Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,863)

Search Parameters:
Keywords = challenge strain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 1439 KB  
Review
Advances in Algae-Based Bioplastics: From Strain Engineering and Fermentation to Commercialization and Sustainability
by Nilay Kumar Sarker and Prasad Kaparaju
Fermentation 2025, 11(10), 574; https://doi.org/10.3390/fermentation11100574 (registering DOI) - 4 Oct 2025
Abstract
The development of algal bioplastics offers a promising pathway toward sustainable materials that can mitigate reliance on fossil fuel-derived plastics. This article reviews recent advances in algal cultivation, strain optimization, biopolymer extraction, and processing technologies, alongside techno-economic and life cycle assessments. Special emphasis [...] Read more.
The development of algal bioplastics offers a promising pathway toward sustainable materials that can mitigate reliance on fossil fuel-derived plastics. This article reviews recent advances in algal cultivation, strain optimization, biopolymer extraction, and processing technologies, alongside techno-economic and life cycle assessments. Special emphasis is placed on integrated biorefinery models, innovative processing techniques, and the role of government–industry–academia partnerships in accelerating commercialization. The analysis incorporates both demonstrated algal systems and theoretical applications derived from established microbial processes, reflecting the emerging nature of this field. The environmental advantages, market readiness, and scalability challenges of algal bioplastics are critically evaluated, with reference to peer-reviewed studies and industrial pilot projects. The analysis underscores that while technical feasibility has been demonstrated, economic viability and large-scale adoption depend on optimizing yield, reducing production costs, and fostering collaborative frameworks. Future research priorities include enhancing strain performance via AI-enabled screening, expanding product valorization streams, and aligning regulatory standards to support global market integration. Full article
(This article belongs to the Special Issue Algae Biotechnology for Biofuel Production and Bioremediation)
Show Figures

Figure 1

22 pages, 752 KB  
Article
Blood–Brain Barrier Penetration of Novel 4-Trifluoromethyl-Coumarin Hybrids with Antibacterial Properties as Potential Brain Therapeutics in the Context of Spatially Diverse Healthcare Systems
by Paweł Kowalczyk, Dominik Koszelewski, Tomasz Misztal, Michał Szlis, Patrycja Młotkowska, Marcin Gołębiewski, Krzysztof Głowacz, Malwina Kocot, Michał Marczyk, Aleksandra Wypych, Apoloniusz Kurylczyk, Anna Krajewska-Pędzik and Ryszard Ostaszewski
Int. J. Mol. Sci. 2025, 26(19), 9655; https://doi.org/10.3390/ijms26199655 - 3 Oct 2025
Abstract
Effective treatment of central nervous system (CNS) infections remains a major challenge, as most therapeutic agents do not efficiently cross the blood–brain barrier (BBB) and the blood–cerebrospinal fluid barrier (BCSFB). Coumarin derivatives are of particular interest due to their broad pharmacological activity, favorable [...] Read more.
Effective treatment of central nervous system (CNS) infections remains a major challenge, as most therapeutic agents do not efficiently cross the blood–brain barrier (BBB) and the blood–cerebrospinal fluid barrier (BCSFB). Coumarin derivatives are of particular interest due to their broad pharmacological activity, favorable safety profile, and potential to penetrate biological barriers. Eight novel coumarin-based peptidomimetics functionalized with trifluoromethyl or methyl scaffolds were synthesized and evaluated as antimicrobial agents with the ability to cross the blood–brain barrier. Antimicrobial activity of the investigated compounds was tested against Staphylococcus aureus and multiple Escherichia coli strains (K12, R2, R3, R4) using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Cytotoxicity was assessed in vitro in BALB/c-3T3 mouse fibroblasts and αT3-1 pituitary gonadotrope cells using the MTT assay. In vivo studies were performed in sheep to assess transfer of the compounds from blood to cerebrospinal fluid (CSF). All synthesized derivatives demonstrated antimicrobial activity and acceptable cytotoxicity, comparable to those of clinically used antibiotics. CF3-modified coumarin peptidomimetics show promise as antimicrobial agents with the potential to penetrate the BBB/BCSFB. These findings support further investigation of coumarin-based scaffolds as a platform for the development of novel therapeutics for CNS infections. Full article
Show Figures

