Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = cathepsin S inhibitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5289 KiB  
Article
In Silico and In Vitro Studies of the Approved Antibiotic Ceftaroline Fosamil and Its Metabolites as Inhibitors of SARS-CoV-2 Replication
by Cássia Delgado, Pablo Andrei Nogara, Milene Dias Miranda, Alice Santos Rosa, Vivian Neuza Santos Ferreira, Luisa Tozatto Batista, Thamara Kelcya Fonseca Oliveira, Folorunsho Bright Omage, Flávia Motta, Izabela Marques Bastos, Laura Orian and João Batista Teixeira Rocha
Viruses 2025, 17(4), 491; https://doi.org/10.3390/v17040491 - 28 Mar 2025
Viewed by 546
Abstract
The SARS-CoV-2 proteases Mpro and PLpro are critical targets for antiviral drug development for the treatment of COVID-19. The 1,2,4-thiadiazole functional group is an inhibitor of cysteine proteases, such as papain and cathepsins. This chemical moiety is also present in ceftaroline [...] Read more.
The SARS-CoV-2 proteases Mpro and PLpro are critical targets for antiviral drug development for the treatment of COVID-19. The 1,2,4-thiadiazole functional group is an inhibitor of cysteine proteases, such as papain and cathepsins. This chemical moiety is also present in ceftaroline fosamil (CF), an FDA-approved fifth-generation cephalosporin antibiotic. This study investigates the interactions between CF, its primary metabolites (M1 is dephosphorylated CF and M2 is an opened β-lactam ring) and derivatives (protonated M1H and M2H), and its open 1,2,4-thiadiazole rings derivatives (open-M1H and open-M2H) with SARS-CoV-2 proteases and evaluates CF’s effects on in vitro viral replication. In silico analyses (molecular docking and molecular dynamics (MD) simulations) demonstrated that CF and its metabolites are potential inhibitors of PLpro and Mpro. Docking analysis indicated that the majority of the ligands were more stable with Mpro than PLpro; however, in vitro biochemical analysis indicated PLpro as the preferred target for CF. CF inhibited viral replication in the human Calu-3 cell model at submicromolar concentrations when added to cell culture medium at 12 h. Our results suggest that CF should be evaluated as a potential repurposing agent for COVID-19, considering not only viral proteases but also other viral targets and relevant cellular pathways. Additionally, the reactivity of sulfur in the 1,2,4-thiadiazole moiety warrants further exploration for the development of viral protease inhibitors. Full article
Show Figures

Figure 1

17 pages, 4928 KiB  
Article
Targeting p70S6K1 Inhibits Glycated Albumin-Induced Triple-Negative Breast Cancer Cell Invasion and Overexpression of Galectin-3, a Potential Prognostic Marker in Diabetic Patients with Invasive Breast Cancer
by Fatimah Alanazi, Abdulmonem A. Alsaleh, Mariam K. Alamoudi, Abdulrahman Alasiri, Amanda Haymond and Sabine Matou-Nasri
Biomedicines 2025, 13(3), 612; https://doi.org/10.3390/biomedicines13030612 - 3 Mar 2025
Viewed by 901
Abstract
Background: There is an urgent need to identify new biomarkers for early diagnosis and development of therapeutic strategies for diabetes mellitus (DM) patients who have invasive breast cancer (BC). We previously reported the increased activated form of 70 kDa ribosomal protein S6 kinase [...] Read more.
Background: There is an urgent need to identify new biomarkers for early diagnosis and development of therapeutic strategies for diabetes mellitus (DM) patients who have invasive breast cancer (BC). We previously reported the increased activated form of 70 kDa ribosomal protein S6 kinase 1 (phospho-p70S6K1) in a triple-negative BC (TNBC) cell line MDA-MB-231 exposed to glycated albumin (GA) and in invasive ductal carcinoma tissues from T2DM patients, compared to untreated cells and their non-diabetic counterparts, respectively. Objective: We aimed to explore the function of p70S6K1 in GA-promoted TNBC progression. Methods: By employing small interference (si)RNA technology or blocking its kinase activity using its specific pharmacological inhibitor, we monitored cell invasion using Transwell® inserts and the expression levels of activated signaling proteins and cancer-related proteins using Western blot. Results: In silico analysis revealed that high mRNA levels of p70S6K1 were associated with an unfavorable prognosis and progression to advanced stages of TNBC in DM patients. The downregulation/blockade of p70S6K1 inhibited GA-promoted MDA-MB-231 cell invasion and the phosphorylation of protein S6 and ERK1/2, the p70S6K1 downstream effector, and the key oncogenic signaling protein, respectively. The suppression of the expression of GA-upregulated cancer proteins, including enolase-2, capping protein CapG, galectin-3, and cathepsin D, was observed after p70S6K1 downregulation/blockade. Further in silico validation analyses revealed increased gene expression of galectin-3 in DM TNBC patients, resulting in poor overall survival and disease-free survival. Conclusions: Targeting p70S6K1 may present a valuable therapeutic strategy, while galectin-3 could serve as a potential prognostic biomarker for invasive BC progression in DM patients. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

