Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (20,754)

Search Parameters:
Keywords = cell surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3625 KB  
Article
Checkpoint Imbalance in Primary Glomerulopathies: Comparative Insights into IgA Nephropathy and Membranoproliferative Glomerulonephritis
by Sebastian Mertowski, Paulina Mertowska, Milena Czosnek, Iwona Smarz-Widelska, Wojciech Załuska and Ewelina Grywalska
Cells 2025, 14(19), 1551; https://doi.org/10.3390/cells14191551 - 3 Oct 2025
Abstract
Introduction: Primary glomerulopathies are immune-driven kidney diseases. IgA nephropathy (IgAN) and membranoproliferative glomerulonephritis (MPGN) are prevalent entities with a risk of chronic progression. Immune checkpoints, such as PD-1/PD-L1, CTLA-4/CD86, and CD200R/CD200, regulate activation and tolerance in T, B, and NK cells, and also [...] Read more.
Introduction: Primary glomerulopathies are immune-driven kidney diseases. IgA nephropathy (IgAN) and membranoproliferative glomerulonephritis (MPGN) are prevalent entities with a risk of chronic progression. Immune checkpoints, such as PD-1/PD-L1, CTLA-4/CD86, and CD200R/CD200, regulate activation and tolerance in T, B, and NK cells, and also exist in soluble forms, reflecting systemic immune balance. Objective: To compare immune checkpoint profiles in IgAN and MPGN versus healthy volunteers (HV) through surface expression, soluble serum levels, and PBMC transcripts, with attention to sex-related differences and diagnostic value assessed by ROC curves. Materials and Methods: Ninety age-matched subjects were studied: IgAN (n = 30), MPGN (n = 30), HV (n = 30). Flow cytometry evaluated checkpoint expression on CD4+/CD8+ T cells, CD19+ B cells, and NK cells. ELISA quantified sPD-1, sPD-L1, sCTLA-4, sCD86, sCD200, sCD200R; PBMC transcript levels were assessed. Group comparisons, sex stratification, and ROC analyses were performed. Results: Lymphocyte distributions were preserved, but IgAN patients showed anemia and impaired renal function, while MPGN patients had greater proteinuria and dyslipidemia. GN patients displayed increased PD-1/PD-L1 and CD200R/CD200, with reduced CTLA-4/CD86, compared to HV. Serum analysis revealed elevated sPD-1, sPD-L1, sCD200, sCD200R and decreased sCTLA-4, sCD86. PBMC transcripts paralleled these trends, with PD-1/PD-L1 mainly increased in MPGN. Sex had minimal impact. ROC analyses showed strong GN vs. HV discrimination by CD19+CTLA-4+, PD-1/PD-L1, and CD200/CD200R, but limited ability to separate IgAN from MPGN. Conclusions: IgAN and MPGN share a sex-independent checkpoint signature: PD-1/PD-L1 and CD200R/CD200 upregulation with CTLA-4/CD86 downregulation. CD19+, CTLA-4+, and soluble PD-1/PD-L1/CD200(R) emerge as promising biomarkers requiring further validation. Full article
(This article belongs to the Special Issue Kidney Disease: The Role of Cellular Mechanisms in Renal Pathology)
Show Figures