Graphical abstract

22 pages, 1991 KB  
Review
Therapeutic Potential of Erythrina Genus: Bioactive Phytoconstituents with Potent Antiviral and Antimicrobial Activities
by Muchtaridi Muchtaridi, Samuel Lestyawan, Maitsa Alya Fakhirah, Agus Rusdin, Shela Salsabila, Sandra Megantara, Anas Subarnas and Nur Kusaira Khairul Ikram
Plants 2025, 14(19), 3053; https://doi.org/10.3390/plants14193053 - 2 Oct 2025
Abstract
Infectious diseases present a significant global health challenge, further exacerbated by the rising prevalence of antimicrobial resistance and the limited availability of effective antiviral and antimicrobial agents. The Erythrina genus has garnered scientific interest due to its diverse array of bioactive phytoconstituents, with [...] Read more.
Infectious diseases present a significant global health challenge, further exacerbated by the rising prevalence of antimicrobial resistance and the limited availability of effective antiviral and antimicrobial agents. The Erythrina genus has garnered scientific interest due to its diverse array of bioactive phytoconstituents, with potential therapeutic relevance. This review aims to synthesize and critically assess the existing literature on the antiviral, antibacterial, antifungal, and antiplasmodial properties of Erythrina species. A comprehensive literature search was conducted using PubMed, Scopus, and Google Scholar databases. Relevant studies were identified through keyword searches combining pathogen-specific terms with “Erythrina”. The extracted data were categorized based on the pathogen type and its associated bioactive compounds. Several Erythrina species exhibited substantial antiviral activity against prominent viral pathogens, such as HIV and SARS-CoV-2. Notably, strong antibacterial efficacy was observed against Staphylococcus aureus, including multidrug-resistant strains. Antifungal activity was most pronounced against Candida albicans, while potent antiplasmodial effects were reported against both drug-sensitive and drug-resistant strains of Plasmodium falciparum. These pharmacological effects were predominantly attributed to prenylated flavonoids, isoflavones, pterocarpans, and erythrina-type alkaloids. Further mechanistic studies and in vivo evaluations are essential to fully assess their clinical efficacy and support the development of plant-derived antimicrobial agents. Full article
Show Figures

Figure 1

23 pages, 2058 KB  
Article
Inductive Displacement Sensor Operating in an LC Oscillator System Under High Pressure Conditions—Basic Design Principles
by Janusz Nurkowski and Andrzej Nowakowski
Sensors 2025, 25(19), 6078; https://doi.org/10.3390/s25196078 - 2 Oct 2025
Abstract
The paper presents some design principles of an inductive displacement transducer for measuring the displacement of rock specimens under high hydrostatic pressure. It consists of a single-layer, coreless solenoid mounted directly onto the specimen and connected to an LC oscillator located outside the [...] Read more.
The paper presents some design principles of an inductive displacement transducer for measuring the displacement of rock specimens under high hydrostatic pressure. It consists of a single-layer, coreless solenoid mounted directly onto the specimen and connected to an LC oscillator located outside the pressure chamber, in which it serves as the inductive component. The specimen’s deformation changes the coil’s length and inductance, thereby altering the oscillator’s resonant frequency. Paired with a reference coil, the system achieves strain resolution of ~100 nm at pressures exceeding 400 MPa. Sensor design challenges include both electrical parameters (inductance and resistance of the sensor, capacitance of the resonant circuit) and mechanical parameters (number and diameter of coil turns, their positional stability, wire diameter). The basic requirement is to achieve stable oscillations (i.e., a high Q-factor of the resonant circuit) while maintaining maximum sensor sensitivity. Miniaturization of the sensor and minimizing the tensile force at its mounting points on the specimen are also essential. Improvement of certain sensor parameters often leads to the degradation of others; therefore, the design requires a compromise depending on the specific measurement conditions. This article presents the mathematical interdependencies among key sensor parameters, facilitating optimized sensor design. Full article
(This article belongs to the Topic AI Sensors and Transducers)
Show Figures

