange Wei, Bo Wu, Mingqiu Liu and Chun-Ping Cui
Int. J. Mol. Sci. 2024, 25(16), 8870; https://doi.org/10.3390/ijms25168870 - 15 Aug 2024
Cited by 2 | Viewed by 1589
Abstract
Bone homeostasis relies on the delicate balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. The casein kinase 2 interacting protein-1 (CKIP-1), a specific CK2α subunit-interacting protein, has been documented as one of the crucial negative regulators of bone formation. CKIP-1 siRNA therapy [...] Read more.
Bone homeostasis relies on the delicate balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. The casein kinase 2 interacting protein-1 (CKIP-1), a specific CK2α subunit-interacting protein, has been documented as one of the crucial negative regulators of bone formation. CKIP-1 siRNA therapy has constraints that limit its use in clinical applications. Therefore, it is necessary to explore effective targeting strategies for CKIP-1. In this study, we observed an upregulation of CKIP-1 protein expression in the microgravity environment, while its ubiquitination levels decreased. We further investigated the interaction between CKIP-1 and VHL and found that VHL enhanced CKIP-1 degradation through the ubiquitylation–proteasome system (UPS). Additionally, we discovered a small molecule ligand, named C77, through DNA-encoded library (DEL) screening, which binds to CKIP-1 both in vivo and in vitro, as confirmed by Surface Plasmon Resonance (SPR) and the Cellular Thermal shift assay (CETSA), respectively. Our findings demonstrated the potential of VHL and C77 as guiding factors in the development of CKIP-1-based Proteolysis-Targeting Chimeras (PROTACs), which could be future therapeutic interventions in disuse osteoporosis. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 4542 KiB  
Article
Active DNA Demethylase, TET1, Increases Oxidative Phosphorylation and Sensitizes Ovarian Cancer Stem Cells to Mitochondrial Complex I Inhibitor
by Lin-Yu Chen, Yao-An Shen, Ling-Hui Chu, Po-Hsuan Su, Hui-Chen Wang, Yu-Chun Weng, Shiou-Fu Lin, Kuo-Chang Wen, Phui-Ly Liew and Hung-Cheng Lai
Antioxidants 2024, 13(6), 735; https://doi.org/10.3390/antiox13060735 - 17 Jun 2024
Cited by 1 | Viewed by 2484
Abstract
Ten-eleven translocation 1 (TET1) is a methylcytosine dioxygenase involved in active DNA demethylation. In our previous study, we demonstrated that TET1 reprogrammed the ovarian cancer epigenome, increased stem properties, and activated various regulatory networks, including metabolic networks. However, the role of TET1 in [...] Read more.
Ten-eleven translocation 1 (TET1) is a methylcytosine dioxygenase involved in active DNA demethylation. In our previous study, we demonstrated that TET1 reprogrammed the ovarian cancer epigenome, increased stem properties, and activated various regulatory networks, including metabolic networks. However, the role of TET1 in cancer metabolism remains poorly understood. Herein, we uncovered a demethylated metabolic gene network, especially oxidative phosphorylation (OXPHOS). Contrary to the concept of the Warburg effect in cancer cells, TET1 increased energy production mainly using OXPHOS rather than using glycolysis. Notably, TET1 increased the mitochondrial mass and DNA copy number. TET1 also activated mitochondrial biogenesis genes and adenosine triphosphate production. However, the reactive oxygen species levels were surprisingly decreased. In addition, TET1 increased the basal and maximal respiratory capacities. In an analysis of tricarboxylic acid cycle metabolites, TET1 increased the levels of α-ketoglutarate, which is a coenzyme of TET1 dioxygenase and may provide a positive feedback loop to modify the epigenomic landscape. TET1 also increased the mitochondrial complex I activity. Moreover, the mitochondrial complex I inhibitor, which had synergistic effects with the casein kinase 2 inhibitor, affected ovarian cancer growth. Altogether, TET1-reprogrammed ovarian cancer stem cells shifted the energy source to OXPHOS, which suggested that metabolic intervention might be a novel strategy for ovarian cancer treatment. Full article
Show Figures

