Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,630)

Search Parameters:
Keywords = caspase-3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1744 KB  
Article
Protective Effects of Momordica charantia Fruit Extract on Male Sexual Dysfunction and Testicular Damage in Rats Induced by Chronic Unpredictable Stressors
by Therachon Kamollerd, Suwit Uopasai, Tarinee Sawatpanich, Nongnut Uabundit, Supatcharee Arun, Nareelak Tangsrisakda, Chayakorn Taoto, Chadaporn Chaimontri, Natthapol Lapyuneyong, Wipawee Thukhammee, Sararat Innoi and Sitthichai Iamsaard
Life 2025, 15(10), 1559; https://doi.org/10.3390/life15101559 - 4 Oct 2025
Abstract
Chronic stress (CS) is known to induce testicular oxidative stress and apoptosis. Fruit of Momordica charantia (FMC) has antioxidant capacity to protect tissue damage, but its effect on sexual activity and testicular damage caused by CS has never been documented. This study aimed [...] Read more.
Chronic stress (CS) is known to induce testicular oxidative stress and apoptosis. Fruit of Momordica charantia (FMC) has antioxidant capacity to protect tissue damage, but its effect on sexual activity and testicular damage caused by CS has never been documented. This study aimed to investigate the impact of FMC extract against testicular damage and sexual dysfunction in chronic unpredictable stress (CUS) rats. Rats were divided into four groups and pretreated with vehicle or FMC (40 and 80 mg/kg) before CUS induction for 56 days. Sexual behaviors, serum hormones, and sperm quality were analyzed. Testes were collected to determine daily sperm production (DSP), malondialdehyde (MDA) level, and expressions of cleaved apoptotic proteins. Testicular DNA fragmentation, as revealed by TUNEL and morphometric analysis, was observed. FMC improved sexual activity, increased testosterone levels, and sperm count with improvements in DSP, testicular morphometrics, and MDA levels. Moreover, TUNEL-positive cells and expression of caspase 3 in the testis were decreased in FMC rats. FMC has antioxidant potential and could protect against male sexual dysfunction and testicular damage caused by stress-related apoptosis. It is a potential extract to be developed as a supplement in preventing CS-male subfertility. However, future studies about the optimal dose and clinical trials are required. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

14 pages, 5375 KB  
Article
Selective Targeting of Senescent FHs74Int Cells by Human Breast Milk Free Fatty Acids
by Tony Tremblay and Lionel Loubaki
Biology 2025, 14(10), 1355; https://doi.org/10.3390/biology14101355 - 3 Oct 2025
Abstract
Cellular senescence is a state of irreversible growth arrest characterized by a pro-inflammatory phenotype, playing dual roles in development. In the fetal intestine, the regulation of senescent cells is critical for maintaining tissue homeostasis. Human breast milk (HBM), known for its rich composition [...] Read more.
Cellular senescence is a state of irreversible growth arrest characterized by a pro-inflammatory phenotype, playing dual roles in development. In the fetal intestine, the regulation of senescent cells is critical for maintaining tissue homeostasis. Human breast milk (HBM), known for its rich composition of bioactive molecules, may play a role in modulating senescence, although its effects on senescent intestinal cells remain unexplored. This study investigated whether HBM selectively eliminates senescent cells in the FHs74Int fetal intestinal epithelial cell line. Senescence was assessed via β-galactosidase activity and expression of p16 and p21. The model cell line was treated with HBM, infant formula, and milk fractions, and outcomes included cell recovery, senescence markers, apoptosis, and mitochondrial potential. Total free fatty acids (FFA) were quantified and correlated with senolytic activity. HBM reduced senescent cell recovery without affecting non-senescent cells, correlating with decreased β-galactosidase activity, reduced phospho-p38 and γH2AX expression, mitochondrial depolarization, and caspase activation. Only the lipid fraction retained senolytic activity, which was associated with elevated FFA levels. Incubation of HBM at 37 °C increased FFA content and conferred senolytic activity. These findings are consistent with the idea that HBM exerts selective senolytic effects via FFA, revealing a novel mechanism by which breast milk could contribute to intestinal homeostasis. Full article
Show Figures