Figure 1

14 pages, 1339 KB  
Article
Repurposed Drugs and Efflux Pump Inhibitors Against Gram-Negative Urinary Tract Pathogenic Bacteria
by Annamária Kincses, Márta Nové, Jina Asefi and Gabriella Spengler
Antibiotics 2025, 14(10), 988; https://doi.org/10.3390/antibiotics14100988 - 2 Oct 2025
Abstract
Background/Objectives: Urinary tract infections (UTIs) represent a major healthcare challenge due to antimicrobial resistance and biofilm formation. Our aim was to evaluate whether repurposed drugs and efflux pump inhibitors (EPIs) could provide alternative strategies by investigating their antibacterial, anti-biofilm, and resistance-modifying properties [...] Read more.
Background/Objectives: Urinary tract infections (UTIs) represent a major healthcare challenge due to antimicrobial resistance and biofilm formation. Our aim was to evaluate whether repurposed drugs and efflux pump inhibitors (EPIs) could provide alternative strategies by investigating their antibacterial, anti-biofilm, and resistance-modifying properties against Gram-negative uropathogens under varying pH conditions. Methods: Clinical isolates of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis were tested. Minimum inhibitory concentrations (MICs) of thioridazine (TZ), promethazine (PMZ), fluoxetine (Fx), sertraline (Sr), phenylalanine arginine β-naphthylamide (PAβN), carbonyl cyanide m-chlorophenyl hydrazone (CCCP), and the glutamine uptake inhibitor V9302 were determined at pH 5–8. Biofilm inhibition was assessed by crystal violet staining, while MIC reduction assays tested antibiotic combinations. Efflux pump inhibition was examined using an ethidium bromide accumulation assay. Results: TZ reduced biofilm formation in sensitive K. pneumoniae at all pH levels and enhanced ciprofloxacin (CIP) activity, whereas PMZ showed a weaker effect, limited mainly to neutral pH. Fx and Sr exhibited pH-dependent anti-biofilm activity, with Fx particularly effective against P. mirabilis at alkaline pH. PAβN consistently decreased biofilm biomass in both sensitive and resistant K. pneumoniae and, at pH 7–8, potentiated CIP activity with a 16-fold MIC reduction in the sensitive strain. CCCP showed pH-dependent activity, with stronger effects under acidic conditions, notably in E. coli and P. mirabilis. V9302 was a potent biofilm inhibitor in K. pneumoniae and resistant E. coli and interfered with efflux activity, showing strong effects in acidic environments. Conclusions: Repurposed drugs and EPIs may be useful as antibiotic adjuvants or biofilm inhibitors in treating resistant UTIs. Full article
(This article belongs to the Special Issue New Inhibitors for Overcoming Antimicrobial Resistance)
Show Figures

Graphical abstract

13 pages, 1618 KB  
Article
Application Potential of Lysinibacillus sp. UA7 for the Remediation of Cadmium Pollution
by Yue Liang, Peng Zhao, Haoran Shi and Feiyan Xue
BioChem 2025, 5(4), 34; https://doi.org/10.3390/biochem5040034 - 2 Oct 2025
Abstract
Background: Cadmium (Cd) pollution poses a significant environmental challenge. Microbially induced carbonate precipitation (MICP), an advanced bioremediation approach, relies on the co-precipitation of soluble metals with the microbial hydrolysate from urea. This study isolated a urease-producing strain and evaluated its Cd remediation [...] Read more.
Background: Cadmium (Cd) pollution poses a significant environmental challenge. Microbially induced carbonate precipitation (MICP), an advanced bioremediation approach, relies on the co-precipitation of soluble metals with the microbial hydrolysate from urea. This study isolated a urease-producing strain and evaluated its Cd remediation potential. Methods: The isolated strain UA7 was identified through 16S rDNA gene sequencing. Urease production was enhanced by optimizing the culture conditions, including temperature, dissolved oxygen levels—which were affected by the rotational speed and the design of the Erlenmeyer flask, and the concentration of urea added. Its Cd remediation efficacy was assessed both in water and soil. Results: UA7 was identified as Lysinibacillus sp., achieving peak urease activity of 188 U/mL. The immobilization rates of soluble Cd reached as high as 99.61% and 63.37%, respectively, at initial concentrations of 2000 mg/L in water and 50 mg/kg in soil. The mechanism of Cd immobilization by strain UA7 via MICP was confirmed by the microstructure of the immobilized products with attached bacteria, characteristic absorption peaks, and the formed compound Ca0.67Cd0.33CO3, which were analyzed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The Cd-remediation effect of strain UA7, which reduces lodging in wheat plants, prevents the thinning and yellowing of stems and leaves, and hinders the transition of soluble Cd to the above-ground parts of the plant, was also demonstrated in a pot experiment. Conclusions: Therefore, Lysinibacillus sp. UA7 exhibited high potential for efficiently remediating contaminated Cd. Full article
Show Figures