Figure 1

16 pages, 1686 KiB  
Article
Modulating the Activity of the Human Organic Cation Transporter 2 Emerges as a Potential Strategy to Mitigate Unwanted Toxicities Associated with Cisplatin Chemotherapy
by Anna Hucke, Marta Kantauskaite, Tim N. Köpp, Christoph A. Wehe, Uwe Karst, Pavel I. Nedvetsky and Giuliano Ciarimboli
Int. J. Mol. Sci. 2024, 25(5), 2922; https://doi.org/10.3390/ijms25052922 - 2 Mar 2024
Viewed by 1491
Abstract
Cisplatin (CDDP) stands out as an effective chemotherapeutic agent; however, its application is linked to the development of significant adverse effects, notably nephro- and ototoxicity. The human organic cation transporter 2 (hOCT2), found in abundance in the basolateral membrane domain of renal proximal [...] Read more.
Cisplatin (CDDP) stands out as an effective chemotherapeutic agent; however, its application is linked to the development of significant adverse effects, notably nephro- and ototoxicity. The human organic cation transporter 2 (hOCT2), found in abundance in the basolateral membrane domain of renal proximal tubules and the Corti organ, plays a crucial role in the initiation of nephro- and ototoxicity associated with CDDP by facilitating its uptake in kidney and ear cells. Given its limited presence in cancer cells, hOCT2 emerges as a potential druggable target for mitigating unwanted toxicities associated with CDDP. Potential strategies for mitigating CDDP toxicities include competing with the uptake of CDDP by hOCT2 or inhibiting hOCT2 activity through rapid regulation mediated by specific signaling pathways. This study investigated the interaction between the already approved cationic drugs disopyramide, imipramine, and orphenadrine with hOCT2 that is stably expressed in human embryonic kidney cells. Regarding disopyramide, its influence on CDDP cellular transport by hOCT2 was further characterized through inductively coupled plasma isotope dilution mass spectrometry. Additionally, its potential protective effects against cellular toxicity induced by CDDP were assessed using a cytotoxicity test. Given that hOCT2 is typically expressed in the basolateral membrane of polarized cells, with specific regulatory mechanisms, this work studied the regulation of hOCT2 that is stably expressed in Madin–Darby Canine Kidney (MDCK) cells. These cells were cultured in a matrix to induce the formation of cysts, exposing hOCT2 in the basolateral plasma membrane domain, which was freely accessible to experimental solutions. The study specifically tested the regulation of ASP+ uptake by hOCT2 in MDCK cysts through the inhibition of casein kinase II (CKII), calmodulin, or p56lck tyrosine kinase. Furthermore, the impact of this manipulation on the cellular toxicity induced by CDDP was examined using a cytotoxicity test. All three drugs—disopyramide, imipramine, and orphenadrine—demonstrated inhibition of ASP+ uptake, with IC50 values in the micromolar (µM) range. Notably, disopyramide produced a significant reduction in the CDDP cellular toxicity and platinum cellular accumulation when co-incubated with CDDP. The activity of hOCT2 in MDCK cysts experienced a significant down-regulation under inhibition of CKII, calmodulin, or p56lck tyrosine kinase. Interestingly, only the inhibition of p56lck tyrosine kinase demonstrated the capability to protect the cells against CDDP toxicity. In conclusion, certain interventions targeting hOCT2 have demonstrated the ability to reduce CDDP cytotoxicity, at least in vitro. Further investigations in in vivo systems are warranted to ascertain their potential applicability as co-treatments for mitigating undesired toxicities associated with CDDP in patients. Full article
(This article belongs to the Special Issue Transport of Nutrients and Ions Relevant to Human Pathophysiology)
Show Figures