Graphical abstract

15 pages, 26587 KB  
Article
Effects of a Natural Polyherbal Extract on Alleviating Scopolamine-Induced Memory Deficits in C57BL/6 Mice via Enhancing Cholinergic Function
by Hyeokjin Kwon, Min Ho Kwon, Myeongguk Jeong, Yeeun Kim, Hae-Gyung Yoon, Yeongdon Ju, Kyung-Yae Hyun and Go-Eun Choi
Curr. Issues Mol. Biol. 2025, 47(10), 817; https://doi.org/10.3390/cimb47100817 - 2 Oct 2025
Abstract
Alzheimer’s disease (AD) is a progressive neurological condition with limited effective pharmaceutical treatments, often accompanied by side effects. This has increased interest in plant-based alternatives. This study examined the cognitive effects of a Natural Polyherbal Extract (NPX) on scopolamine-induced memory deficits in mice. [...] Read more.
Alzheimer’s disease (AD) is a progressive neurological condition with limited effective pharmaceutical treatments, often accompanied by side effects. This has increased interest in plant-based alternatives. This study examined the cognitive effects of a Natural Polyherbal Extract (NPX) on scopolamine-induced memory deficits in mice. Male C57BL/6 mice (10 weeks old, n = 36) were divided into four groups: control (saline), scopolamine (1 mg/kg, i.p.), tacrine (10 mg/kg, oral), and NPX (1000 mg/kg, oral). NPX and tacrine were administered daily by oral gavage for two weeks. Cognitive function was assessed weekly using the Y-maze task. Brain tissues were collected for biochemical analysis, including AChE activity and immunohistochemical detection of neurodegeneration-related markers. Results: Mice treated with NPX demonstrated improved spontaneous alternation behavior compared to the scopolamine group. NPX also significantly reduced acetylcholinesterase activity. Immunohistochemistry revealed decreased expression of amyloid-beta (Aβ) and caspase-3, with enhanced choline acetyltransferase levels. These outcomes were comparable to those observed in the tacrine-treated group. Conclusions: NPX alleviated scopolamine-induced memory impairment through enhancement of cholinergic signaling and mitigation of neurodegenerative markers. The findings suggest that NPX may serve as a promising plant-derived candidate for managing memory-related disorders, including AD. Full article
Show Figures

Figure 1

18 pages, 8074 KB  
Article
Auranofin Ameliorates Gouty Inflammation by Suppressing NLRP3 Activation and Neutrophil Migration via the IL-33/ST2–CXCL1 Axis
by Hyeyeon Yoo, Ahyoung Choi, Minjun Kim, Yongseok Gye, Hyeonju Jo, Seung-Ki Kwok, Youngjae Park and Jennifer Jooha Lee
Cells 2025, 14(19), 1541; https://doi.org/10.3390/cells14191541 - 2 Oct 2025
Abstract
Gout is a form of sterile inflammatory arthritis in which monosodium urate (MSU) crystals deposit and provoke a neutrophil-predominant response, primarily driven by activation of the NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome. Here, we show that auranofin, a Food [...] Read more.
Gout is a form of sterile inflammatory arthritis in which monosodium urate (MSU) crystals deposit and provoke a neutrophil-predominant response, primarily driven by activation of the NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome. Here, we show that auranofin, a Food and Drug Administration (FDA)-approved anti-rheumatic agent, exerts anti-inflammatory effects in both in vitro and in vivo models of gout. Auranofin inhibited NLRP3 inflammasome activation in human THP-1 cells and murine macrophages, leading to reduced cleavage of caspase-1, interleukin-1β (IL-1β), and interleukin-18 (IL-18). In MSU crystal-induced mouse models, auranofin treatment reduced paw swelling, serum cytokine levels, and tissue inflammation. Notably, auranofin suppressed neutrophil migration and decreased expression of C-X-C motif chemokine ligand 1 (CXCL1) in inflamed foot tissue and air-pouch exudates. Mechanistically, auranofin disrupted the interleukin-33 (IL-33)/suppression of tumorigenicity 2 (ST2) axis, a key signaling pathway promoting neutrophil recruitment. Overexpression of IL-33 abolished the anti-inflammatory effects of auranofin, highlighting the central role of IL-33 in gout pathogenesis. Together, our findings suggest that auranofin alleviates MSU-induced inflammation by concurrently inhibiting NLRP3 inflammasome activation and IL-33-mediated neutrophil recruitment, supporting its potential as a dual-action therapeutic candidate for gout. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Graphical abstract