Figure 1

19 pages, 2645 KB  
Article
Sol–Gel Synthesis of Carbon-Containing Na3V2(PO4)3: Influence of the NASICON Crystal Structure on Cathode Material Properties
by Oleg O. Shichalin, Zlata E. Priimak, Alina Seroshtan, Polina A. Marmaza, Nikita P. Ivanov, Anton V. Shurygin, Danil K. Tsygankov, Roman I. Korneikov, Vadim V. Efremov, Alexey V. Ognev and Eugeniy K. Papynov
J. Compos. Sci. 2025, 9(10), 543; https://doi.org/10.3390/jcs9100543 - 3 Oct 2025
Abstract
With the rapid advancement of energy storage technologies, there is a growing demand for affordable, efficient, and environmentally benign battery systems. Sodium-ion batteries (SIBs) present a promising alternative to lithium-ion systems due to sodium’s high abundance and similar electrochemical properties. Particular attention is [...] Read more.
With the rapid advancement of energy storage technologies, there is a growing demand for affordable, efficient, and environmentally benign battery systems. Sodium-ion batteries (SIBs) present a promising alternative to lithium-ion systems due to sodium’s high abundance and similar electrochemical properties. Particular attention is given to developing NASICON -sodium (Na) super ionic conductor, type cathode materials, especially Na3V2(PO4)3, which exhibits high thermal and structural stability. This study focuses on the sol–gel synthesis of Na3V2(PO4)3 using citric acid and ethylene glycol, as well as investigating the effect of annealing temperature (400–1000 °C) on its structural and electrochemical properties. Phase composition, morphology, textural characteristics, and electrochemical performance were systematically analyzed. Above 700 °C, a highly crystalline NASICON phase free of secondary impurities was formed, as confirmed by X-ray diffraction (XRD). Microstructural evolution revealed a transition from a loose amorphous structure to a dense granular morphology, accompanied by changes in specific surface area and porosity. The highest surface area (67.40 m2/g) was achieved at 700 °C, while increasing the temperature to 1000 °C caused pore collapse due to sintering. X-ray photoelectron spectroscopy (XPS) confirmed the predominant presence of V3+ ions and the formation of V4+ at the highest temperature. The optimal balance of high crystallinity, uniform elemental distribution, and stable texture was achieved at 900 °C. Electrochemical testing in a Na/NVP half-cell configuration delivered an initial capacity of 70 mAh/g, which decayed to 55 mAh/g by the 100th cycle, attributed to solid-electrolyte interphase (SEI) formation and irreversible Na+ trapping. These results demonstrate that the proposed approach yields high-quality Na3V2(PO4)3 cathode materials with promising potential for sodium-ion battery applications. Full article
(This article belongs to the Special Issue Composite Materials for Energy Management, Storage or Transportation)
13 pages, 2769 KB  
Article
Topology Optimization Design for Broadband Water-Based Electromagnetic Metamaterial Absorber with High Absorption Rate
by Pengfei Shi, Miao Wang, Yanpeng Zhu, Xiaodong Li, Renjing Gao, Hongge Zhao and Shutian Liu
Photonics 2025, 12(10), 984; https://doi.org/10.3390/photonics12100984 - 3 Oct 2025
Abstract
In order to establish a general design methodology for water-based electromagnetic metamaterial absorber microstructures, a topology optimization method for water-based metamaterial absorber microstructures design was proposed in this paper. According to Mie resonance and impedance matching theory, the realization mechanism and physical model [...] Read more.
In order to establish a general design methodology for water-based electromagnetic metamaterial absorber microstructures, a topology optimization method for water-based metamaterial absorber microstructures design was proposed in this paper. According to Mie resonance and impedance matching theory, the realization mechanism and physical model of the broadband water-based metamaterial absorber were constructed. The highest average in-band absorption rate was taken as the design object; the topological optimization model for water-based metamaterial absorber design was established. A metamaterial absorber microstructure with 16 discretized water columns inside the unit cell was designed as an example. The obtained structure exhibited a very high average in band absorption rate in the specific frequency band. The proposed method was a collaborative optimization approach that employed a single type of design variable, namely water column height, to simultaneously adjust surface impedance matching and specific resonant modes. It provided a feasible method for achieving the highest average absorption rate within a specific band. Full article
Show Figures