Graphical abstract

19 pages, 6495 KB  
Article
Integrated Multi-Omics Reveal the Genetic and Metabolic Blueprint for Corn Straw Degradation in the White-Rot Fungus Irpex lacteus J2
by Jian Pang, Shizhen Zhao, Tao Hua, Jiahui Fan, Zhe Yan, Mingyuan Chen, Fan Zhao, Jingshi Yu and Qiaoxia Shang
Biology 2025, 14(10), 1339; https://doi.org/10.3390/biology14101339 - 1 Oct 2025
Abstract
Lignocellulosic agricultural residues represent a rich source of potential feedstock for biorefinery applications, but their valorization remains challenging. The white-rot fungus Irpex lacteus J2 exhibited a promising degradation effect, but its molecular mechanisms of lignocellulose degradation remained largely uncharacterized. Here, we performed high-quality [...] Read more.
Lignocellulosic agricultural residues represent a rich source of potential feedstock for biorefinery applications, but their valorization remains challenging. The white-rot fungus Irpex lacteus J2 exhibited a promising degradation effect, but its molecular mechanisms of lignocellulose degradation remained largely uncharacterized. Here, we performed high-quality whole-genome sequencing and untargeted metabolomic profiling of I. lacteus J2 during the degradation of corn straw as the sole carbon source. The assembled I. lacteus J2 genome contained 14,647 protein-coding genes, revealing a rich genetic repertoire for biomass degradation and secondary metabolite synthesis. Comparative genomics showed high synteny (mean amino acid sequence identity 92.28%) with I. lacteus Irplac1. Untargeted metabolomic analysis unveiled a dynamic metabolic landscape during corn straw fermentation. Dominant metabolite classes included organic acids and derivatives (27.32%) and lipids and lipid-like molecules (25.40%), as well as heterocyclic compounds (20.41%). KEGG pathway-enrichment analysis highlighted significant activation of core metabolic pathways, with prominent enrichment in global metabolism (160 metabolites), amino acid metabolism (99 metabolites), carbohydrate metabolism (24 metabolites), and lipid metabolism (19 metabolites). Fermentation profiles at 3 and 15 days demonstrated substantial metabolic reprogramming, with up to 210 upregulated and 166 downregulated metabolites. Correlation analyses further revealed complex metabolic interdependencies and potential regulatory roles of key compounds. These integrated multi-omics insights significantly expand our understanding of the genetic basis and metabolic versatility, enabling I. lacteus J2 to efficiently utilize lignocellulose. Our findings position I. lacteus J2 as a robust model strain and provide a valuable foundation for developing advanced fungus-based strategies for sustainable bioprocessing and valorization of agricultural residues. Full article
Show Figures