24 pages, 2075 KB  
Article
Biomarker–Sleep Correlations in PTSD: Glutamine, Glutathione, Caspase-1, and BDNF Levels Assessed Using the Pittsburgh Sleep Quality Index Addendum
by Anna Dorota Grzesińska
Curr. Issues Mol. Biol. 2025, 47(10), 814; https://doi.org/10.3390/cimb47100814 - 2 Oct 2025
Abstract
Emerging evidence highlights oxidative stress and its biomarkers as potential factors in the onset and maintenance of Post-Traumatic Stress Disorder (PTSD) and co-occurring sleep disturbances. The study concerns the profile of biomarkers including glutamine, glutathione (GSH), caspase-1 and Brain-Derived Neurotrophic Factor (BDNF) levels [...] Read more.
Emerging evidence highlights oxidative stress and its biomarkers as potential factors in the onset and maintenance of Post-Traumatic Stress Disorder (PTSD) and co-occurring sleep disturbances. The study concerns the profile of biomarkers including glutamine, glutathione (GSH), caspase-1 and Brain-Derived Neurotrophic Factor (BDNF) levels in three groups (PTSD with a current diagnosis lasting ≤ 5 years, PTSD with a current diagnosis lasting > 5 years, and no PTSD), classified into two age groups. In addition, sleep disturbances were analyzed using the Pittsburgh Sleep Quality Index Addendum (PSQI-A). The study revealed mutual correlations between the examined biomarkers, which may confirm a coordinated antioxidant response. Furthermore, a relationship was observed between biomarkers and PSQI-A; trauma-related domains (e.g., Trauma Nightmares with Terror Episodes) were more pronounced in the case of PTSD ≤ 5 years, while PTSD > 5 years emphasized trauma-unrelated anxiety. The study results suggest that individuals with PTSD exhibit increased sensitivity to trauma, which may manifest through immune system activation and sleep disturbances. Patients with a longer history of PTSD and co-occurring dysfunctions require a personalized approach to trauma treatment and prevention of recurrence. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