Figure 1

15 pages, 27139 KiB  
Article
RACK1 Promotes Meningioma Progression by Activation of NF-κB Pathway via Preventing CSNK2B from Ubiquitination Degradation
by Ali Abdi Maalim, Zihan Wang, Yimin Huang and Ting Lei
Cancers 2024, 16(4), 767; https://doi.org/10.3390/cancers16040767 - 13 Feb 2024
Cited by 2 | Viewed by 2016
Abstract
Higher-grade meningiomas (WHO grade II and III) are characterized by aggressive invasiveness and high postoperative recurrence rates. The prognosis remains inadequate even with adjuvant radiotherapy and currently there is no definitive pharmacological treatment strategy and target for malignant meningiomas. This study aims to [...] Read more.
Higher-grade meningiomas (WHO grade II and III) are characterized by aggressive invasiveness and high postoperative recurrence rates. The prognosis remains inadequate even with adjuvant radiotherapy and currently there is no definitive pharmacological treatment strategy and target for malignant meningiomas. This study aims to unveil the mechanisms driving the malignant progression of meningiomas and to identify potential inhibitory targets, with significant clinical implications. Implementing techniques such as protein immunoprecipitation, mass spectrometry, RNA interference, and transcriptome sequencing, we investigated the malignancy mechanisms in meningioma cell lines IOMM-LEE and CH157-MN. Additionally, in vivo experiments were carried out on nude mice. We discovered a positive correlation between meningioma malignancy and the levels of the receptor for activated C kinase 1 (RACK1), which interacts with CSNK2B, the β subunit of casein kinase 2 (CK2), inhibiting its ubiquitination and subsequent degradation. This inhibition allows CK2 to activate the NF-κb pathway, which increases the transcription of CDK4 and cyclin D3, resulting in the transition of the cell cycle into the G2/M phase. The RACK1 inhibitor, harringtonolide (HA), significantly suppressed the malignant tendencies of meningioma cells. Our study suggests that RACK1 may play a role in the malignant progression of meningiomas, and therefore, targeting RACK1 could emerge as an effective strategy for reducing the malignancy of these tumors. Full article
(This article belongs to the Special Issue Advances in the Diagnosis and the Management of Intracranial Tumors)
Show Figures

Figure 1

16 pages, 2825 KiB  
Article
Inhibition of NMDA Receptor Activation in the Rostral Ventrolateral Medulla by Amyloid-β Peptide in Rats
by Md Sharyful Islam, Chih-Chia Lai, Lan-Hui Wang and Hsun-Hsun Lin
Biomolecules 2023, 13(12), 1736; https://doi.org/10.3390/biom13121736 - 2 Dec 2023
Cited by 2 | Viewed by 2461
Abstract
N-methyl-D-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors, are important in regulating sympathetic tone and cardiovascular function in the rostral ventrolateral medulla (RVLM). Amyloid-beta peptide (Aβ) is linked to the pathogenesis of Alzheimer’s disease (AD). Cerebro- and cardiovascular diseases might be the [...] Read more.
N-methyl-D-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors, are important in regulating sympathetic tone and cardiovascular function in the rostral ventrolateral medulla (RVLM). Amyloid-beta peptide (Aβ) is linked to the pathogenesis of Alzheimer’s disease (AD). Cerebro- and cardiovascular diseases might be the risk factors for developing AD. The present study examines the acute effects of soluble Aβ on the function of NMDA receptors in rats RVLM. We used the magnitude of increases in the blood pressure (pressor responses) induced by microinjection of NMDA into the RVLM as an index of NMDA receptor function in the RVLM. Soluble Aβ was applied by intracerebroventricular (ICV) injection. Aβ1-40 at a lower dose (0.2 nmol) caused a slight reduction, and a higher dose (2 nmol) showed a significant decrease in NMDA-induced pressor responses 10 min after administration. ICV injection of Aβ1-42 (2 nmol) did not affect NMDA-induced pressor responses in the RVLM. Co-administration of Aβ1-40 with ifenprodil or memantine blocked the inhibitory effects of Aβ1-40. Immunohistochemistry analysis showed a significant increase in the immunoreactivity of phosphoserine 1480 of GluN2B subunits (pGluN2B-serine1480) in the neuron of the RVLM without significant changes in phosphoserine 896 of GluN1 subunits (pGluN1-serine896), GluN1 and GluN2B, 10 min following Aβ1-40 administration compared with saline. Interestingly, we found a much higher level of Aβ1-40 compared to that of Aβ1-42 in the cerebrospinal fluid (CSF) measured using enzyme-linked immunosorbent assay 10 min following ICV administration of the same dose (2 nmol) of the peptides. In conclusion, the results suggest that ICV Aβ1-40, but not Aβ1-42, produced an inhibitory effect on NMDA receptor function in the RVLM, which might result from changes in pGluN2B-serine1480 (regulated by casein kinase II). The different elimination of the peptides in the CSF might contribute to the differential effects of Aβ1-40 and Aβ1-42 on NMDA receptor function. Full article
(This article belongs to the Special Issue NMDA Receptor in Health and Diseases: 2nd Edition)
Show Figures