Figure 1

33 pages, 28956 KB  
Article
Load–Deformation Behavior and Risk Zoning of Shallow-Buried Gas Pipelines in High-Intensity Longwall Mining-Induced Subsidence Zones
by Shun Liang, Yingnan Xu, Jinhang Shen, Qiang Wang, Xu Liang, Shaoyou Xu, Changheng Luo, Miao Yang and Yindou Ma
Appl. Sci. 2025, 15(19), 10618; https://doi.org/10.3390/app151910618 - 30 Sep 2025
Abstract
In recent years, controlling the integrity of shallow-buried natural gas pipelines within surface subsidence zones caused by high-intensity underground longwall mining in the Daniudi Gas Field of China’s Ordos Basin has emerged as a critical challenge impacting both mine planning and the safe, [...] Read more.
In recent years, controlling the integrity of shallow-buried natural gas pipelines within surface subsidence zones caused by high-intensity underground longwall mining in the Daniudi Gas Field of China’s Ordos Basin has emerged as a critical challenge impacting both mine planning and the safe, efficient co-exploitation of coal and deep natural gas resources. This study included field measurements and an analysis of surface subsidence data from high-intensity longwall mining operations at the Xiaobaodang No. 2 Coal Mine, revealing characteristic ground movement patterns under intensive extraction conditions. The subsidence basin was systematically divided into pipeline hazard zones using three key deformation indicators: horizontal strain, tilt, and curvature. Through ABAQUS-based 3D numerical modeling of coupled pipeline–coal seam mining systems, this research elucidated the spatiotemporal evolution of pipeline Von Mises stress under varying mining parameters, including working face advance rates, mining thicknesses, and pipeline orientation angles relative to the advance direction. The simulations further uncovered non-synchronous deformation behavior between the pipeline and its surrounding sand and soil, identifying two distinct evolutionary phases and three characteristic response patterns. Based on these findings, targeted pipeline integrity preservation measures were developed, with numerical validation demonstrating that maintaining advance rates below 10 m/d, restricting mining heights to under 2.5 m within the 260 m pre-mining influence zone, and where geotechnically feasible, the maximum stress of the pipeline laid perpendicular to the propulsion direction (90°) can be controlled below 480 MPa, and the separation amount between the pipe and the sand and soil can be controlled below 8.69 mm, which can effectively reduce the interference caused by mining. These results provide significant engineering guidance for optimizing longwall mining parameters while ensuring the structural integrity of shallow-buried pipelines in high-intensity extraction environments. Full article
12 pages, 508 KB  
Article
Coping Together: A Qualitative Study Exploring the Work of Home Health Care Assistants in Ireland
by Suzanne Cullen-Smith, Aoibheann McKeown, Kevin McKenna and Oonagh M. Giggins
Geriatrics 2025, 10(5), 128; https://doi.org/10.3390/geriatrics10050128 - 30 Sep 2025
Abstract
Background/Objectives: Home healthcare assistants (HHCAs) play a vital role in supporting older adults to remain in their homes. Yet, this work is often performed under conditions of emotional strain, limited resources, and systemic undervaluation. This study answers the question, how do HHCAs [...] Read more.
Background/Objectives: Home healthcare assistants (HHCAs) play a vital role in supporting older adults to remain in their homes. Yet, this work is often performed under conditions of emotional strain, limited resources, and systemic undervaluation. This study answers the question, how do HHCAs cope with work-related stress? Methods: Undertaken during the COVID-19 pandemic, a period of heightened stress and mandated social distancing, online interviews were conducted with HHCAs (n = 10). Data were inductively analyzed and themes were identified. Results: It was found that amid experiences of fear, caregiver stress, grief, and exhaustion, HHCAs coped with resource, communication, and care challenges by relying on informal peer-managed communication systems with colleagues. Leveraging existing peer-support coping strategies, HHCAs negotiated caring for others while taking care of themselves alongside a care ecosystem under unprecedented strain. Conclusions: HHCAs are increasingly vital to front-line home health care amid global aging and a shift toward community-based services. Urgent organizational reform is needed to support their well-being, prevent stress, and avoid burnout. Research-informed sector-wide planning must ensure adequate resources to maintain high-quality home care in the face of rising demand and anticipated future health crises. Full article
Show Figures