25 pages, 3573 KB  
Article
Chronic Folliculitis Associated with Ovine gammaherpesvirus 2-Induced Infections in Dairy Cows from Southern Brazil
by Selwyn Arlington Headley, Flávia Helena Pereira Silva, Mariana da Silva Marques, Juliana Torres Tomazi Fritzen, Fernanda Pinto Ferreira, Geovana Depieri Yoshitani, Ana Aparecida Correa Xavier, Pedro Paulo Benyunes Vieira and Amauri Alcindo Alfieri
Animals 2025, 15(19), 2883; https://doi.org/10.3390/ani15192883 - 1 Oct 2025
Abstract
Ovine gammaherpesvirus 2 (OvGHV2) is a Macavirus and the cause of sheep-associated malignant catarrhal fever (SA-MCF) in susceptible mammalian hosts worldwide. OvGHV2 may produce typical clinical manifestations of SA-MCF or subclinical infections. Additionally, OvGHV2 is associated with cutaneous lesions in ruminants, with few [...] Read more.
Ovine gammaherpesvirus 2 (OvGHV2) is a Macavirus and the cause of sheep-associated malignant catarrhal fever (SA-MCF) in susceptible mammalian hosts worldwide. OvGHV2 may produce typical clinical manifestations of SA-MCF or subclinical infections. Additionally, OvGHV2 is associated with cutaneous lesions in ruminants, with few documented reports of this unusual manifestation worldwide. This paper presents the pathological, immunohistochemical (IHC), and molecular findings observed in outbreaks of OvGHV2-related skin infections in dairy cattle from Southern Brazil. Cutaneous scrapings (n = 35) and biopsies (n = 6) were obtained from dairy cows derived from three farms. All cows (n = 35) developed widespread, ulcerative to scaly and erythematous skin lesions, and had no contact with sheep or goats. The biopsies were evaluated for histopathological diagnosis and then used in IHC analyses designed to detect malignant catarrhal fever virus (MCFV) antigens and to evaluate the inflammatory response. All scrapings and biopsies were used in PCR assays to amplify OvGHV2. Additionally, all biopsies were used in PCR assays to detect bovine gammaherpesvirus 6 (BoGHV6), bovine alphaherpesvirus 1 (BoAHV1), and poxvirus. Histopathology revealed chronic folliculitis in all biopsies. IHC detected intralesional, intracytoplasmic MCFV antigens in most (83.3%; 5/6) of the cutaneous lesions with folliculitis. These skin lesions showed a strong T-cell response, macrophage clusters, and caspase-positive follicular keratinocytes. OvGHV2 DNA was detected in 66.7% (4/6) of the cutaneous biopsies that contained MCFV antigens and in 8.6% (3/35) of the cutaneous scrapings. The DNA of BoGHV6, BoAHV1, and Poxvirus was not amplified from any of the cutaneous biopsies. These findings demonstrated that OvGHV2 was associated with the cutaneous lesions in dairy cows at these farms and represent the first description of OvGHV2-related skin disease in ruminants from Brazil and the entire Latin America. A review of previous cases of skin lesions associated with infections by OvGHV2 revealed that most cases had a histological diagnosis of folliculitis, suggesting that folliculitis may be associated with OvGHV2-related skin infections. Additionally, this investigation contrasts all previous reports of OvGHV2-related skin disease in ruminants, since the infected cows herein identified were not reared concomitantly or within proximity of the asymptomatic reservoir host. Furthermore, the possible form of OvGHV2 dissemination to the susceptible cows during this study is discussed. Full article
(This article belongs to the Section Cattle)
17 pages, 2301 KB  
Article
Alogliptin Mitigates Methotrexate-Induced Nephrotoxicity in a Rat Model: Antagonizing Oxidative Stress, Inflammation and Apoptosis
by Marwa M. Fahmy, Heba A. Habib, Esraa M. Zeidan, Yousef A. Bin Jardan and Gehan H. Heeba
Int. J. Mol. Sci. 2025, 26(19), 9608; https://doi.org/10.3390/ijms26199608 - 1 Oct 2025
Abstract
Although methotrexate (MTX) is a magnificent cure for cancerous neoplasms and inflammatory disorders, its usage is bound due to associated hazards, especially nephrotoxicity. The present study investigated the possible therapeutic impact of alogliptin (ALO), prescribed for managing type 2 diabetes, on renal injury [...] Read more.
Although methotrexate (MTX) is a magnificent cure for cancerous neoplasms and inflammatory disorders, its usage is bound due to associated hazards, especially nephrotoxicity. The present study investigated the possible therapeutic impact of alogliptin (ALO), prescribed for managing type 2 diabetes, on renal injury caused by MTX and explored the mechanisms that could illustrate this suggested protective effect. Four rat groups were involved: control, ALO (20 mg/kg/d, intragastrically (I.G.)) for ten days, MTX, and MTX + ALO groups. The latter two groups were given MTX (20 mg/kg, I.P.) on the 7th day, while the MTX + ALO group was administered ten days of 20 mg/kg of ALO. A significant impairment in renal function, catalase activity, reduced glutathione content, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) expressions, coupled with an increase in kidney injury molecule-1 (KIM-1), malondialdehyde, tumor necrosis factor-alpha (TNF-α), and cleaved caspase-3 (c-caspase-3) expressions, was observed in MTX-intoxicated rats, evidenced by remarkable deterioration in renal construction. Conversely, ALO improved renal function and architecture. Moreover, ALO retrieved the oxidative balance, the attenuated Nrf2/HO-1 expression, and the elevated KIM-1, TNF-α, and c-caspase-3 expression. In conclusion, ALO might abrogate MTX-elicited kidney damage by rectifying the deviation in oxidative status, apoptotic and inflammatory pathways, paving the way for managing MTX-induced nephrotoxicity. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