Figure 1

10 pages, 4647 KB  
Article
Color-Tunable and Efficient CsPbBr3 Photovoltaics Enabled by a Triple-Functional P3HT Modification
by Yanan Zhang, Zhizhe Wang, Dazheng Chen, Tongwanming Zheng, Menglin Yan, Yibing He, Zihao Wang, Weihang Zhang and Chunfu Zhang
Materials 2025, 18(19), 4579; https://doi.org/10.3390/ma18194579 - 2 Oct 2025
Abstract
All inorganic CsPbBr3 possesses ideal stability in halide perovskites, but its wide bandgap and relatively poor film quality seriously limit the performance enhancement and possible applications of perovskite solar cells (PSCs). In this work, a triple-functional poly(3-Hexylthiophene) (P3HT) modifier was introduced to [...] Read more.
All inorganic CsPbBr3 possesses ideal stability in halide perovskites, but its wide bandgap and relatively poor film quality seriously limit the performance enhancement and possible applications of perovskite solar cells (PSCs). In this work, a triple-functional poly(3-Hexylthiophene) (P3HT) modifier was introduced to realize color-tunable semi-transparent CsPbBr3 PSCs. From the optical perspective, the P3HT acted as the assistant photoactive layer, enhanced the light absorption capacity of the CsPbBr3 film, and broadened the spectrum response range of devices. In view of the hole transport layer, P3HT modified the energy level matching between the CsPbBr3/anode interface and facilitated the hole transport. Simultaneously, the S in P3HT formed a more stable Pb-S bond with the uncoordinated Pb2+ on the surface of CsPbBr3 and played the role of a defect passivator. As the P3HT concentration increased from 0 to 15 mg/mL, the color of CsPbBr3 devices gradually changed from light yellow to reddish brown. The PSC treated by an optimal P3HT concentration of 10 mg/mL achieved a champion power conversion efficiency (PCE) of 8.71%, with a VOC of 1.30 V and a JSC of 8.54 mA/cm2, which are remarkably higher than those of control devices (6.86%, 1.22 V, and 8.21 mA/cm2), as well its non-degrading stability and repeatability. Here, the constructed CsPbBr3/P3HT heterostructure revealed effective paths for enhancing the photovoltaic performance of CsPbBr3 PSCs and boosted their semi-transparent applications in building integrated photovoltaics (BIPVs). Full article
Show Figures

Figure 1

13 pages, 1846 KB  
Article
Toward Circular Carbon: Upcycling Coke Oven Waste into Graphite Anodes for Lithium-Ion Batteries
by Seonhui Choi, Inchan Yang, Byeongheon Lee, Tae Hun Kim, Sei-Min Park and Jung-Chul An
Batteries 2025, 11(10), 365; https://doi.org/10.3390/batteries11100365 - 2 Oct 2025
Abstract
This study presents a sustainable upcycling strategy to convert “Pit,” a carbon-rich coke oven by-product from steel manufacturing, into high-purity graphite for use as an anode material in lithium-ion batteries. Despite its high carbon content, raw Pit contains significant impurities and has irregular [...] Read more.
This study presents a sustainable upcycling strategy to convert “Pit,” a carbon-rich coke oven by-product from steel manufacturing, into high-purity graphite for use as an anode material in lithium-ion batteries. Despite its high carbon content, raw Pit contains significant impurities and has irregular particle morphology, which limits its direct application in batteries. We employed a multi-step, additive-free refinement process—including jet milling, spheroidization, and high-temperature graphitization—to enhance carbon purity and structural properties. The processed Pit-derived graphite showed a much-improved particle size distribution (D50 reduced from 25.3 μm to 14.8 μm & Span reduced from 1.72 to 1.23), increased tap density (from 0.54 to 0.80 g/cm3), and reduced BET surface area, making it suitable for high-performance lithium-ion batteries anodes. Structural characterization by XRD and TEM confirmed dramatically enhanced crystallinity after graphitization (graphitization degree increasing from ~13 for raw Pit to 95.7% for graphitized Pit at 3000 °C). The fully processed graphite (denoted S_Pit3000) delivered a reversible discharge capacity of 346.7 mAh/g with an initial Coulombic efficiency of 93.5% in half-cell tests—comparable to commercial artificial graphite. Furthermore, when composited with silicon oxide to form a hybrid anode, the material achieved an even higher capacity of 418.0 mAh/g under high mass loading conditions. These results highlight the feasibility of transforming industrial coke waste into value-added electrode materials through environmentally friendly physical processes. The upcycled graphite anode meets industrial performance standards, demonstrating a promising route toward circular economy solutions in both the steel and battery industries. Full article
Show Figures

