Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (769)

Search Parameters:
Keywords = charge plasma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3147 KB  
Article
Study of the Design and Characteristics of a Modified Pulsed Plasma Thruster with Graphite and Tungsten Trigger Electrodes
by Merlan Dosbolayev, Zhanbolat Igibayev, Yerbolat Ussenov, Assel Suleimenova and Tamara Aldabergenova
Appl. Sci. 2025, 15(19), 10767; https://doi.org/10.3390/app151910767 - 7 Oct 2025
Viewed by 145
Abstract
The paper presents experimental results for a modified pulsed plasma thruster (PPT) with solid propellant, using a coaxial anode–cathode design. Graphite from pencil leads served as propellant, and a tungsten trigger electrode was tested to reduce carbonization effects. Experiments were performed in a [...] Read more.
The paper presents experimental results for a modified pulsed plasma thruster (PPT) with solid propellant, using a coaxial anode–cathode design. Graphite from pencil leads served as propellant, and a tungsten trigger electrode was tested to reduce carbonization effects. Experiments were performed in a vacuum chamber at 0.001 Pa, employing diagnostics such as discharge current/voltage recording, power measurement, ballistic pendulum, time-of-flight (TOF) method, and a Faraday cup. Current and voltage waveforms matched an oscillatory RLC circuit with variable plasma channel resistance. Key discharge parameters were measured, including current pulse duration/amplitude and plasma channel formation/decay dynamics. Impulse bit values, obtained with a ballistic pendulum, reached up to 8.5 μN·s. Increasing trigger capacitor capacitance reduced thrust due to unstable “pre-plasma” formation and partial pre-discharge energy loss. Using TOF and Faraday cup diagnostics, plasma front velocity, ion current amplitude, current density, and ion concentration were determined. Tungsten electrodes produced lower charged particle concentrations than graphite but offered better adhesion resistance, minimal carbonization, and stable long-term performance. The findings support optimizing trigger electrode materials and PPT operating modes to extend lifetime and stabilize thrust output. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

15 pages, 2241 KB  
Article
Vertically Aligned Carbon Nanotubes Grown on Copper Foil as Electrodes for Electrochemical Double Layer Capacitors
by Chinaza E. Nwanno, Ram Chandra Gotame, John Watt, Winson Kuo and Wenzhi Li
Nanomaterials 2025, 15(19), 1506; https://doi.org/10.3390/nano15191506 - 1 Oct 2025
Viewed by 316
Abstract
This study reports a binder-free, catalyst-free method for fabricating vertically aligned carbon nanotubes (VACNTs) directly on copper (Cu) foil using plasma-enhanced chemical vapor deposition (PECVD) for electrochemical double-layer capacitor (EDLC) applications. This approach eliminates the need for catalyst layers, polymeric binders, or substrate [...] Read more.
This study reports a binder-free, catalyst-free method for fabricating vertically aligned carbon nanotubes (VACNTs) directly on copper (Cu) foil using plasma-enhanced chemical vapor deposition (PECVD) for electrochemical double-layer capacitor (EDLC) applications. This approach eliminates the need for catalyst layers, polymeric binders, or substrate pre-treatments, simplifying electrode design and enhancing electrical integration. The resulting VACNTs form a dense, uniform, and porous array with strong adhesion to the Cu substrate, minimizing contact resistance and improving conductivity. Electrochemical analysis shows gravimetric specific capacitance (Cgrav) and areal specific capacitance (Careal) of 8 F g−1 and 3.5 mF cm−2 at a scan rate of 5 mV/s, with low equivalent series resistance (3.70 Ω) and charge transfer resistance (0.48 Ω), enabling efficient electron transport and rapid ion diffusion. The electrode demonstrates excellent rate capability and retains 92% of its initial specific capacitance after 3000 charge–discharge cycles, indicating strong cycling stability. These results demonstrate the potential of directly grown VACNT-based electrodes for high-performance EDLCs, particularly in applications requiring rapid charge–discharge cycles and sustained energy delivery. Full article
Show Figures