21 pages, 2532 KiB  
Article
α-Synuclein Degradation in Brain Pericytes Is Mediated via Akt, ERK, and p38 MAPK Signaling Pathways
by Miki Yokoya, Fuyuko Takata, Takuro Iwao, Junichi Matsumoto, Yasuyoshi Tanaka, Hisataka Aridome, Miho Yasunaga, Junko Mizoguchi, Kazunori Sano and Shinya Dohgu
Int. J. Mol. Sci. 2025, 26(4), 1615; https://doi.org/10.3390/ijms26041615 - 14 Feb 2025
Viewed by 991
Abstract
Parkinson’s disease (PD) is characterized by widespread distribution of Lewy bodies, which are composed of phosphorylated and aggregated forms of α-Synuclein (α-Syn), in the brain. Although the accumulation and propagation of α-Syn contribute to the development of PD, the involvement of the blood–brain [...] Read more.
Parkinson’s disease (PD) is characterized by widespread distribution of Lewy bodies, which are composed of phosphorylated and aggregated forms of α-Synuclein (α-Syn), in the brain. Although the accumulation and propagation of α-Syn contribute to the development of PD, the involvement of the blood–brain barrier (BBB) in these processes remains unknown. Pericytes, one of the cell types that constitute the BBB, degrade various forms of α-Syn. However, the detailed mechanisms involved in α-Syn degradation by pericytes remain poorly understood. Therefore, in this study, we aimed to determine the ability of the BBB-constituting cells, particularly primary cultures of rat pericytes, brain endothelial cells, and astrocytes, to degrade α-Syn. After α-Syn uptake by the cells, intracellular α-Syn decreased only in pericytes. This pericyte-specific α-Syn decrease was inhibited by an autophagy inhibitor, bafilomycin A1, and a proteasome inhibitor, MG132. siRNA-mediated knockdown of degradation enzymes or familial PD-associated genes, including cathepsin D, DJ-1, and LRRK2, did not affect α-Syn clearance in pericytes. However, pharmacological inhibitors of Akt, ERK, and p38 MAPK inhibited α-Syn degradation by pericytes. In conclusion, our results suggest that α-Syn degradation by pericytes is mediated by an autophagy–lysosome system and a ubiquitin–proteasome system via α-Syn-activated Akt, ERK, and p38 MAPK signaling pathways. Full article
Show Figures

Graphical abstract

18 pages, 3842 KiB  
Article
Co-Localized in Amyloid Plaques Cathepsin B as a Source of Peptide Analogs Potential Drug Candidates for Alzheimer’s Disease
by Marilena K. Theodoropoulou, Konstantina D. Vraila, Nikos C. Papandreou, Georgia I. Nasi and Vassiliki A. Iconomidou
Biomolecules 2025, 15(1), 28; https://doi.org/10.3390/biom15010028 - 30 Dec 2024
Viewed by 864
Abstract
Alzheimer’s disease (AD) is a complex neurodegenerative disorder characterized by extracellular amyloid plaques, predominantly consisting of amyloid-β (Aβ) peptides. The oligomeric form of Aβ is acknowledged as the most neurotoxic, propelling the pathological progression of AD. Interestingly, besides A [...] Read more.
Alzheimer’s disease (AD) is a complex neurodegenerative disorder characterized by extracellular amyloid plaques, predominantly consisting of amyloid-β (Aβ) peptides. The oligomeric form of Aβ is acknowledged as the most neurotoxic, propelling the pathological progression of AD. Interestingly, besides Aβ, other proteins are co-localized within amyloid plaques. Peptide analogs corresponding to the “aggregation-prone” regions (APRs) of these proteins could exhibit high-affinity binding to Aβ and significant inhibitory potential against the Aβ oligomerization process. The peptide analogs of co-localized protease, Cathepsin B, may act as such potent inhibitors. In silico studies on the complexes of the oligomeric state of Aβ and Cathepsin B peptide analogs were performed utilizing molecular docking and molecular dynamics simulations, revealing that these analogs disrupt the β-sheet-rich core of Aβ oligomers, a critical structural feature of their stability. Of the four peptide analogs evaluated, two demonstrated considerable potential by effectively destabilizing oligomers while maintaining low self-aggregation propensity, i.e., a crucial consideration for therapeutic safety. These findings point out the potential of APR-derived peptide analogs from co-localized proteins as innovative agents against AD, paving the way for further exploration in peptide-based therapeutic development. Full article
(This article belongs to the Special Issue Amyloid-Beta and Alzheimer’s Disease)
Show Figures