Figure 1

46 pages, 1449 KB  
Review
MXenes in Solid-State Batteries: Multifunctional Roles from Electrodes to Electrolytes and Interfacial Engineering
by Francisco Márquez
Batteries 2025, 11(10), 364; https://doi.org/10.3390/batteries11100364 - 2 Oct 2025
Abstract
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface [...] Read more.
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface terminations, and mechanical resilience, which makes them suitable for diverse functions within the cell architecture. Current studies have shown that MXene-based anodes can deliver reversible lithium storage with Coulombic efficiencies approaching ~98% over 500 cycles, while their use as conductive additives in cathodes significantly improves electron transport and rate capability. As interfacial layers or structural scaffolds, MXenes effectively buffer volume fluctuations and suppress lithium dendrite growth, contributing to extended cycle life. In solid polymer and composite electrolytes, MXene fillers have been reported to increase Li+ conductivity to the 10−3–10−2 S cm−1 range and enhance Li+ transference numbers (up to ~0.76), thereby improving both ionic transport and mechanical stability. Beyond established Ti-based systems, double transition metal MXenes (e.g., Mo2TiC2, Mo2Ti2C3) and hybrid heterostructures offer expanded opportunities for tailoring interfacial chemistry and optimizing energy density. Despite these advances, large-scale deployment remains constrained by high synthesis costs (often exceeding USD 200–400 kg−1 for Ti3C2Tx at lab scale), restacking effects, and stability concerns, highlighting the need for greener etching processes, robust quality control, and integration with existing gigafactory production lines. Addressing these challenges will be crucial for enabling MXene-based SSBs to transition from laboratory prototypes to commercially viable, safe, and high-performance energy storage systems. Beyond summarizing performance, this review elucidates the mechanistic roles of MXenes in SSBs—linking lithiophilicity, field homogenization, and interphase formation to dendrite suppression at Li|SSE interfaces, and termination-assisted salt dissociation, segmental-motion facilitation, and MWS polarization to enhanced electrolyte conductivity—thereby providing a clear design rationale for practical implementation. Full article
(This article belongs to the Collection Feature Papers in Batteries)
20 pages, 6891 KB  
Article
Influence of TiO2 Nanoparticle Concentration on Micro-Arc Oxidized Calcium–Phosphate Coatings: Corrosion Resistance and Biological Response
by Ainur Zhassulan, Bauyrzhan Rakhadilov, Daryn Baizhan, Aidar Kengesbekov, Dauir Kakimzhanov and Nazira Musataeva
Coatings 2025, 15(10), 1142; https://doi.org/10.3390/coatings15101142 - 2 Oct 2025
Abstract
Titanium and its alloys are widely used in biomedical implants due to their favorable mechanical properties and corrosion resistance; however, their natural surface lacks sufficient bioactivity and antibacterial performance. Micro-arc oxidation is a promising approach to producing bioactive coatings, and the incorporation of [...] Read more.
Titanium and its alloys are widely used in biomedical implants due to their favorable mechanical properties and corrosion resistance; however, their natural surface lacks sufficient bioactivity and antibacterial performance. Micro-arc oxidation is a promising approach to producing bioactive coatings, and the incorporation of nanoparticles such as TiO2 may further improve their functionality. This study aimed to determine the optimal TiO2 nanoparticle concentration in the micro-arc oxidation electrolyte that ensures coating stability and biological safety. Calcium–phosphate coatings were fabricated on commercially pure titanium using micro-arc oxidation with two TiO2 concentrations: 0.5 wt.% (MAO 1) and 1 wt.% (MAO 2). Surface morphology, porosity, and phase composition were analyzed by scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction. Corrosion resistance was evaluated via potentiodynamic polarization in NaCl and Ringer’s solutions, while biocompatibility was assessed in vitro using HOS human osteosarcoma cells and MTT assays. Increasing the TiO2 content to 1% decreased coating porosity (13.7% vs. 26.3% for MAO 1), enhanced corrosion protection, and reduced the friction coefficient compared to bare titanium. However, MAO 2 exhibited high cytotoxicity (81% cell death) and partial structural degradation in the biological medium. MAO 1 maintained integrity and showed no toxic effects (3% cell death). These results suggest that 0.5% TiO2 is the optimal concentration, providing a balance between corrosion resistance, mechanical stability, and biocompatibility, supporting the development of safer implant coatings. Full article
Show Figures