Graphical abstract

24 pages, 928 KB  
Review
Recent Progress in Sustainable Recycling of Waste Acrylonitrile–Butadiene–Styrene (ABS) Plastics
by Simon MoonGeun Jung
Sustainability 2025, 17(19), 8742; https://doi.org/10.3390/su17198742 - 29 Sep 2025
Viewed by 498
Abstract
Acrylonitrile–butadiene–styrene (ABS) has been widely used as an engineering thermoplastic, and the increasing post-consumer waste of ABS plastics calls for efficient and sustainable recycling technologies. The recent advances in ABS recycling technologies were investigated to enhance material recovery, purity, and environmental performance. Thermo-oxidative [...] Read more.
Acrylonitrile–butadiene–styrene (ABS) has been widely used as an engineering thermoplastic, and the increasing post-consumer waste of ABS plastics calls for efficient and sustainable recycling technologies. The recent advances in ABS recycling technologies were investigated to enhance material recovery, purity, and environmental performance. Thermo-oxidative degradation compromises mechanical integrity during reprocessing, while minor reductions in molecular weight increase melt flow rates. Surface modification techniques such as boiling treatment, Fenton reaction, and microwave-assisted flotation facilitate the selective separation of ABS from mixed plastic waste by enhancing its hydrophilicity. Dissolution-based recycling using solvent and anti-solvent systems enables the recovery of high-purity ABS, though some additive losses may occur during subsequent molding. Magnetic levitation and triboelectrostatic separation provide innovative density and charge-based sorting mechanisms for multi-plastic mixtures. Thermochemical routes, including supercritical water gasification and pyrolysis, generate fuel-grade gases and oils from ABS blends. Mechanical recycling remains industrially viable when recycled ABS is blended with virgin resin, whereas plasma-assisted mechanochemistry has emerged as a promising technique to restore mechanical properties. These recycling technologies contribute to a circular plastic economy by improving efficiency, reducing environmental burden, and enabling the reuse of high-performance ABS materials. Full article
(This article belongs to the Special Issue Plastic Recycling and Biopolymer Synthesis for Industrial Application)
Show Figures

Figure 1

15 pages, 2671 KB  
Article
Mechanisms of Thermal Color Change in Brown Elbaite–Fluorelbaite Tourmaline: Insights from Trace Elements and Spectral Signatures
by Kun Li and Suwei Yue
Minerals 2025, 15(10), 1032; https://doi.org/10.3390/min15101032 - 29 Sep 2025
Viewed by 217
Abstract
This study investigates the mechanism behind the heat-induced color change (brown to yellowish green) in Mn- and Fe-rich elbaite tourmaline under reducing atmosphere at 500 °C. A combination of analytical techniques including gemological characterization, electron microprobe analysis (EMPA), laser ablation inductively coupled plasma [...] Read more.
This study investigates the mechanism behind the heat-induced color change (brown to yellowish green) in Mn- and Fe-rich elbaite tourmaline under reducing atmosphere at 500 °C. A combination of analytical techniques including gemological characterization, electron microprobe analysis (EMPA), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and ultraviolet–visible (UV-Vis) spectroscopy was employed. Chemical analysis confirmed the samples as intermediate members of the elbaite–fluorelbaite series, with an average formula of X(Na0.660.26 Ca0.08) Σ1.00Y(Li1.29Al1.10Mn0.31 Fe2+0.15Ti0.01Zn0.01) Σ2.87 ZAl6T[Si6O18] (BO3)3V(OH)3.00W(OH0.51F0.49) Σ1.00, enriched in Mn (17,346–20,669 μg/g) and Fe (8396–10,750 μg/g). Heat treatment enhanced transparency and induced strong pleochroism (yellowish green parallel c-axis, brown perpendicular c-axis). UV-Vis spectroscopy identified the brown color origin in the parallel c-axis direction: absorption bands at 730 nm (Fe2+ dd transition, 5T2g5Eg), 540 nm (Fe2+→Fe3+ intervalence charge transfer, IVCT), and 415 nm (Fe2+→Ti4+ IVCT + possible Mn2+ contribution). Post-treatment, the 540 nm band vanished, creating a green transmission window and causing the color shift parallel the c-axis. The spectra perpendicular to the c-axis remained largely unchanged. The disappearance of the 540 nm band, attributed to the reduction of Fe3+ to Fe2+ eliminating the Fe2+–Fe3+ pair interaction required for IVCT, is the primary color change mechanism. The parallel c-axis section of the samples shows brown and yellow-green dichroism after heat treatment. A decrease in the IR intensity at 4170 cm−1 indicates a reduced Fe3+ concentration. The weakening or disappearance of the 4721 cm−1 absorption band of the infrared spectrum and the near-infrared 976 nm absorption band of the ultraviolet–visible spectrum provides diagnostic indicators for identifying heat treatment in similar brown elbaite–fluorelbaite. Full article
Show Figures