Figure 1

21 pages, 7937 KiB  
Review
Review of Cathepsin K Inhibitor Development and the Potential Role of Phytochemicals
by Dong Oh Moon
Molecules 2025, 30(1), 91; https://doi.org/10.3390/molecules30010091 - 29 Dec 2024
Cited by 1 | Viewed by 1348
Abstract
Cathepsin K plays a pivotal role in bone resorption and has emerged as a prominent therapeutic target for treating bone-related diseases such as osteoporosis. Despite significant advances in synthetic inhibitor development, none have achieved FDA approval due to safety and efficacy challenges. This [...] Read more.
Cathepsin K plays a pivotal role in bone resorption and has emerged as a prominent therapeutic target for treating bone-related diseases such as osteoporosis. Despite significant advances in synthetic inhibitor development, none have achieved FDA approval due to safety and efficacy challenges. This review highlights the potential of phytochemicals as alternative inhibitors, emphasizing their natural origin, structural diversity, and minimal adverse effects. Key phytochemicals, including AC-5-1, Cycloaltilisin 6, Cycloaltilisin 7, Nicolaioidesin C, and Panduratin A, were examined for their inhibitory activities against cathepsin K. While these compounds exhibit varying IC50 values, their docking studies revealed significant interactions within Cathepsin K’s active site, particularly involving critical residues such as Cys25 and His162. However, challenges such as lower potency compared to synthetic inhibitors and limited in vivo studies underscore the need for structural optimization and comprehensive preclinical evaluations. This review discusses biological insights, current limitations, and future strategies for advancing phytochemical-based inhibitors toward clinical applications in managing Cathepsin K-associated diseases. Full article
(This article belongs to the Special Issue Phytochemicals as Valuable Tools for Fighting Metabolic Disorders)
Show Figures

Figure 1

17 pages, 2710 KiB  
Review
Advances in Cathepsin S Inhibition: Challenges and Breakthroughs in Drug Development
by Temitope A. Ajani, Zandisiwe E. Magwebu, Chesa G. Chauke and Kenechukwu Obikeze
Pathophysiology 2024, 31(3), 471-487; https://doi.org/10.3390/pathophysiology31030035 - 3 Sep 2024
Cited by 3 | Viewed by 2365
Abstract
Cathepsin S (CatS) is a proteolytic enzyme and a member of the cysteine protease family of proteolytic enzymes. Cathepsins S, K, and L are particularly similar in terms of their amino acid sequences and interactions with substrates, and this has made it difficult [...] Read more.
Cathepsin S (CatS) is a proteolytic enzyme and a member of the cysteine protease family of proteolytic enzymes. Cathepsins S, K, and L are particularly similar in terms of their amino acid sequences and interactions with substrates, and this has made it difficult to develop inhibitors with specificity for either CatS, CatK, or CatL. The involvement of CatS in various disease pathophysiologies (autoimmune disorders, cardiovascular diseases, cancer, etc.) has made it a very important target in drug development. Efforts have been made since the early 1990s to develop a specific CatS inhibitor without any major success. Following many failed efforts to develop an inhibitor for CatS, it was discovered that interactions with the amino acid residues at the S2 and S3 pockets of CatS are critical for the identification of CatS-specific inhibitors. Amino acid residues at these pockets have been the target of recent research focused on developing a non-covalent, reversible, and specific CatS inhibitor. Methods applied in the identification of CatS inhibitors include molecular modeling, in-vitro screening, and in-vivo studies. The molecular modeling process has proven to be very successful in the identification of CatS-specific inhibitors, with R05459072 (Hoffmann-La Roche) and LY3000328 (Eli Lilly Company) which has completed phase 1 clinical trials. CatS inhibitors identified from 2011 to 2023 with promising prospects are discussed in this article. Full article
Show Figures