Figure 1

16 pages, 2918 KB  
Article
Surface Engineering of Natural Killer Cells with Lipid-Based Antibody Capture Platform for Targeted Chemoimmunotherapy
by Su Yeon Lim, Yeongbeom Kim, Hongbin Kim, Seungmin Han, Jina Yun, Hyun-Ouk Kim, Suk-Jin Ha, Sehyun Chae, Young-Wook Won and Kwang Suk Lim
Pharmaceutics 2025, 17(10), 1285; https://doi.org/10.3390/pharmaceutics17101285 - 1 Oct 2025
Abstract
Next-generation cancer immunotherapy increasingly combines tumor-targeting antibodies or antibody–drug conjugates (ADCs) with immune effector cells to enhance therapeutic precision. However, many existing approaches rely on genetic modification or complex manufacturing, limiting their clinical scalability and rapid deployment. To address this issue, we developed [...] Read more.
Next-generation cancer immunotherapy increasingly combines tumor-targeting antibodies or antibody–drug conjugates (ADCs) with immune effector cells to enhance therapeutic precision. However, many existing approaches rely on genetic modification or complex manufacturing, limiting their clinical scalability and rapid deployment. To address this issue, we developed an antibody capture protein (ACP)-based surface engineering platform that enables the rapid, reversible, and non-genetic functionalization of NK cells with therapeutic antibodies or ADCs. This approach uses a DMPE-PEG-lipid conjugate to anchor thiolated protein A (ACP) to the NK cell membrane via hydrophobic insertion, thereby stably and selectively binding to the Fc region of IgG molecules. Using this strategy, we developed ACP-modified NK cells (AC-NKs) that can selectively capture therapeutic antibodies (trastuzumab (TZ), trastuzumab-emtansine (T-DM1), and sacituzumab (SZ)) pre-bound to each target antigen on tumor cells and induce antigen-specific cytotoxic responses. The resulting AC-NKs exhibited enhanced tumor recognition and cytotoxicity against HER2-positive and Trop-2-positive cancer cells in vitro. Compared with conventional combination therapies, AC-NKs enhanced immune activation, as demonstrated by effective delivery of cytotoxic agents, enhanced cancer cell engagement, and upregulation of CD107a expression. Notably, the system supports multiple antigen targeting and tunable antibody loading, enabling adaptation to tumor heterogeneity and resistant phenotypes. This platform might also provide a simple, scalable, and safe method for rapidly developing programmable immune cell therapies without genetic modification. Its versatility supports multi-antigen targeting and broad applicability across NK and T cell therapies, offering a promising path toward personalized, off-the-shelf chemoimmunotherapy. Full article
(This article belongs to the Special Issue Advanced Drug Delivery Systems for Targeted Immunotherapy)
Show Figures

Figure 1

13 pages, 3844 KB  
Article
Atypical Analysis of a Graphite-Based Anode Prepared Using Aqueous Processes
by Kuan-Yi Liao, Chia-Chin Chang, Yuh-Lang Lee and Ten-Chin Wen
Molecules 2025, 30(19), 3947; https://doi.org/10.3390/molecules30193947 - 1 Oct 2025
Abstract
In order to form a solid electrolyte interphase (SEI) layer using aqueous processes, a graphite anode called MG-AQP was designed by wrapping and crosslinking graphite particles with aqueous composites (AQCs), which contained zwitterionic polymer, zwitterion molecules, and lithium salts. First, MG-AQP was used [...] Read more.
In order to form a solid electrolyte interphase (SEI) layer using aqueous processes, a graphite anode called MG-AQP was designed by wrapping and crosslinking graphite particles with aqueous composites (AQCs), which contained zwitterionic polymer, zwitterion molecules, and lithium salts. First, MG-AQP was used to fabricate a full lithium-ion battery (LIB) cell with Li[Ni0.8Mn0.1Co0.1]O2 (NMC811) as the cathode, denoted as LIB-MG-AQP//NMC811, to demonstrate its performance via a 0.5 C-rate break-in and 1 C-rate cycling. Accordingly, this showed that LIB-MG-AQP exhibits outstanding cyclic stability. To evaluate its electrochemical performance, MG-AQP and lithium metal were used to fabricate a half cell named LIBs-MG-AQP. According to the initial cyclic voltammetry curve, almost no surface reaction for forming an SEI layer exists in LIBs-MG-AQP, illustrating its high initial coulombic efficiency of 92% at a 0.5 C-rate break-in. These outstanding results are due to the fact that the AQC has fewer cracks, thus blocking solvent molecules from passing from the electrolyte into the graphite anode. This study provides new insights to optimize graphite anodes via 0.5 C-rate break-in rather than conventional SEI formation to save time and energy. Full article
(This article belongs to the Special Issue Carbon-Based Electrochemical Materials for Energy Storage)
Show Figures