Figure 1

17 pages, 4062 KiB  
Article
Discovery and Exploration of Protein Kinase CK2 Binding Sites Using CK2α′Cys336Ser as an Exquisite Crystallographic Tool
by Christian Werner, Dirk Lindenblatt, Kaido Viht, Asko Uri and Karsten Niefind
Kinases Phosphatases 2023, 1(4), 306-322; https://doi.org/10.3390/kinasesphosphatases1040018 - 25 Nov 2023
Cited by 3 | Viewed by 2197
Abstract
The structural knowledge about protein kinase CK2 is dominated by crystal structures of human CK2α, the catalytic subunit of human CK2, and the product of the CSNK2A1 gene. In contrast, far fewer structures of CK2α′, its paralogous isoform and the product of the [...] Read more.
The structural knowledge about protein kinase CK2 is dominated by crystal structures of human CK2α, the catalytic subunit of human CK2, and the product of the CSNK2A1 gene. In contrast, far fewer structures of CK2α′, its paralogous isoform and the product of the CSNK2A2 gene, have been published. However, according to a PDB survey, CK2α′ is the superior alternative for crystallographic studies because of the inherent potential of the single mutant CK2α′Cys336Ser to provide crystal structures with atomic resolution. In particular, a triclinic crystal form of CK2α′Cys336Ser is a robust tool to determine high-quality enzyme-ligand complex structures via soaking. In this work, further high-resolution CK2α′Cys336Ser structures in complex with selected ligands emphasizing this trend are described. In one of these structures, the “N-terminal segment site”, a small-molecule binding region never found in any eukaryotic protein kinase and holding the potential for the development of highly selective substrate-competitive CK2 inhibitors, was discovered. In order to also address the binding site for the non-catalytic subunit CK2β, which is inaccessible in these triclinic CK2α′Cys336Ser crystals for small molecules, a reliable path to a promising monoclinic crystal form of CK2α′Cys336Ser is presented. In summary, the quality of CK2α′Cys336Ser as an exquisite crystallographic tool is solidified. Full article
(This article belongs to the Special Issue Past, Present and Future of Protein Kinase CK2 Research)
Show Figures

Figure 1

18 pages, 2963 KiB  
Review
CK2 Chemical Probes: Past, Present, and Future
by Han Wee Ong, David H. Drewry and Alison D. Axtman
Kinases Phosphatases 2023, 1(4), 288-305; https://doi.org/10.3390/kinasesphosphatases1040017 - 1 Nov 2023
Cited by 6 | Viewed by 2716
Abstract
Protein kinase casein kinase 2 (CK2/CSNK2) is a pleiotropic kinase involved in many cellular processes and, accordingly, has been identified as a potential target for therapeutic intervention for multiple indications. Significant research effort has been invested into identifying CK2 inhibitors as potential drug [...] Read more.
Protein kinase casein kinase 2 (CK2/CSNK2) is a pleiotropic kinase involved in many cellular processes and, accordingly, has been identified as a potential target for therapeutic intervention for multiple indications. Significant research effort has been invested into identifying CK2 inhibitors as potential drug candidates and potent and selective CK2 chemical probes to interrogate CK2 function. Here, we review the small molecule inhibitors reported for CK2 and discuss various orthosteric, allosteric, and bivalent inhibitors of CK2. We focus on the pyrazolo[1,5-a]pyrimidines and naphthyridines, two chemotypes that have been extensively explored for chemical probe development. We highlight the uptake and demonstrated utility of the pyrazolo[1,5-a]pyrimidine chemical probe SGC-CK2-1 by the scientific community in cellular studies. Finally, we propose criteria for an ideal in vivo chemical probe for investigating CK2 function in a living organism. While no compound currently meets these metrics, we discuss ongoing and future directions in the development of in vivo chemical probes for CK2. Full article
(This article belongs to the Special Issue Past, Present and Future of Protein Kinase CK2 Research)
Show Figures

Figure 1

Back to TopTop