Figure 1

14 pages, 10266 KB  
Article
Color Mechanism of Blue Myanmar Jadeite Jade: The Role of Trace Elements and Mineralogical Characteristics
by Shangzhan Dai, Yu Zhang, Guanghai Shi and Taafee Long
Crystals 2025, 15(10), 843; https://doi.org/10.3390/cryst15100843 - 27 Sep 2025
Viewed by 315
Abstract
Myanmar blue jadeite jade is a rare and highly prized gemstone, yet its coloration and formative mechanisms remain poorly understood. In this study, petrographic analysis, ultraviolet–visible (UV–Vis) spectroscopy, electron probe microanalysis (EPMA), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were performed [...] Read more.
Myanmar blue jadeite jade is a rare and highly prized gemstone, yet its coloration and formative mechanisms remain poorly understood. In this study, petrographic analysis, ultraviolet–visible (UV–Vis) spectroscopy, electron probe microanalysis (EPMA), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were performed on a sample of Myanmar blue jadeite with small white blocks to investigate its mineral composition, trace element distribution, and coloration mechanisms. Most of the sample was found to be blue, with surrounding white areas occurring in small ball-shaped blocks. The main mineral component in both the blue and white domains was jadeite. Although both areas underwent recrystallization, their textures differed significantly. The blue areas retained primary structural features within a medium- to fine-grained texture, reflecting relatively weaker recrystallization. The white areas, however, were recrystallized into a micro-grained texture, reflecting relatively stronger recrystallization, with the superimposed effects of external stress producing a fragmented appearance. The blue jadeite had relatively higher contents of Ti, Fe, Ca, and Mg, while the white jadeite contained compositions close to those of near-end-member jadeite. It was noted that, while white jadeite may have a high Ti content, its Fe content is low. UV–Vis spectra showed a broad absorption band at 610 nm associated with Fe2+-Ti4+ charge transfer and a gradually increasing absorption band starting at 480 nm related to V4+. Combining the chemical composition and the characteristics of the UV–Vis spectra, we infer that the blue coloration of jadeite is attributed to Fe2+-Ti4+ charge transfer; i.e., the presence of both Ti and Fe in blue jadeite plays a key role in its color formation. V4+ exhibited no significant linear correlation with the development of blue coloration. Prominent oscillatory zoning was observed in the jadeite, transitioning from NaAlSi2O6-dominant cores to Ca-Mg-Fe-Ti-enriched rims, reflecting the trend of fluid evolution during blue jadeite crystallization. Petrographic analysis indicated that the formation of the Myanmar blue jadeite occurred in two or three stages, with the blue regions forming earlier than the white regions. The blue jadeite also underwent significant recrystallization. Our findings contribute to the understanding of the formation of blue jadeite and the diversity of colors in jadeite jade. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

22 pages, 76128 KB  
Article
Nonlinear Wave Structures, Multistability, and Chaotic Behavior of Quantum Dust-Acoustic Shocks in Dusty Plasma with Size Distribution Effects
by Huanbin Xue and Lei Zhang
Mathematics 2025, 13(19), 3101; https://doi.org/10.3390/math13193101 - 27 Sep 2025
Viewed by 161
Abstract
This paper presents a detailed study of the (3+1)-dimensional Zakharov–Kuznetsov–Burgers equation to investigate shock-wave phenomena in dusty plasmas with quantum effects. The model provides significant physical insight into nonlinear dispersive and dissipative structures arising in charged-dust–ion environments, corresponding [...] Read more.
This paper presents a detailed study of the (3+1)-dimensional Zakharov–Kuznetsov–Burgers equation to investigate shock-wave phenomena in dusty plasmas with quantum effects. The model provides significant physical insight into nonlinear dispersive and dissipative structures arising in charged-dust–ion environments, corresponding to both laboratory and astrophysical plasmas. We then perform a qualitative, numerically assisted dynamical analysis using bifurcation diagrams, multistability checks, return maps, Poincaré sections, and phase portraits. For both the unperturbed and a perturbed system, we identify chaotic, quasi-periodic, and periodic regimes from these numerical diagnostics; accordingly, our dynamical conclusions are qualitative. We also examine frequency-response and time-delay sensitivity, providing a qualitative classification of nonlinear behavior across a broad parameter range. After establishing the global dynamical picture, traveling-wave solutions are obtained using the Paul–Painlevé approach. These solutions represent shock and solitary structures in the plasma system, thereby bridging the analytical and dynamical perspectives. The significance of this study lies in combining a detailed dynamical framework with exact traveling-wave solutions, allowing a deeper understanding of nonlinear shock dynamics in quantum dusty plasmas. These results not only advance theoretical plasma modeling but also hold potential applications in plasma-based devices, wave propagation in optical fibers, and astrophysical plasma environments. Full article
Show Figures