Figure 1

22 pages, 4205 KiB  
Article
Tofacitinib Regulates Endostatin via Effects on CD147 and Cathepsin S
by Devy Zisman, Hala Sabtan, Maya M. Rahat, Elina Simanovich, Amir Haddad, Tal Gazitt, Joy Feld, Gleb Slobodin, Adi Kibari, Muna Elias and Michal A. Rahat
Int. J. Mol. Sci. 2024, 25(13), 7267; https://doi.org/10.3390/ijms25137267 - 2 Jul 2024
Viewed by 1530
Abstract
Angiogenesis is critical for rheumatoid arthritis (RA) progression. The effects of tofacitinib, a JAK-STAT inhibitor used for RA treatment, on angiogenesis in RA are unclear. We, therefore, evaluated the levels of angiogenic factors in two systems of a human co-culture of fibroblast (HT1080) [...] Read more.
Angiogenesis is critical for rheumatoid arthritis (RA) progression. The effects of tofacitinib, a JAK-STAT inhibitor used for RA treatment, on angiogenesis in RA are unclear. We, therefore, evaluated the levels of angiogenic factors in two systems of a human co-culture of fibroblast (HT1080) and monocytic (U937) cell lines treated with tofacitinib and in serum samples from RA patients before and after six months of tofacitinib treatment. Tofacitinib reduced CD147 levels, matrix metalloproteinase-9 (MMP-9) activity, and angiogenic potential but increased endostatin levels and secreted proteasome 20S activity. In vitro, tofacitinib did not change CD147 mRNA but increased miR-146a-5p expression and reduced STAT3 phosphorylation. We recently showed that CD147 regulates the ability of MMP-9 and secreted proteasome 20S to cleave collagen XVIIIA into endostatin. We show here that tofacitinib-enhanced endostatin levels are mediated by CD147, as CD147-siRNA or an anti-CD147 antibody blocked proteasome 20S activity. The correlation between CD147 and different disease severity scores supported this role. Lastly, tofacitinib reduced endostatin’ s degradation by inhibiting cathepsin S activity and recombinant cathepsin S reversed this in both systems. Thus, tofacitinib inhibits angiogenesis by reducing pro-angiogenic factors and enhancing the anti-angiogenic factor endostatin in a dual effect mediated partly through CD147 and partly through cathepsin S. Full article
(This article belongs to the Special Issue Rheumatoid Arthritis: Molecular Mechanisms and Immunotherapy)
Show Figures

Figure 1

14 pages, 3098 KiB  
Article
Targeted Library of Phosphonic-Type Inhibitors of Human Neutrophil Elastase
by Karolina Torzyk-Jurowska, Jaroslaw Ciekot and Lukasz Winiarski
Molecules 2024, 29(5), 1120; https://doi.org/10.3390/molecules29051120 - 1 Mar 2024
Cited by 3 | Viewed by 1543
Abstract
Despite many years of research, human neutrophil elastase (HNE) still remains an area of interest for many researchers. This multifunctional representative of neutrophil serine proteases is one of the most destructive enzymes found in the human body which can degrade most of the [...] Read more.
Despite many years of research, human neutrophil elastase (HNE) still remains an area of interest for many researchers. This multifunctional representative of neutrophil serine proteases is one of the most destructive enzymes found in the human body which can degrade most of the extracellular matrix. Overexpression or dysregulation of HNE may lead to the development of several inflammatory diseases. Previously, we presented the HNE inhibitor with kinact/KI value over 2,000,000 [M−1s−1]. In order to optimize its structure, over 100 novel tripeptidyl derivatives of α-aminoalkylphosphonate diaryl esters were synthesized, and their activity toward HNE was checked. To confirm the selectivity of the resultant compounds, several of the most active were additionally checked against the two other neutrophil proteases: proteinase 3 and cathepsin G. The developed modifications allowed us to obtain a compound with significantly increased inhibitory activity against human neutrophil elastase with high selectivity toward cathepsin G, but none toward proteinase 3. Full article
(This article belongs to the Special Issue Design, Synthesis, and Evaluation of Protease Inhibitors)
Show Figures