26 pages, 6919 KB  
Article
Reticuline and Coclaurine Exhibit Vitamin D Receptor-Dependent Anticancer and Pro-Apoptotic Activities in the Colorectal Cancer Cell Line HCT116
by Hind A. Alghamdi, Sahar S. Alghamdi, Maryam Hassan Al-Zahrani, Thadeo Trivilegio, Sara Bahattab, Rehab AlRoshody, Yazeid Alhaidan, Rana A. Alghamdi and Sabine Matou-Nasri
Curr. Issues Mol. Biol. 2025, 47(10), 810; https://doi.org/10.3390/cimb47100810 - 1 Oct 2025
Abstract
Alkaloids have garnered significant interest as potential anticancer agents. Vitamin D receptor (VDR) plays a role in preventing the progression of colorectal cancer (CRC) and may be a crucial mediator of the anticancer effects produced by certain alkaloids. The search for novel anticancer [...] Read more.
Alkaloids have garnered significant interest as potential anticancer agents. Vitamin D receptor (VDR) plays a role in preventing the progression of colorectal cancer (CRC) and may be a crucial mediator of the anticancer effects produced by certain alkaloids. The search for novel anticancer drugs that induce VDR expression and act through the VDR could improve the clinical outcomes of CRC patients. The anticancer and pro-apoptotic effects of coclaurine and reticuline were investigated using CRISPR/Cas9-edited VDR/knockout (KO) and wild-type (WT) CRC HCT116 cell lines. Western blotting, RT-qPCR, confocal microscopy, cell viability, scratch assays, and flow cytometry were employed to assess VDR expression and cellular localization, cell growth, wound-healing, cytotoxicity, apoptotic status, cell cycle progression, and VDR-mediated gene expression. Coclaurine and reticuline dose-dependently inhibited HCT116-WT cell viability, decreased wound-healing, and increased VDR nuclear localization and gene expression while downregulating the oncogenic genes SNAIL1 and SNAIL2. Both alkaloids induced late apoptosis in HCT116-WT cells, increased the cleavage of PARP and caspase-3, and upregulated Bax and TP53 while decreasing BCL-2. Both alkaloids caused HCT116-WT cell growth arrest in the S-phase, which is associated with cyclin A1 overexpression. Coclaurine and reticuline lost their anticancer effects in HCT116-VDR/KO cells. Docking studies revealed that both alkaloids occupied the VDR’s active site. These findings demonstrate that coclaurine and reticuline exert anti-CRC and pro-apoptotic activities via the VDR, suggesting them as natural therapeutic candidates. The use of in vivo CRC models is needed to validate the anticancer activities of coclaurine and reticuline. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
17 pages, 28862 KB  
Article
LncRNA MEG3 Regulates Glaesserella parasuis-Induced Apoptosis of Porcine Alveolar Macrophages via Regulating ssc-miR-135/CASP8 Axis
by Yongchao Jia, Meiling Qian, Xinlu Sun, Ronglan Yin, Na Li, Aobo Shen, Haoran Wang, Fanhua Zeng, Yuanyuan Zhou and Ronghuan Yin
Microorganisms 2025, 13(10), 2287; https://doi.org/10.3390/microorganisms13102287 - 1 Oct 2025
Abstract
Glaesserella parasuis (G. parasuis), a common pathogenic bacterium in the porcine respiratory tract, can cause porcine polyserositis, arthritis, and meningitis. Alveolar macrophages are the first line of defense in the pulmonary innate immunity, and their abnormal apoptosis plays a critical role [...] Read more.
Glaesserella parasuis (G. parasuis), a common pathogenic bacterium in the porcine respiratory tract, can cause porcine polyserositis, arthritis, and meningitis. Alveolar macrophages are the first line of defense in the pulmonary innate immunity, and their abnormal apoptosis plays a critical role in the pathogenic process of G. parasuis. Long non-coding RNA maternally expressed gene 3 (MEG3) is associated with G. parasuis infection, but its mechanism remains incompletely unclear. This study aimed to investigate the role of MEG3 in G. parasuis-induced apoptosis of the porcine alveolar macrophage cell line 3D4/21 and its detailed molecular mechanism. Here, we found that MEG3 overexpression promoted G. parasuis-induced apoptosis and upregulated key extrinsic pathway proteins caspase-8 (CASP8) and caspase-3 (CASP3). Mechanistically, MEG3 functioned as a competing endogenous RNA by sponging ssc-miR-135, which directly targets and inhibits CASP8. Consequently, MEG3 overexpression alleviated ssc-miR-135-mediated repression of CASP8. Functional rescue experiments confirmed that either ssc-miR-135 mimic or CASP8 siRNA reversed the pro-apoptotic effect of MEG3. In conclusion, this study reveals that MEG3 relieves the inhibitory effect of ssc-miR-135 on CASP8 through competitively binding, thereby regulating G. parasuis-induced apoptosis of 3D4/21 cells. This study provides new insights into the pathogenic molecular mechanism of G. parasuis. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