Figure 1

13 pages, 1623 KB  
Article
The Photodynamic Antibacterial Potential of New Tetracationic Zinc(II) Phthalocyanines Bearing 4-((Diethylmethylammonium)methyl)phenoxy Substituents
by Gennady Meerovich, Dmitry Bunin, Ekaterina Akhlyustina, Igor Romanishkin, Vladimir Levkin, Sergey Kharnas, Maria Stepanova, Alexander Martynov, Victor Loschenov, Yulia Gorbunova and Marina Strakhovskaya
Int. J. Mol. Sci. 2025, 26(19), 9414; https://doi.org/10.3390/ijms26199414 - 26 Sep 2025
Viewed by 233
Abstract
Photodynamic inactivation and antimicrobial photodynamic therapy (PDI/APDT) based on the toxic properties of reactive oxygen species (ROS), which are generated by a number of photoexcited dyes, are promising for preventing and treating infections, especially those associated with drug-resistant pathogens. The negatively charged bacterial [...] Read more.
Photodynamic inactivation and antimicrobial photodynamic therapy (PDI/APDT) based on the toxic properties of reactive oxygen species (ROS), which are generated by a number of photoexcited dyes, are promising for preventing and treating infections, especially those associated with drug-resistant pathogens. The negatively charged bacterial cell surface attracts polycationic photosensitizers, which contribute to the vulnerability of the bacterial plasma membrane to ROS. The integrity of the plasma membrane is critical for the viability of the bacterial cell. Polycationic phthalocyanines are regarded as promising photosensitizers due to their high quantum yields of ROS generation (mainly singlet oxygen), high extinction coefficients in the far-red spectral range, and low dark toxicity. For application in PDI/APDT, the wide range of possibilities of modifying the chemical structure of phthalocyanines is particularly valuable, especially by introducing various peripheral and non-peripheral substituents into the benzene rings. Depending on the type and location of such substituents, it is possible to obtain photosensitizers with different photophysical properties, photochemical activity, solubility in an aqueous medium, biocompatibility, and tropism for certain structures of photoinactivation targets. In this study, we tested novel water-soluble Zn (II) phthalocyanines bearing four 4-((diethylmethylammonium)methyl)phenoxy substituents with symmetric and asymmetric charge distributions for photodynamic antibacterial activity and compared them with those of water-soluble octacationic zinc octakis(cholinyl)phthalocyanine. The obtained results allow us to conclude that the studied tetracationic aryloxy-substituted Zn(II) phthalocyanines effectively bind to the oppositely charged cell wall of the Gram-negative bacteria E. coli. This finding is supported by data on bacteria’s zeta potential neutralization in the presence of phthalocyanine derivatives and fluorescence microscopy images of stained bacterial cells. Asymmetric substitution influences the aggregation and fluorescent characteristics but has little effect on the ability of the studied tetracationic phthalocyanines to sensitize the bioluminescent E. coli K12 TG1 strain. Both symmetric and asymmetric aryloxy-substituted phthalocyanines are no less effective in PDI than the water-soluble zinc octakis(cholinyl)phthalocyanine, a photosensitizer with proven antibacterial activity, and have significant potential for further studies as antibacterial photosensitizers. Full article
(This article belongs to the Special Issue New Molecular Insights into Antimicrobial Photo-Treatments)
Show Figures