Graphical abstract

13 pages, 1024 KiB  
Review
The Role of Rosavin in the Pathophysiology of Bone Metabolism
by Piotr Wojdasiewicz, Paweł Turczyn, Anna Lach-Gruba, Łukasz A. Poniatowski, Daryush Purrahman, Mohammad-Reza Mahmoudian-Sani and Dariusz Szukiewicz
Int. J. Mol. Sci. 2024, 25(4), 2117; https://doi.org/10.3390/ijms25042117 - 9 Feb 2024
Cited by 6 | Viewed by 4581
Abstract
Rosavin, a phenylpropanoid in Rhodiola rosea’s rhizome, and an adaptogen, is known for enhancing the body’s response to environmental stress. It significantly affects cellular metabolism in health and many diseases, particularly influencing bone tissue metabolism. In vitro, rosavin inhibits osteoclastogenesis, disrupts F-actin [...] Read more.
Rosavin, a phenylpropanoid in Rhodiola rosea’s rhizome, and an adaptogen, is known for enhancing the body’s response to environmental stress. It significantly affects cellular metabolism in health and many diseases, particularly influencing bone tissue metabolism. In vitro, rosavin inhibits osteoclastogenesis, disrupts F-actin ring formation, and reduces the expression of osteoclastogenesis-related genes such as cathepsin K, calcitonin receptor (CTR), tumor necrosis factor receptor-associated factor 6 (TRAF6), tartrate-resistant acid phosphatase (TRAP), and matrix metallopeptidase 9 (MMP-9). It also impedes the nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), c-Fos, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK) signaling pathways and blocks phosphorylation processes crucial for bone resorption. Moreover, rosavin promotes osteogenesis and osteoblast differentiation and increases mouse runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) expression. In vivo studies show its effectiveness in enhancing bone mineral density (BMD) in postmenopausal osteoporosis (PMOP) mice, restraining osteoclast maturation, and increasing the active osteoblast percentage in bone tissue. It modulates mRNA expressions by increasing eukaryotic translation elongation factor 2 (EEF2) and decreasing histone deacetylase 1 (HDAC1), thereby activating osteoprotective epigenetic mechanisms, and alters many serum markers, including decreasing cross-linked C-telopeptide of type I collagen (CTX-1), tartrate-resistant acid phosphatase 5b (TRACP5b), receptor activator for nuclear factor κ B ligand (RANKL), macrophage-colony-stimulating factor (M-CSF), and TRAP, while increasing alkaline phosphatase (ALP) and OCN. Additionally, when combined with zinc and probiotics, it reduces pro-osteoporotic matrix metallopeptidase 3 (MMP-3), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α), and enhances anti-osteoporotic interleukin 10 (IL-10) and tissue inhibitor of metalloproteinase 3 (TIMP3) expressions. This paper aims to systematically review rosavin’s impact on bone tissue metabolism, exploring its potential in osteoporosis prevention and treatment, and suggesting future research directions. Full article
Show Figures

Figure 1

15 pages, 3728 KiB  
Article
Human β-Defensin 3 Inhibition of P. gingivalis LPS-Induced IL-1β Production by BV-2 Microglia through Suppression of Cathepsins B and L
by Erika Inoue, Shiyo Minatozaki, Sachi Shimizu, Sayaka Miyamoto, Misato Jo, Junjun Ni, Hidetoshi Tozaki-Saitoh, Kosuke Oda, Saori Nonaka and Hiroshi Nakanishi
Cells 2024, 13(3), 283; https://doi.org/10.3390/cells13030283 - 4 Feb 2024
Cited by 11 | Viewed by 2688
Abstract
Cathepsin B (CatB) is thought to be essential for the induction of Porphyromonas gingivalis lipopolysaccharide (Pg LPS)-induced Alzheimer’s disease-like pathologies in mice, including interleukin-1β (IL-1β) production and cognitive decline. However, little is known about the role of CatB in Pg virulence factor-induced [...] Read more.
Cathepsin B (CatB) is thought to be essential for the induction of Porphyromonas gingivalis lipopolysaccharide (Pg LPS)-induced Alzheimer’s disease-like pathologies in mice, including interleukin-1β (IL-1β) production and cognitive decline. However, little is known about the role of CatB in Pg virulence factor-induced IL-1β production by microglia. We first subjected IL-1β-luciferase reporter BV-2 microglia to inhibitors of Toll-like receptors (TLRs), IκB kinase, and the NLRP3 inflammasome following stimulation with Pg LPS and outer membrane vesicles (OMVs). To clarify the involvement of CatB, we used several known CatB inhibitors, including CA-074Me, ZRLR, and human β-defensin 3 (hBD3). IL-1β production in BV-2 microglia induced by Pg LPS and OMVs was significantly inhibited by the TLR2 inhibitor C29 and the IκB kinase inhibitor wedelolactonne, but not by the NLRPs inhibitor MCC950. Both hBD3 and CA-074Me significantly inhibited Pg LPS-induced IL-1β production in BV-2 microglia. Although CA-074Me also suppressed OMV-induced IL-1β production, hBD3 did not inhibit it. Furthermore, both hBD3 and CA-074Me significantly blocked Pg LPS-induced nuclear NF-κB p65 translocation and IκBα degradation. In contrast, hBD3 and CA-074Me did not block OMV-induced nuclear NF-κB p65 translocation or IκBα degradation. Furthermore, neither ZRLR, a specific CatB inhibitor, nor shRNA-mediated knockdown of CatB expression had any effect on Pg virulence factor-induced IL-1β production. Interestingly, phagocytosis of OMVs by BV-2 microglia induced IL-1β production. Finally, the structural models generated by AlphaFold indicated that hBD3 can bind to the substrate-binding pocket of CatB, and possibly CatL as well. These results suggest that Pg LPS induces CatB/CatL-dependent synthesis and processing of pro-IL-1β without activation of the NLRP3 inflammasome. In contrast, OMVs promote the synthesis and processing of pro-IL-1β through CatB/CatL-independent phagocytic mechanisms. Thus, hBD3 can improve the IL-1β-associated vicious inflammatory cycle induced by microglia through inhibition of CatB/CatL. Full article
Show Figures