32 pages, 2368 KB  
Article
Quercetin Increases Expression of Membrane-TRAIL in Glioblastoma Cells Resulting in Apoptosis
by Erin M. Thorpe, Gaëlle Muller-Greven, Jamila Hirbawi, Candece L. Gladson and Michael Kalafatis
Cancers 2025, 17(19), 3197; https://doi.org/10.3390/cancers17193197 - 30 Sep 2025
Abstract
Background/Objectives: Glioblastoma isocitrate dehydrogenase (IDH)-wild type (GBM) belongs to a deadly class of cancers with a limited number of effective therapies and a dismal prognosis. Quercetin is a natural flavonoid with proven anti-cancer effects. This study aimed to assess the effect of quercetin [...] Read more.
Background/Objectives: Glioblastoma isocitrate dehydrogenase (IDH)-wild type (GBM) belongs to a deadly class of cancers with a limited number of effective therapies and a dismal prognosis. Quercetin is a natural flavonoid with proven anti-cancer effects. This study aimed to assess the effect of quercetin on recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL)-mediated apoptosis in various GBM cells and control astrocytes. Methods: Two astrocyte cell lines and three GBM cell lines, M059K, T98G, and A172, were treated with quercetin (±rhTRAIL), and the results were evaluated by Western blotting, confocal microscopy, and flow cytometry analyses. Results: Quercetin alone did not induce apoptosis in normal astrocytes. Surprisingly, quercetin alone induced apoptosis in all GBM cell lines through both the intrinsic and extrinsic pathways of apoptosis in a TRAIL-dependent manner. M059K were the most sensitive to quercetin-induced apoptosis, followed by T98G and A172. We determined that GBM cells possess endogenous membrane-TRAIL, and that quercetin, in a time- and concentration-dependent manner, increased the trafficking of membrane-TRAIL to the cell surface. Conclusions: We demonstrate that quercetin alone induces apoptosis in GBM cell lines by facilitating endogenous membrane-TRAIL trafficking to the cell surface, where it can interact with death receptors already present on the surface of neighboring cancer cells, resulting in cell death. This unexpected finding may prove to be invaluable for potential future treatment of patients with GBM, since administration of quercetin can cause increased trafficking of membrane-TRAIL to the cell surface, inducing cancer cell apoptosis without affecting neighboring normal cells. Full article
(This article belongs to the Collection Innovations in Cancer Drug Development Research)
15 pages, 9088 KB  
Article
Fyn-T Kinase Regulates DHA-Induced Pyroptosis in Immortalized Normal Human Astrocytes
by Ai Ling Cheng, Yuek Ling Chai, Jasinda H. Lee, Clara Y. B. Low, Helen L. Ong, Gavin S. Dawe, Thiruma V. Arumugam, Deron R. Herr, Michelle G. K. Tan and Mitchell K. P. Lai
Cells 2025, 14(19), 1530; https://doi.org/10.3390/cells14191530 - 30 Sep 2025
Abstract
Dysregulation of astroglia-mediated neuroinflammation is known to be involved in neurodegenerative diseases. Amongst multiple inflammatory pathways, pyroptosis is characterized by inflammatory cell death following inflammasome activation. Recently, the omega-3 poly-unsaturated fatty acid, DHA, has been identified as a pyroptosis inducer, although the underlying [...] Read more.
Dysregulation of astroglia-mediated neuroinflammation is known to be involved in neurodegenerative diseases. Amongst multiple inflammatory pathways, pyroptosis is characterized by inflammatory cell death following inflammasome activation. Recently, the omega-3 poly-unsaturated fatty acid, DHA, has been identified as a pyroptosis inducer, although the underlying mechanisms remain unclear. In this study, we investigated the role of the alternatively spliced T-isoform of Fyn kinase (FynT) in DHA-induced astroglial pyroptosis. Immortalized normal human astrocytes (iNHA) expressing wild-type FynT (FynT-WT), kinase-dead mutant FynT (FynT-KD), or empty vector (EV) controls were treated with DHA and assessed for pyroptotic activation. We found that DHA-treated FynT-WT cells exhibited significantly reduced cytosolic lactate dehydrogenase release, pyroptotic morphology and markers (cleaved caspase-1 and its substrates, cleaved caspase-3 and gasdermin-D N fragments) compared to either EV or FynT-KD cells. No significant differences in pyroptotic activation were observed between EV and FynT-KD cells. In addition, no differences in immunoreactivities of pro- or anti-apoptotic markers (Bax or Bcl-2) were observed across the DHA-treated cells. In summary, our study postulates a negative regulatory role of FynT kinase in DHA-induced pyroptosis in astrocytes, with implications for further understanding neuroinflammatory mechanisms in neurodegenerative diseases and identification of potential therapeutic targets. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