Figure 1

18 pages, 2514 KB  
Article
Inhibition of Xanthine Oxidase by Four Phenolic Acids: Kinetic, Spectroscopic, Molecular Simulation, and Cellular Insights
by Xiao Wang, Di Su, Xinyu Luo, Bingjie Chen, Khushwant S. Bhullar, Hongru Liu, Chunfang Wang, Jinglin Zhang, Longshen Wang, Hang Yang and Wenzong Zhou
Foods 2025, 14(19), 3404; https://doi.org/10.3390/foods14193404 - 1 Oct 2025
Abstract
The inhibition mechanism and binding properties of four phenolic acids (ferulic acid (FA), p-coumaric acid (CA), gallic acid (GA), and protocatechuic acid (PA)) on xanthine oxidase (XOD) were investigated. All four phenolic acids acted via a mixed inhibition pattern, mainly influencing the [...] Read more.
The inhibition mechanism and binding properties of four phenolic acids (ferulic acid (FA), p-coumaric acid (CA), gallic acid (GA), and protocatechuic acid (PA)) on xanthine oxidase (XOD) were investigated. All four phenolic acids acted via a mixed inhibition pattern, mainly influencing the hydrophobic regions and secondary conformation of XOD through hydrophobic bonding and hydrophobic association. Molecular dynamics simulations exhibited that the complexes of XOD with FA and CA revealed smaller radii of gyration (Rg) and solvent-accessible surface areas (SASA), along with lower variability in root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF), collectively indicating greater structural stability. FA, CA, and PA significantly reduced uric acid (UA) concentration in the 25–100 μM range. Although GA only reduced UA levels in cell models at 25 μM, this effect was likely due to its larger polar surface area, which limits cellular uptake. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) evaluation suggested that these phenolic acids have potential for development. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

21 pages, 5821 KB  
Article
Systematic Study of Gold Nanoparticle Effects on the Performance and Stability of Perovskite Solar Cells
by Sofia Rubtsov, Akshay Puravankara, Edi L. Laufer, Alexander Sobolev, Alexey Kosenko, Vasily Shishkov, Mykola Shatalov, Victor Danchuk, Michael Zinigrad, Albina Musin and Lena Yadgarov
Nanomaterials 2025, 15(19), 1501; https://doi.org/10.3390/nano15191501 - 1 Oct 2025
Abstract
We explore a plasmonic interface for perovskite solar cells (PSCs) by integrating inkjet-printed TiO2-AuNP microdot arrays (MDA) into the electron transport layer. This systematic study examines how the TiO2 blocking layer (BL) surface conditioning, AuNP layer positioning, and nanoparticle loading [...] Read more.
We explore a plasmonic interface for perovskite solar cells (PSCs) by integrating inkjet-printed TiO2-AuNP microdot arrays (MDA) into the electron transport layer. This systematic study examines how the TiO2 blocking layer (BL) surface conditioning, AuNP layer positioning, and nanoparticle loading collectively influence device performance. Pre-annealing the BL increases its hydrophobicity, yielding smaller and denser AuNP microdots with an enhanced localized surface plasmon resonance (LSPR). Positioning the AuNP MDA at the BL/perovskite interface (above the BL) maximizes near-field plasmonic coupling to the absorber, resulting in higher photocurrent and power conversion devices; these trends are corroborated by finite-difference time-domain (FDTD) simulations. Moreover, these devices demonstrate better stability over time compared to those with AuNPs at the transparent electrode (under BL). Although higher AuNP concentrations improve dispersion stability, preserve MAPI crystallinity, and yield more uniform nanoparticle sizes, device measurements showed no performance gains. After annealing, the samples with the Au content of 23 wt% relative to TiO2 achieved optimal PSC efficiency by balancing plasmonic enhancement and charge transport without the increased resistance and recombination losses seen at higher loadings. Importantly, X-ray diffraction (XRD) confirms that introducing the TiO2-AuNP MDA at the interface does not disrupt the perovskite’s crystal structure, underscoring the structural compatibility of this plasmonic enhancement. Overall, our findings highlight a scalable strategy to boost PSC efficiency via engineered light-matter interactions at the nanoscale without compromising the perovskite’s structural integrity. Full article
(This article belongs to the Special Issue Photochemical Frontiers of Noble Metal Nanomaterials)
Show Figures