Figure 1

15 pages, 2807 KB  
Article
Investigation of the Coloration Mechanisms of Yellow-Green Nephrite from Ruoqiang (Xinjiang), China
by Boling Huang, Mingxing Yang, Xihan Yang, Xuan Wang, Ting Fang, Hongwei Han and Shoucheng Wang
Minerals 2025, 15(9), 961; https://doi.org/10.3390/min15090961 - 10 Sep 2025
Viewed by 441
Abstract
This study systematically investigates the color origin and coloration mechanisms of yellow-green nephrite from Ruoqiang, Xinjiang, using multiple analytical techniques including hyperspectral colorimetry, X-ray fluorescence (XRF) spectroscopy, titrimetry, laser ablation inductively coupled plasma–mass spectrometry (LA-ICP-MS), Raman spectroscopy and ultraviolet–visible (UV-Vis) spectroscopy. A pioneering [...] Read more.
This study systematically investigates the color origin and coloration mechanisms of yellow-green nephrite from Ruoqiang, Xinjiang, using multiple analytical techniques including hyperspectral colorimetry, X-ray fluorescence (XRF) spectroscopy, titrimetry, laser ablation inductively coupled plasma–mass spectrometry (LA-ICP-MS), Raman spectroscopy and ultraviolet–visible (UV-Vis) spectroscopy. A pioneering quantitative model (R2 = 0.942) was established between hue (H) and the Fe2O3 ratio (Fe2O3/TFe), revealing that the coloration mechanism is jointly governed by Fe3+ charge transfer (300–400 nm absorption band) and Fe2+→Fe3+ transitions (600–630 nm absorption band). Furthermore, the intensity variation in the 3651 cm−1 Raman peak serves to further confirm the critical role of Fe3+ occupancy in the tremolite lattice for color modulation. In combination with the partition patterns of Rare Earth elements (REEs) (right-leaning LREE distribution with negative Eu anomaly) and trace element characteristics, this study supports the classification of Ruoqiang yellow-green nephrite as a high oxygen fugacity magnesian marble-type deposit. In this type of deposit, the ore-forming environment facilitates Fe3+ enrichment and yellow-green hue formation. The findings provide new theoretical insights into the chromatic genesis of yellow-green nephrite and hold significant implications for its identification, quality grading, and research on metallogenic mechanisms. Full article
Show Figures

Figure 1

13 pages, 3419 KB  
Article
Semiconducting Tungsten Trioxide Thin Films for High-Performance SERS Biosensors
by Hao Liu, Liping Chen, Bicheng Li, Haizeng Song, Chee Leong Tan, Yi Shi and Shancheng Yan
Nanomaterials 2025, 15(18), 1393; https://doi.org/10.3390/nano15181393 - 10 Sep 2025
Viewed by 429
Abstract
Surface-enhanced Raman Scattering (SERS) enables ultrasensitive detection but is often hindered by biocompatibility and sustainability concerns due to its reliance on noble metal substrates. To overcome these limitations, we develop a semiconductor-based SERS platform utilizing ultrathin tungsten trioxide (WO3) nanofilms synthesized [...] Read more.
Surface-enhanced Raman Scattering (SERS) enables ultrasensitive detection but is often hindered by biocompatibility and sustainability concerns due to its reliance on noble metal substrates. To overcome these limitations, we develop a semiconductor-based SERS platform utilizing ultrathin tungsten trioxide (WO3) nanofilms synthesized via a facile annealing process on fluorine-doped tin oxide (FTO). This system achieves an impressive Raman enhancement factor of 1.36 × 106, enabling ultrasensitive detection of rhodamine 6G (R6G) and methylene blue (MB) at ultralow concentrations, surpassing conventional metal-based SERS platforms. It is further suggested that this is a substrate that can be easily coupled to other metals. An application for the detection of adenine molecules is realized through layered WO3-Au NPs composites, where embedded gold nanoparticles act as plasma “hot spots” to amplify the sensitivity. Density functional theory (DFT) calculations and band structure analysis confirm that synergistic interface charge transfer and naturally formed oxygen vacancies enhance performance. By combining semiconductor compatibility with other metal amplification, this WO3-based SERS platform offers a sustainable and high-performance alternative to conventional substrates, paving the way for environmentally friendly and scalable Raman sensing technologies. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