23 pages, 9866 KB  
Article
Dysferlin Protein–Protein Interaction Pathways in the Organ of Corti and Spiral Ganglion Intersect with Alzheimer’s Protein Pathways
by Marian J. Drescher, Dennis G. Drescher, Khalid M. Khan, James S. Hatfield and Darshi Hemani
Int. J. Mol. Sci. 2025, 26(19), 9559; https://doi.org/10.3390/ijms26199559 - 30 Sep 2025
Abstract
Dysferlin direct protein–protein interactions (PPI) previously have been elucidated with surface plasmon resonance (SPR) and predicted to underlie membrane repair in mechanotransducing myofibrils. In mechanotransducing inner ear hair cells, dysferlin is detected with Z-stack confocal immunofluorescence in the stereocilia and their inserts in [...] Read more.
Dysferlin direct protein–protein interactions (PPI) previously have been elucidated with surface plasmon resonance (SPR) and predicted to underlie membrane repair in mechanotransducing myofibrils. In mechanotransducing inner ear hair cells, dysferlin is detected with Z-stack confocal immunofluorescence in the stereocilia and their inserts in the tectorial membrane (TM) co-localizing with FKBP8, consistent with the SPR determination of tight, positively Ca2+-dependent interaction. FKBP8, a direct binding partner of mechanotransducing TMC1, when overexpressed, evokes an elevation in anti-apoptotic BCL2, inhibition of ryanodine receptor (RYR) activity, and a consequent reduction in Ca2+ release. RYR3 has now been immunolocalized to the tip of the TM in close association with a third-row outer hair cell (OHC) stereociliary BCL2-positive insertion. Dysferlin, annexin A2, and Alzheimer’s proteins BACE1 and amyloid precursor protein (APP) are also accumulated in these stereociliary insertions. RYR2 and RYR1 have been immunolocalized to the TM core, in position to influence TM Ca2+. Dysferlin PPI pathways also intersect with AD protein pathways in the spiral ganglion (SG). Dysferlin segregates with FKBP8, BACE1, and RYR3 in the interiors of SG type I cell bodies. RYR1, RYR2, PSEN1, BCL2, and caspase 3 are primarily confined to plasma membrane sites. RYR3 pathways traverse the plasma membrane to the cell body interior. Western analysis of dysferlinopathy proteins links FKBP8 and BCL2 overexpression with RYR inhibition, indicative of dysferlin targets that are ameliorative in AD. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

17 pages, 3218 KB  
Article
Antiviral Activity of Eugenol Against Largemouth Bass Ranavirus Through Regulation of Autophagy and Apoptosis In Vitro and In Vivo
by Yewen Wang, Lifang Cao, Leshan Ruan, Xingyu Chen, Chunhui Song, Shina Wei and Yunchang Xie
Microorganisms 2025, 13(10), 2281; https://doi.org/10.3390/microorganisms13102281 - 30 Sep 2025
Abstract
Largemouth bass ranavirus (LMBV) causes high mortality rate in largemouth bass during outbreaks, resulting in huge economic losses. Eugenol (EUG) has potent antiviral activity, showing promising potential against LMBV. Thus, to investigate EUG’s efficacy against LMBV, corresponding analysis was conducted in vivo and [...] Read more.
Largemouth bass ranavirus (LMBV) causes high mortality rate in largemouth bass during outbreaks, resulting in huge economic losses. Eugenol (EUG) has potent antiviral activity, showing promising potential against LMBV. Thus, to investigate EUG’s efficacy against LMBV, corresponding analysis was conducted in vivo and in vitro. Firstly, EUG demonstrated to be able to down-regulate both the mRNA and protein levels of the major capsid protein (MCP) in LMBV-infected cells. In addition, EUG could inhibit the expression of cleaved-caspase-3 in LMBV-infected fathead minnow (FHM) cell. On the other hand, EUG would not only directly regulate the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway but also affect the AMP-activated protein kinase (AMPK) pathway in FHM cells during LMBV infection. These results indicated that EUG exerts its antiviral effects by modulating both LMBV-induced apoptosis and autophagy. Notably, EUG reduced the viral load present within the tissues of LMBV-infected largemouth bass, thereby ultimately enhancing their survival rate in the culture environment by about 20%. These mechanistic assays revealed the anti-LMBV properties of EUG, which could significantly enrich the research content of plant extracts in the field of aquatic antiviral, and provide important theoretical basis for the development and application of related products. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