Graphical abstract

18 pages, 2035 KB  
Review
Streptomyces as Biofactories: A Bibliometric Analysis of Antibiotic Production Against Staphylococcus aureus
by Pablício Pereira Cardoso, Kamila Brielle Pantoja Vasconcelos, Sámia Rocha Pereira, Rafael Silva Cardoso, Ramillys Carvalho de Souza, Lucas Francisco da Silva Nogueira, Suelen Fabrícia dos Santos Bentes, Vivaldo Gemaque de Almeida and Silvia Katrine Rabelo da Silva
Antibiotics 2025, 14(10), 983; https://doi.org/10.3390/antibiotics14100983 - 30 Sep 2025
Abstract
Infections caused by Staphylococcus aureus pose significant public health challenges, particularly due to antibiotic-resistant strains like MRSA. In this context, Streptomyces, a genus known for producing natural antibiotics, emerges as a promising source for novel therapeutic agents. In this study, a bibliometric [...] Read more.
Infections caused by Staphylococcus aureus pose significant public health challenges, particularly due to antibiotic-resistant strains like MRSA. In this context, Streptomyces, a genus known for producing natural antibiotics, emerges as a promising source for novel therapeutic agents. In this study, a bibliometric analysis of the scientific literature (2015–2024) on Streptomyces as antibiotic biofactories against S. aureus was performed, aiming to identify publication trends, collaborative networks, and emerging research areas. Using the Web of Science database, searches were performed with descriptors (“Streptomyces” AND “Staphylococcus aureus”), including original articles and reviews in English. Data were analyzed with VOSviewer and Biblioshiny to visualize collaborative networks, keyword co-occurrences, and trends. A total of 755 articles from 3705 authors were analyzed, highlighting significant collaboration (98.7%). Publications showed marked growth, particularly in Microbiology (21.7%), Pharmacology and Pharmacy (16.8%), and Biotechnology and Applied Microbiology (16.1%). China and India led in publication volume, whereas the United States exhibited the highest citation impact. Key emerging research topics include biosynthesis and metabolic optimization, antimicrobial activity and bioprospecting, mechanisms of antibiotic action and bacterial resistance, and genomic analyses. Research on Streptomyces for antibiotic production against S. aureus demonstrates continuous expansion and global interest, emphasizing the importance of international collaboration and multidisciplinary approaches. Future studies should intensify exploration of biodiverse environments, genetic engineering applications, and combinatorial strategies to effectively address antimicrobial resistance. Full article
Show Figures

Figure 1

30 pages, 3330 KB  
Review
Translational Insights into NK Immunophenotyping: Comparative Surface Marker Analysis and Circulating Immune Cell Profiling in Cancer Immunotherapy
by Kirill K. Tsyplenkov, Arina A. Belousova, Marina V. Zinovyeva, Irina V. Alekseenko and Victor V. Pleshkan
Int. J. Mol. Sci. 2025, 26(19), 9547; https://doi.org/10.3390/ijms26199547 - 30 Sep 2025
Abstract
Cells of the innate immune system, particularly natural killer (NK) cells, serve as the first line of defense against tumor development and play a critical role in antitumor immunity. Characterizing the immune cell pool and its functional state is essential for understanding immunotherapy [...] Read more.
Cells of the innate immune system, particularly natural killer (NK) cells, serve as the first line of defense against tumor development and play a critical role in antitumor immunity. Characterizing the immune cell pool and its functional state is essential for understanding immunotherapy mechanisms and identifying key cellular players. However, defining NK cell populations in mice, the primary model for cancer immunotherapy, is challenging due to strain-specific marker variability and the absence of a universal NK cell marker, such as human CD56. This study evaluates surface markers of NK and other peripheral blood immune cells in both humans and mice, associating these markers with specific functional profiles. Bioinformatic approaches are employed to visualize these markers, enabling rapid immunoprofiling. We explore the translational relevance of these markers in assessing immunotherapy efficacy, including their gene associations, ligand interactions, and interspecies variations. Markers compatible with rapid flow-cytometry-based detection are prioritized to streamline experimental workflows. We propose a standardized immunoprofiling strategy for monitoring systemic immune status and evaluating the effectiveness of immunotherapy in preclinical and clinical settings. This approach facilitates the design of preclinical studies that aim to identify predictive biomarkers for immunotherapy outcomes by monitoring immune status. Full article
(This article belongs to the Special Issue Recent Advances in Immunosuppressive Therapy)
Show Figures