Graphical abstract

15 pages, 2143 KiB  
Article
Unveiling the Antiviral Efficacy of Forskolin: A Multifaceted In Vitro and In Silico Approach
by Yhiya Amen, Mohamed A Selim, Reda A. Suef, Ahmed M. Sayed and Ahmed Othman
Molecules 2024, 29(3), 704; https://doi.org/10.3390/molecules29030704 - 3 Feb 2024
Cited by 1 | Viewed by 2778
Abstract
Coleus forskohlii (Willd.) Briq. is a medicinal herb of the Lamiaceae family. It is native to India and widely present in the tropical and sub-tropical regions of Egypt, China, Ethiopia, and Pakistan. The roots of C. forskohlii are edible, rich with pharmaceutically bioactive [...] Read more.
Coleus forskohlii (Willd.) Briq. is a medicinal herb of the Lamiaceae family. It is native to India and widely present in the tropical and sub-tropical regions of Egypt, China, Ethiopia, and Pakistan. The roots of C. forskohlii are edible, rich with pharmaceutically bioactive compounds, and traditionally reported to treat a variety of diseases, including inflammation, respiratory disorders, obesity, and viral ailments. Notably, the emergence of viral diseases is expected to quickly spread; consequently, these data impose a need for various approaches to develop broad active therapeutics for utilization in the management of future viral infectious outbreaks. In this study, the naturally occurring labdane diterpenoid derivative, Forskolin, was obtained from Coleus forskohlii. Additionally, we evaluated the antiviral potential of Forskolin towards three viruses, namely the herpes simplex viruses 1 and 2 (HSV-1 and HSV-2), hepatitis A virus (HAV), and coxsackievirus B4 (COX-B4). We observed that Forskolin displayed antiviral activity against HAV, COX-B4, HSV-1, and HSV-2 with IC50 values of 62.9, 73.1, 99.0, and 106.0 μg/mL, respectively. Furthermore, we explored the Forskolin’s potential antiviral target using PharmMapper, a pharmacophore-based virtual screening platform. Forskolin’s modeled structure was analyzed to identify potential protein targets linked to its antiviral activity, with results ranked based on Fit scores. Cathepsin L (PDB ID: 3BC3) emerged as a top-scoring hit, prompting further exploration through molecular docking and MD simulations. Our analysis revealed that Forskolin’s binding mode within Cathepsin L’s active site, characterized by stable hydrogen bonding and hydrophobic interactions, mirrors that of a co-crystallized inhibitor. These findings, supported by consistent RMSD profiles and similar binding free energies, suggest Forskolin’s potential in inhibiting Cathepsin L, highlighting its promise as an antiviral agent. Full article
(This article belongs to the Special Issue Functional Evaluation of Bioactive Compounds from Natural Sources)
Show Figures