16 pages, 2117 KB  
Article
Potential Therapeutic Effects of Oolong Tea Phytochemicals on NLRP3 Inflammasome Assembly and Oxidative Stress
by Ming-Shyan Wang, Szu-Nian Yang, Yi-Ping Chang, Chi-Sheng Wu, Hung-Chi Yang and Jia-Feng Chang
Nutrients 2025, 17(19), 3106; https://doi.org/10.3390/nu17193106 - 30 Sep 2025
Abstract
Background/Objectives: Tea, the world’s second most consumed beverage after water, contains diverse phytochemicals that have garnered growing interest for their potential ability to modulate inflammasome activation. This study examined the antioxidant and anti-inflammatory properties of oolong tea (OLT) extracts, with a specific focus [...] Read more.
Background/Objectives: Tea, the world’s second most consumed beverage after water, contains diverse phytochemicals that have garnered growing interest for their potential ability to modulate inflammasome activation. This study examined the antioxidant and anti-inflammatory properties of oolong tea (OLT) extracts, with a specific focus on their regulatory effects on NLRP3 inflammasome assembly—a critical mediator in chronic inflammatory diseases. Methods: OLT extracts were prepared from the Jin-Xuan cultivar with quantification for bioactive components (total phenolics, flavonoids, condensed tannins, and proanthocyanidins). J774A.1 murine macrophages were primed with LPS and stimulated with ATP to induce inflammasome activation. Therapeutic potentials of OLT extracts were assessed by measuring cytokine secretion, expression of NLRP3 inflammasome-related proteins (NLRP3, ASC, Caspase-1, and IL-1β), inflammasome complex formation, and ROS generation via biochemical assays, immunoblotting, and fluorescence microscopy. Results: OLT extracts, particularly at 100 µg/mL, markedly suppressed both the priming and activation phases of NLRP3 inflammasome formation. OLT treatment reduced IL-1β secretion by more than 50%, attenuated ASC oligomerization and speck formation, inhibited caspase-1 cleavage, and lowered intracellular ROS levels by approximately 50%. Conclusions: These findings suggest that OLT extracts exert potent anti-NLRP3 inflammasome activity and offer immunomodulation potential in preventing inflammation-related diseases such as infections, cancer, and neurodegenerative disorders. Further in vivo investigations, followed by clinical applications and epidemiological studies, are warranted to validate these preventive effects in human populations. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

33 pages, 6305 KB  
Article
Combined Effects of Atorvastatin and Glucose Deprivation on Metabolic Stress and Lipid-Raft Disruption in Glioblastoma and Breast Cancer Cells
by Walhan Alshaer, Yousef Ijjeh, Nowar Alsarayreh, Dana A. Alqudah, Alaa Rifai, Ahmed Abu-Siniyeh and Mohammad Alsalem
Pharmaceutics 2025, 17(10), 1275; https://doi.org/10.3390/pharmaceutics17101275 - 29 Sep 2025
Abstract
Background/Objectives: Atorvastatin, a lipophilic HMG-CoA reductase inhibitor used for lipid lowering, also exhibits considerable anti-neoplastic activity. Although previous studies have shown that glucose starvation can potentiate several anticancer chemotherapies, atorvastatin has not been rigorously investigated for its impact on metabolic vulnerabilities and the [...] Read more.
Background/Objectives: Atorvastatin, a lipophilic HMG-CoA reductase inhibitor used for lipid lowering, also exhibits considerable anti-neoplastic activity. Although previous studies have shown that glucose starvation can potentiate several anticancer chemotherapies, atorvastatin has not been rigorously investigated for its impact on metabolic vulnerabilities and the effects on cholesterol-rich lipid rafts in aggressive tumors. This work aims to evaluate the combined anticancer activity of atorvastatin with metabolic interventions, specifically glucose starvation, on U-87 (glioblastoma) and MDA-MB-231 (triple-negative breast cancer) cell lines. Methods: U-87 and MDA-MB-231 cancer cells were cultured in either normal or glucose-free media and treated with different concentrations of atorvastatin. The impact of atorvastatin on these cancer cells was analyzed by examining cell viability, apoptosis, cell cycle, and changes in membrane order within lipid rafts. Results: This study found that glucose starvation increased the sensitivity of U-87 cells to atorvastatin by lowering IC50 values and eliciting arrest in the G1 phase of the cell cycle. MDA-MB-231 cells were less dependent on glucose for viability; however, atorvastatin consistently induced S-phase arrest across both metabolic states. Additionally, atorvastatin induced apoptosis in both U-87 and MDA-MB-231 cells, with the effect being more pronounced and dose-dependent in the fasting state with glucose. Interestingly, both Caspase-3 and Caspase-9 were consistently downregulated by atorvastatin in U-87 cells, regardless of the fasting state, corresponding to the induction of cell cycle arrest. Membrane lipid rafts exhibited decreased membrane order under glucose starvation, which was further decreased in response to atorvastatin in both cell lines, indicating a reduction in cholesterol. Conclusions: These results demonstrate that atorvastatin exhibits anticancer activity, characterized by both contextual and metabolic targeted effects, including a reduction in cancer proliferation, the triggering of cell cycle arrest via the downregulation of caspase pathways, and a decrease in membrane order. Notably, the combined activity of combining antilipemic agents with glucose-fasting provides potential metabolic strategies that could help create more effective and personalized approaches to cancer treatment. Full article
Show Figures

Graphical abstract

Back to TopTop