Figure 1

21 pages, 8013 KB  
Article
Immunoproteomic Screening of Candidate Antigens for the Preliminary Development of a Novel Multi-Component and Multi-Epitope Vaccine Against Streptococcus suis Infection
by Yue Zhang, Caiying Li, Yutong Feng, Qibing Gu, Jinwang Hu, Yuhang Li, Lu Xia and Shaopo Zu
Vaccines 2025, 13(10), 1020; https://doi.org/10.3390/vaccines13101020 - 30 Sep 2025
Abstract
Background/Objectives: Streptococcus suis (SS), an important zoonotic pathogen, has caused significant economic losses to the global pig industry. Existing commercial vaccines for SS mainly provide effective protection against a single serotype. Due to the existence of many serotypes and their robust immune [...] Read more.
Background/Objectives: Streptococcus suis (SS), an important zoonotic pathogen, has caused significant economic losses to the global pig industry. Existing commercial vaccines for SS mainly provide effective protection against a single serotype. Due to the existence of many serotypes and their robust immune evasion capabilities, the development of multi-component subunit vaccines or multi-epitope vaccines that provide effective cross-protection against different strains of SS is a key focus of current research. Methods: We applied two-dimensional electrophoresis (2-DE) and immunoblotting to screen for candidate immunogens among the immunogenic cell wall proteins of SS. BALB/c mice were immunized intradermally with a multi-component, multi-epitope vaccine. The vaccine’s safety and immunogenicity were assessed via clinical monitoring, antibody titer detection, cytokine assays, and survival curve analyses. Results: In this study, eight immunogenic cell wall proteins (GH25, Pk, PdhA, Ldh, ExoA, Pgk, MalX, and Dnak) were successfully identified using MALDI-TOF-MS, all of which could induce high IgG antibody titers. Based on the conservation and immunoprotection demonstrated by these eight protective antigenic proteins, PdhA, Ldh, and MalX were screened to construct a multi-component subunit vaccine as a candidate vaccine for providing cross-protection against SS isolates of multiple serotypes. Challenge studies showed that mice immunized with the multi-component subunit vaccine (PdhA, Ldh, and MalX) were protected against challenges with the SS2 virulent strain ZY05719 (62.5% protection) and the SSChz virulent strain CZ130302 (75% protection). Subsequently, we utilized immunoinformatics techniques to design a novel multi-epitope vaccine (MVPLM) derived from the immunogenic proteins PdhA, Ldh, and MalX. However, challenge tests revealed that the MVPLM offered limited protection against SS. Conclusions: These data demonstrate that a multi-component subunit vaccine composed of PdhA, Ldh, and MalX proteins shows promise as a candidate universal vaccine against multiple SS serotypes. Full article
(This article belongs to the Special Issue Vaccines for Porcine Viruses)
Show Figures

Figure 1

14 pages, 858 KB  
Article
In Vivo Characterization and Tissue Tropism of a Wild-Type Yellow Fever Virus Isolate from the 2017–2018 Brazilian Outbreak in C57BL/6 IFNAR1−/− Mice
by Ana Luiza Campos Cruz, Natália Lima Pessoa, Ester Maria Paiva Silva, Sabrynna Brito Oliveira, Jéssica Pauline Coelho Souza, Samantha Stephany Fiuza Meneses Viegas, Anna Catarina Dias Soares Guimarães, Pedro Augusto Alves, Cintia Lopes de Brito Magalhães, Thomas P. Monath, Olindo Assis Martins-Filho, Andréa Teixeira-Carvalho, A. Desiree LaBeaud, Nidia Esther Colquehuanca Arias and Betânia Paiva Drumond
Viruses 2025, 17(10), 1325; https://doi.org/10.3390/v17101325 - 29 Sep 2025
Abstract
Yellow fever remains a significant public health concern in endemic regions of South America and Africa, where periodic outbreaks continue to challenge surveillance and control efforts. Despite the widespread use of vaccines and historical YFV strains in experimental settings, there is limited information [...] Read more.
Yellow fever remains a significant public health concern in endemic regions of South America and Africa, where periodic outbreaks continue to challenge surveillance and control efforts. Despite the widespread use of vaccines and historical YFV strains in experimental settings, there is limited information on the pathogenic behavior of contemporary wild-type isolates in animal models. To address this gap, this study aimed to develop and characterize a murine model infected with a wild-type YFV strain isolated in 2018, from Brazil’s largest sylvatic outbreak in decades. In this study, four-week-old male and female C57BL/6 IFNAR1−/− mice were subcutaneously infected with WT YFV. Mice exhibited a nearly 50% survival rate and developed several clinical signs. Viral loads were assessed in serum and some tissues, collected either upon euthanasia of moribund animals or at the end point. YFV RNA was detected in all sampled tissues and serum. Infectious viral particles were identified in the brains of both sexes and in the testis. No statistically significant differences were observed between males and females in survival, clinical signs, or viral loads. Altogether, this study provides a robust and reproducible murine model for wild-type YFV infection, offering a valuable platform for investigating viral pathogenesis, host responses, and potential therapeutic interventions. Full article
(This article belongs to the Special Issue Advances in Alphavirus and Flavivirus Research, 3rd Edition)
Show Figures