Figure 1

25 pages, 1507 KB  
Review
Biochemical Programming of the Fungal Cell Wall: A Synthetic Biology Blueprint for Advanced Mycelium-Based Materials
by Víctor Coca-Ruiz
BioChem 2025, 5(4), 33; https://doi.org/10.3390/biochem5040033 - 1 Oct 2025
Abstract
The global transition to a circular bioeconomy is accelerating the demand for sustainable, high-performance materials. Filamentous fungi represent a promising solution, as they function as living foundries that transform low-value biomass into advanced, self-assembling materials. While mycelium-based composites have proven potential, progress has [...] Read more.
The global transition to a circular bioeconomy is accelerating the demand for sustainable, high-performance materials. Filamentous fungi represent a promising solution, as they function as living foundries that transform low-value biomass into advanced, self-assembling materials. While mycelium-based composites have proven potential, progress has been predominantly driven by empirical screening of fungal species and substrates. To unlock their full potential, a paradigm shift from empirical screening to rational design is required. This review introduces a conceptual framework centered on the biochemical programming of the fungal cell wall. Viewed through a materials science lens, the cell wall is a dynamic, hierarchical nanocomposite whose properties can be deliberately tuned. We analyze the contributions of its principal components—the chitin–glucan structural scaffold, the glycoprotein functional matrix, and surface-active hydrophobins—to the bulk characteristics of mycelium-derived materials. We then identify biochemical levers for controlling these properties. External factors such as substrate composition and environmental cues (e.g., pH) modulate cell wall architecture through conserved signaling pathways. Complementing these, an internal synthetic biology toolkit enables direct genetic and chemical intervention. Strategies include targeted engineering of biosynthetic and regulatory genes (e.g., CHS, AGS, GCN5), chemical genetics to dynamically adjust synthesis during growth, and modification of surface chemistry for specialized applications like tissue engineering. By integrating fungal cell wall biochemistry, materials science, and synthetic biology, this framework moves the field from incidental discovery toward the intentional creation of smart, functional, and sustainable mycelium-based materials—aligning material innovation with the imperatives of the circular bioeconomy. Full article
Show Figures

Figure 1

10 pages, 1237 KB  
Protocol
Efficient Collection of Skin Biopsies Using the Tissue Sampling Unit® for Subsequent Cryopreservation and Culture of Fibroblasts
by Phillip H. Purdy, Bethany Redel, Paula Chen, Ashley J. Rahe, Aashi Jivan and Scott F. Spiller
Methods Protoc. 2025, 8(5), 114; https://doi.org/10.3390/mps8050114 - 1 Oct 2025
Abstract
Dermal tissue samples are a rich source of germplasm because they can be readily collected, frozen as part of a genebank collection, digested and cultured, and used for a variety of purposes such as genotyping or other forms of genetic research. Derived fibroblasts [...] Read more.
Dermal tissue samples are a rich source of germplasm because they can be readily collected, frozen as part of a genebank collection, digested and cultured, and used for a variety of purposes such as genotyping or other forms of genetic research. Derived fibroblasts can also be used for somatic cell nuclear transfer, and the remaining cells can be frozen for future use. However, collection of tissues with ear notchers, scalpels, or biopsy punches can be problematic because tissue handling and the tool surfaces can contaminate the samples. Therefore, the modification of the Allflex Tissue Sampling Unit (TSU) system was explored to determine if the technology can empower rapid collection of clean samples that are easily identifiable and portable. Results indicate that the TSU system was efficient, and samples that were collected and processed for tissue culture resulted in successful derivations of fibroblasts from 7 of 11 animals. Thus, the TSU system appears to be a viable option for collecting and preserving dermal tissue for genebanking and other applications where simple, rapid collection of large quantities of samples is required. Full article
(This article belongs to the Section Tissue Engineering and Organoids)
Show Figures