Figure 1

18 pages, 3903 KiB  
Article
Differential LRRK2 Signalling and Gene Expression in WT-LRRK2 and G2019S-LRRK2 Mouse Microglia Treated with Zymosan and MLi2
by Iqra Nazish, Adamantios Mamais, Anna Mallach, Conceicao Bettencourt, Alice Kaganovich, Thomas Warner, John Hardy, Patrick A. Lewis, Jennifer Pocock, Mark R. Cookson and Rina Bandopadhyay
Cells 2024, 13(1), 53; https://doi.org/10.3390/cells13010053 - 26 Dec 2023
Viewed by 3672
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause autosomal dominant Parkinson’s disease (PD), with the most common causative mutation being the LRRK2 p.G2019S within the kinase domain. LRRK2 protein is highly expressed in the human brain and also in [...] Read more.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause autosomal dominant Parkinson’s disease (PD), with the most common causative mutation being the LRRK2 p.G2019S within the kinase domain. LRRK2 protein is highly expressed in the human brain and also in the periphery, and high expression of dominant PD genes in immune cells suggests involvement of microglia and macrophages in inflammation related to PD. LRRK2 is known to respond to extracellular signalling including TLR4, resulting in alterations in gene expression, with the response to TLR2 signalling through zymosan being less known. Here, we investigated the effects of zymosan, a TLR2 agonist and the potent and specific LRRK2 kinase inhibitor MLi-2 on gene expression in microglia from LRRK2-WT and LRRK2 p.G2019S knock-in mice by RNA-sequencing analysis. We observed both overlapping and distinct zymosan and MLi-2 mediated gene expression profiles in microglia. At least two candidate genome-wide association (GWAS) hits for PD, CathepsinB (Ctsb) and Glycoprotein-nmb (Gpnmb), were notably downregulated by zymosan treatment. Genes involved in inflammatory response and nervous system development were up and downregulated, respectively, with zymosan treatment, while MLi-2 treatment particularly exhibited upregulated genes for ion transmembrane transport regulation. Furthermore, we observed that the top twenty most significantly differentially expressed genes in LRRK2 p.G2019S microglia show enriched biological processes in iron transport and response to oxidative stress. Overall, these results suggest that microglial LRRK2 may contribute to PD pathogenesis through altered inflammatory pathways. Our findings should encourage future investigations of these putative avenues in the context of PD pathogenesis. Full article
Show Figures

Figure 1

14 pages, 4472 KiB  
Article
MET Oncogene Enhances Pro-Migratory Functions by Counteracting NMDAR2B Cleavage
by Simona Gallo, Annapia Vitacolonna, Paolo Maria Comoglio and Tiziana Crepaldi
Cells 2024, 13(1), 28; https://doi.org/10.3390/cells13010028 - 21 Dec 2023
Cited by 1 | Viewed by 1768
Abstract
The involvement of the N-methyl-D-aspartate receptor (NMDAR), a glutamate-gated ion channel, in promoting the invasive growth of cancer cells is an area of ongoing investigation. Our previous findings revealed a physical interaction between NMDAR and MET, the hepatocyte growth factor (HGF) receptor. However, [...] Read more.
The involvement of the N-methyl-D-aspartate receptor (NMDAR), a glutamate-gated ion channel, in promoting the invasive growth of cancer cells is an area of ongoing investigation. Our previous findings revealed a physical interaction between NMDAR and MET, the hepatocyte growth factor (HGF) receptor. However, the molecular mechanisms underlying this NMDAR/MET interaction remain unclear. In this study, we demonstrate that the NMDAR2B subunit undergoes proteolytic processing, resulting in a low-molecular-weight form of 100 kDa. Interestingly, when the NMDAR2B and MET constructs were co-transfected, the full-size high-molecular-weight NMDAR2B form of 160 kDa was predominantly observed. The protection of NMDAR2B from cleavage was dependent on the kinase activity of MET. We provide the following evidence that MET opposes the autophagic lysosomal proteolysis of NMDAR2B: (i) MET decreased the protein levels of lysosomal cathepsins; (ii) treatment with either an inhibitor of autophagosome formation or the fusion of the autophagosome and lysosome elevated the proportion of the NMDAR2B protein’s uncleaved form; (iii) a specific mTOR inhibitor hindered the anti-autophagic effect of MET. Finally, we demonstrate that MET coopts NMDAR2B to augment cell migration. This implies that MET harnesses the functionality of NMDAR2B to enhance the ability of cancer cells to migrate. Full article
Show Figures