Figure 1

48 pages, 912 KB  
Review
Convergence of Integrated Sensing and Communication (ISAC) and Digital-Twin Technologies in Healthcare Systems: A Comprehensive Review
by Youngboo Kim, Seungmin Oh and Gayoung Kim
Signals 2025, 6(4), 51; https://doi.org/10.3390/signals6040051 - 29 Sep 2025
Abstract
Modern healthcare systems are under growing strain from aging populations, urbanization, and rising chronic disease burdens, creating an urgent need for real-time monitoring and informed decision-making. This survey examines how the convergence of Integrated Sensing and Communication (ISAC) and digital-twin technologies can meet [...] Read more.
Modern healthcare systems are under growing strain from aging populations, urbanization, and rising chronic disease burdens, creating an urgent need for real-time monitoring and informed decision-making. This survey examines how the convergence of Integrated Sensing and Communication (ISAC) and digital-twin technologies can meet that need by analyzing how ISAC unifies sensing and communication to gather and transmit data with high timeliness and reliability and how digital-twin platforms use these streams to maintain continuously updated virtual replicas of patients, devices, and care environments. Our synthesis compares ISAC frequency options across sub-6 GHz, millimeter-wave, and terahertz bandswith respect to resolution, penetration depth, exposure compliance, maturity, and cost, and it discusses joint waveform design and emerging 6G architectures. It also presents reference architecture patterns that connect heterogeneous clinical sensors to ISAC links, data ingestion, semantic interoperability pipelines using Fast Healthcare Interoperability Resources (FHIR) and IEEE 11073, and digital-twin synchronization, and it catalogs clinical and operational applications, together with validation and integration requirements. We conduct a targeted scoping review of peer-reviewed literature indexed in major scholarly databases between January 2015 and July 2025, with inclusion restricted to English-language, peer-reviewed studies already cited by this survey, and we apply a transparent screening and data extraction procedure to support reproducibility. The survey further reviews clinical opportunities enabled by data-synchronized twins, including personalized therapy planning, proactive early-warning systems, and virtual intervention testing, while outlining the technical, clinical, and organizational hurdles that must be addressed. Finally, we examine workflow adaptation; governance and ethics; provider training; and outcome measurement frameworks such as length of stay, complication rates, and patient satisfaction, and we conclude that by highlighting both the integration challenges and the operational upside, this survey offers a foundation for the development of safe, ethical, and scalable data-driven healthcare models. Full article
Show Figures

Figure 1

17 pages, 270 KB  
Article
Health Workforce Attrition in Lithuania: Migration and Career Exit Intentions
by Linas Šablinskas and Mindaugas Stankūnas
Healthcare 2025, 13(19), 2470; https://doi.org/10.3390/healthcare13192470 - 29 Sep 2025
Abstract
Background/Objectives: Human resources for health remain one of the key factors ensuring the effectiveness and accessibility of the healthcare system. Many countries face a shortage of physicians due to the migration of healthcare professionals and career changes, making it crucial to understand [...] Read more.
Background/Objectives: Human resources for health remain one of the key factors ensuring the effectiveness and accessibility of the healthcare system. Many countries face a shortage of physicians due to the migration of healthcare professionals and career changes, making it crucial to understand the underlying causes of these processes. The aim of this study was to assess the intentions to emigrate among Lithuanian medical students, residents, and practicing physicians, as well as to identify the main reasons for migration and plans regarding employment in the medical profession. Methods: The study was conducted using an anonymous, author-designed questionnaire survey, in which 1367 respondents participated. Results: The results indicate that 50.91% of students, 39.70% of residents, and 36.81% of physicians plan to emigrate or do not intend to work in the medical profession at all. The main reasons specified for emigration were higher salaries, better living conditions, and greater professional opportunities. The primary reasons for leaving the medical profession included low salary, physical and psychological strain, and administrative burden (among physicians), also the perception that the profession is not suitable for them (among students and residents). Conclusions: These findings are important for shaping human resource policies and strategies in the Lithuanian healthcare system and may also be valuable for policymakers in other countries facing similar challenges. Full article
Back to TopTop