18 pages, 2631 KB  
Article
Mitochondrial ATP Biosynthesis Is Negatively Associated with FFA in Cardiac and Skeletal Muscle During the Development of Obesity in a Rodent Model
by Vianey Nava-Aguilar, Angelica Ruiz-Ramirez, Zeltzin Alejandra Ceja-Galicia, Maria de la Luz Hernandez Esquivel, Magalena Cristobal Garcia, Roxana Carbó Zabala, Guillermo-Celestino Cardoso-Saldaña and Mohammed El-Hafidi
Int. J. Mol. Sci. 2025, 26(18), 8768; https://doi.org/10.3390/ijms26188768 - 9 Sep 2025
Viewed by 513
Abstract
Many factors related to obesity can impact how mitochondria produce ATP, such as the uncoupling of oxidative phosphorylation (OXPHOS) caused by proton leaks from built-up free fatty acids (FFA), the increased levels of uncoupling proteins (UCPs), and changes in the levels of ATPase [...] Read more.
Many factors related to obesity can impact how mitochondria produce ATP, such as the uncoupling of oxidative phosphorylation (OXPHOS) caused by proton leaks from built-up free fatty acids (FFA), the increased levels of uncoupling proteins (UCPs), and changes in the levels of ATPase inhibitory protein factors 1 (IF1). Therefore, the present study aimed to assess the rate of ATP synthesis in mitochondria isolated from skeletal and cardiac muscle from animal models of sucrose diet-induced obesity at different time periods. Short periods of sucrose intake (6 and 12 weeks) are sufficient to induce fat accumulation, hypertriglyceridemia, and high plasma FFA. However, a significant decline in the ATP synthesis rate starts to be obvious in mitochondria from skeletal muscle after 24 weeks of sucrose consumption. This impairment of ATP synthesis is associated with increased FFA in skeletal muscle homogenate. ATP synthesis rates in both skeletal and cardiac muscle were found to be sensitive to oleic acid and GDP, a physiological inhibitor of UCPs that has been shown to increase with aging. In addition, a sucrose diet increases the IF1 content in both skeletal and heart muscle, probably to avoid the hydrolytic activity of ATP synthase. In mitochondria from heart muscle, a decrease in the ATP synthesis rate was only observed according to the age in both groups of rats, and it was not affected by sucrose feeding. Our results suggest that the decline of the ATP synthesis rate in mitochondria from skeletal muscle can be due to the accumulation of FFA in skeletal muscle tissue as uncouplers, and the IF1 overexpression induced by the sucrose diet is a response mechanism to avoid the ATP hydrolysis and to save the energy charge reduced by FFA-uncoupling OXPHOS. Full article
(This article belongs to the Special Issue Mitochondrial Function in Health and Disease, 3rd Edition)
Show Figures

Figure 1

20 pages, 3655 KB  
Article
Pan-Amyloid Reactive Peptides p5+14 and p5R Exhibit Specific Charge-Dependent Binding to Glycosaminoglycans
by Trevor J. Hancock, Angela D. Williams, James S. Foster, Jonathan S. Wall and Emily B. Martin
Pharmaceuticals 2025, 18(9), 1340; https://doi.org/10.3390/ph18091340 - 6 Sep 2025
Viewed by 664
Abstract
Background: Polybasic peptides are being developed as components of reagents for diagnosing and treating patients with systemic amyloidosis. In addition to fibrils, amyloid deposits ubiquitously contain heparan sulfate proteoglycans. We have hypothesized that pan amyloid-targeting peptides can specifically engage, in addition to [...] Read more.
Background: Polybasic peptides are being developed as components of reagents for diagnosing and treating patients with systemic amyloidosis. In addition to fibrils, amyloid deposits ubiquitously contain heparan sulfate proteoglycans. We have hypothesized that pan amyloid-targeting peptides can specifically engage, in addition to fibrils, a subset of glycosaminoglycans (GAGs) with high negative charge density. In this study, we characterized the binding of peptides p5+14 (a PET imaging agent for amyloid [124I-evuzamitide]) and p5R (a fusion protein used in the therapeutic AT-02) to GAGs. Methods: The peptide structure was evaluated in the presence of low molecular weight heparin using circular dichroism, and their interaction with synthetic GAGs of varying length and charge was interrogated. The binding patterns of p5+14 and p5R were compared using correlation analyses. Results: The peptides exist as mixed structural-fractions in solution but adopt an α-helical structure in the presence of heparin. Both peptides preferentially recognize heparin and heparan sulfate GAGs with a linear positive correlation between binding and the total charge and charge density. Conclusions: These peptides have previously been shown to specifically target amyloid deposits in vivo. A component of this specificity is their preferential interaction with a subset of heparan sulfate GAGs that have high charge density, potentially related to the degree of 6-O-sulfation. These data support the hypotheses that amyloid-associated GAGs have unique sulfation patterns, thereby explaining why these peptides do not bind GAGs found on the plasma membrane and extracellular matrix of healthy tissues. Full article
Show Figures