Figure 1

15 pages, 2814 KiB  
Article
The Significance of Cathepsin B in Mediating Radiation Resistance in Colon Carcinoma Cell Line (Caco-2)
by Ramadan F. Abdelaziz, Ahmed M. Hussein, Mohamed H. Kotob, Christina Weiss, Krzysztof Chelminski, Christian R. Studenik and Mohammed Aufy
Int. J. Mol. Sci. 2023, 24(22), 16146; https://doi.org/10.3390/ijms242216146 - 9 Nov 2023
Cited by 6 | Viewed by 2535
Abstract
Cathepsins (Caths) are lysosomal proteases that participate in various physiological and pathological processes. Accumulating evidence suggests that caths play a multifaceted role in cancer progression and radiotherapy resistance responses. Their proteolytic activity influences the tumor’s response to radiation by affecting oxygenation, nutrient availability, [...] Read more.
Cathepsins (Caths) are lysosomal proteases that participate in various physiological and pathological processes. Accumulating evidence suggests that caths play a multifaceted role in cancer progression and radiotherapy resistance responses. Their proteolytic activity influences the tumor’s response to radiation by affecting oxygenation, nutrient availability, and immune cell infiltration within the tumor microenvironment. Cathepsin-mediated DNA repair mechanisms can promote radioresistance in cancer cells, limiting the efficacy of radiotherapy. Additionally, caths have been associated with the activation of prosurvival signaling pathways, such as PI3K/Akt and NF-κB, which can confer resistance to radiation-induced cell death. However, the effectiveness of radiotherapy can be limited by intrinsic or acquired resistance mechanisms in cancer cells. In this study, the regulation and expression of cathepsin B (cath B) in the colon carcinoma cell line (caco-2) before and after exposure to radiation were investigated. Cells were exposed to escalating ionizing radiation doses (2 Gy, 4 Gy, 6 Gy, 8 Gy, and 10 Gy). Analysis of protein expression, in vitro labeling using activity-based probes DCG04, and cath B pull-down revealed a radiation-induced up-regulation of cathepsin B in a dose-independent manner. Proteolytic inhibition of cathepsin B by cathepsin B specific inhibitor CA074 has increased the cytotoxic effect and cell death due to ionizing irradiation treatment in caco-2 cells. Similar results were also obtained after cathepsin B knockout by CRISPR CAS9. Furthermore, upon exposure to radiation treatment, the inhibition of cath B led to a significant upregulation in the expression of the proapoptotic protein BAX, while it induced a significant reduction in the expression of the antiapoptotic protein BCL-2. These results showed that cathepsin B could contribute to ionizing radiation resistance, and the abolishment of cathepsin B, either by inhibition of its proteolytic activity or expression, has increased the caco-2 cells susceptibility to ionizing irradiation. Full article
(This article belongs to the Special Issue The Role of Lysosomal Proteases in Cancer and Infectious Diseases)
Show Figures

Graphical abstract

26 pages, 1342 KiB  
Article
Salivary Cystatin D Interactome in Patients with Systemic Mastocytosis: An Exploratory Study
by Simone Serrao, Cristina Contini, Giulia Guadalupi, Alessandra Olianas, Greca Lai, Irene Messana, Massimo Castagnola, Giulia Costanzo, Davide Firinu, Stefano Del Giacco, Barbara Manconi and Tiziana Cabras
Int. J. Mol. Sci. 2023, 24(19), 14613; https://doi.org/10.3390/ijms241914613 - 27 Sep 2023
Cited by 2 | Viewed by 2624
Abstract
Mastocytosis, a rare blood disorder characterized by the proliferation of clonal abnormal mast cells, has a variegated clinical spectrum and diagnosis is often difficult and delayed. Recently we proposed the cathepsin inhibitor cystatin D-R26 as a salivary candidate biomarker of systemic mastocytosis [...] Read more.
Mastocytosis, a rare blood disorder characterized by the proliferation of clonal abnormal mast cells, has a variegated clinical spectrum and diagnosis is often difficult and delayed. Recently we proposed the cathepsin inhibitor cystatin D-R26 as a salivary candidate biomarker of systemic mastocytosis (SM). Its C26 variant is able to form multiprotein complexes (mPCs) and since protein–protein interactions (PPIs) are crucial for studying disease pathogenesis, potential markers, and therapeutic targets, we aimed to define the protein composition of the salivary cystatin D-C26 interactome associated with SM. An exploratory affinity purification-mass spectrometry method was applied on pooled salivary samples from SM patients, SM patient subgroups with and without cutaneous symptoms (SM+C and SM−C), and healthy controls (Ctrls). Interactors specifically detected in Ctrls were found to be implicated in networks associated with cell and tissue homeostasis, innate system, endopeptidase regulation, and antimicrobial protection. Interactors distinctive of SM−C patients participate to PPI networks related to glucose metabolism, protein S-nitrosylation, antibacterial humoral response, and neutrophil degranulation, while interactors specific to SM+C were mainly associated with epithelial and keratinocyte differentiation, cytoskeleton rearrangement, and immune response pathways. Proteins sensitive to redox changes, as well as proteins with immunomodulatory properties and activating mast cells, were identified in patients; many of them were involved directly in cytoskeleton rearrangement, a process crucial for mast cell activation. Although preliminary, these results demonstrate that PPI alterations of the cystatin D-C26 interactome are associated with SM and provide a basis for future investigations based on quantitative proteomic analysis and immune validation. Full article
(This article belongs to the Special Issue Mast Cells in Immunity and Diseases)
Show Figures

Figure 1

Back to TopTop