Figure 1

32 pages, 2368 KB  
Article
Quercetin Increases Expression of Membrane-TRAIL in Glioblastoma Cells Resulting in Apoptosis
by Erin M. Thorpe, Gaëlle Muller-Greven, Jamila Hirbawi, Candece L. Gladson and Michael Kalafatis
Cancers 2025, 17(19), 3197; https://doi.org/10.3390/cancers17193197 - 30 Sep 2025
Abstract
Background/Objectives: Glioblastoma isocitrate dehydrogenase (IDH)-wild type (GBM) belongs to a deadly class of cancers with a limited number of effective therapies and a dismal prognosis. Quercetin is a natural flavonoid with proven anti-cancer effects. This study aimed to assess the effect of quercetin [...] Read more.
Background/Objectives: Glioblastoma isocitrate dehydrogenase (IDH)-wild type (GBM) belongs to a deadly class of cancers with a limited number of effective therapies and a dismal prognosis. Quercetin is a natural flavonoid with proven anti-cancer effects. This study aimed to assess the effect of quercetin on recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL)-mediated apoptosis in various GBM cells and control astrocytes. Methods: Two astrocyte cell lines and three GBM cell lines, M059K, T98G, and A172, were treated with quercetin (±rhTRAIL), and the results were evaluated by Western blotting, confocal microscopy, and flow cytometry analyses. Results: Quercetin alone did not induce apoptosis in normal astrocytes. Surprisingly, quercetin alone induced apoptosis in all GBM cell lines through both the intrinsic and extrinsic pathways of apoptosis in a TRAIL-dependent manner. M059K were the most sensitive to quercetin-induced apoptosis, followed by T98G and A172. We determined that GBM cells possess endogenous membrane-TRAIL, and that quercetin, in a time- and concentration-dependent manner, increased the trafficking of membrane-TRAIL to the cell surface. Conclusions: We demonstrate that quercetin alone induces apoptosis in GBM cell lines by facilitating endogenous membrane-TRAIL trafficking to the cell surface, where it can interact with death receptors already present on the surface of neighboring cancer cells, resulting in cell death. This unexpected finding may prove to be invaluable for potential future treatment of patients with GBM, since administration of quercetin can cause increased trafficking of membrane-TRAIL to the cell surface, inducing cancer cell apoptosis without affecting neighboring normal cells. Full article
(This article belongs to the Collection Innovations in Cancer Drug Development Research)
15 pages, 1300 KB  
Article
Synclastic Behavior of the Auxetic Core for Furniture Panels
by Jerzy Smardzewski and Michał Słonina
Appl. Sci. 2025, 15(19), 10614; https://doi.org/10.3390/app151910614 - 30 Sep 2025
Abstract
The cores of honeycomb panels are usually made of hexagonal cells. Due to their structure, they create anticlastic surfaces that are difficult to use in furniture design. Synclastic surfaces in lightweight sandwich panels are typically associated with auxetic cores characterized by a negative [...] Read more.
The cores of honeycomb panels are usually made of hexagonal cells. Due to their structure, they create anticlastic surfaces that are difficult to use in furniture design. Synclastic surfaces in lightweight sandwich panels are typically associated with auxetic cores characterized by a negative Poisson’s ratio. This study aimed to transform the hexagonal cell cores into cells with a negative or positive Poisson’s ratio (NPR, PPR), enabling these cores to form synclastic surfaces. New core structures for synclastic furniture sandwich honeycomb panels were modeled numerically and experimentally. It has been demonstrated that reentrant cells with NPR create synclastic surfaces, and new shapes of core cells, created by transforming hexagonal cells with PPR, also enable the formation of synclastic surfaces. Cores’ synclasticity was assessed in two orthogonal planes using physical models and Finite Element Analysis (FEA). A new and original discovery is the demonstration that not only auxetic but also modified hexagonal cells with Poisson’s ratios of νxy= 0.545 and νyx = 0.512, respectively, exhibit excellent synclastic properties. The agreement between FEA and experiment was very high. The results show that not only NPR but also cell topology provides a practical route to the synclastic formation of cores without the use of auxetic materials. Full article
Back to TopTop