Graphical abstract

5 pages, 205 KB  
Data Descriptor
Data on Stark Broadening of N V Spectral Lines
by Milan S. Dimitrijević, Magdalena D. Christova and Sylvie Sahal-Bréchot
Data 2025, 10(9), 140; https://doi.org/10.3390/data10090140 - 31 Aug 2025
Viewed by 520
Abstract
A data set on Stark broadening parameters defining the Lorentzian line profile (spectral line widths and shifts) for 31 multiplets of four-times-charged nitrogen ion (N V), with lines broadened by impacts with electrons (e), protons (p), He II ions, α particles (He III), [...] Read more.
A data set on Stark broadening parameters defining the Lorentzian line profile (spectral line widths and shifts) for 31 multiplets of four-times-charged nitrogen ion (N V), with lines broadened by impacts with electrons (e), protons (p), He II ions, α particles (He III), and B III, B IV, B V, and B VI ions, is given. The above-mentioned data have been calculated within the frame of the semiclassical perturbation theory, for temperatures from 50,000 K to 1,000,000 K, and densities of perturbers from 1015 cm−3 up to 1021 cm−3. These data are, first of all, of interest for diagnostics and modeling of laser-driven plasma in experiments and investigations of proton–boron fusion, especially when the target is boron nitride (BN). Data on Stark broadening by collisions with e, p, He II ions, and α particles are useful for the investigation of stellar plasma, in particular for white dwarf atmospheres and subphotospheric layer modeling. Full article
(This article belongs to the Section Spatial Data Science and Digital Earth)
11 pages, 1191 KB  
Article
Plasma-Engineered PDRN: Surface Charge Neutralization and Nanosizing Enhance Uptake and Regeneration Potential
by Sun Ju Park, Dong-Hwan Lee, Ki Bok Yoon, AhJin Kim, Chae-Yun Jung, Sung Tae Kim, Sofia Brito and Bum-Ho Bin
Pharmaceutics 2025, 17(9), 1136; https://doi.org/10.3390/pharmaceutics17091136 - 30 Aug 2025
Viewed by 1082
Abstract
Background: Polydeoxyribonucleotide (PDRN) is increasingly used in dermatology and cosmetic applications owing to its regenerative and anti-aging properties. However, its topical use is limited by its high molecular weight and anionic charge, which restrict skin penetration. Methods: In this study, we [...] Read more.
Background: Polydeoxyribonucleotide (PDRN) is increasingly used in dermatology and cosmetic applications owing to its regenerative and anti-aging properties. However, its topical use is limited by its high molecular weight and anionic charge, which restrict skin penetration. Methods: In this study, we employed a nitrogen-oxygen plasma treatment to PDRN to overcome these limitations and characterized its physicochemical properties and in vitro efficiency. Results: Upon plasma treatment, PDRN’s surface charge was attenuated and its hydrodynamic size decreased, leading to improved uptake and markedly increased cell migration activity. Conclusions: These findings suggest that plasma treatment can transform PDRN into a cosmetically viable active ingredient and may provide a general strategy for adapting other high-molecular-weight bioactives for topical delivery. Full article
(This article belongs to the Special Issue Controlled Delivery of Cosmeceuticals Using Nanotechnology)
Show Figures

Figure 1

16 pages, 7431 KB  
Article
Effect of Synthesis Conditions on Graphene Directly Grown on SiO2: Structural Features and Charge Carrier Mobility
by Šarūnas Meškinis, Šarūnas Jankauskas, Lukas Kamarauskas, Andrius Vasiliauskas, Asta Guobienė, Algirdas Lazauskas and Rimantas Gudaitis
Nanomaterials 2025, 15(17), 1315; https://doi.org/10.3390/nano15171315 - 27 Aug 2025
Viewed by 738
Abstract
Graphene was directly grown on SiO2/Si substrates using microwave plasma-enhanced chemical vapor deposition (PECVD) to investigate how synthesis-driven variations in structure and doping influence carrier transport. The effects of synthesis temperature, plasma power, deposition time, gas flow, and pressure on graphene’s [...] Read more.
Graphene was directly grown on SiO2/Si substrates using microwave plasma-enhanced chemical vapor deposition (PECVD) to investigate how synthesis-driven variations in structure and doping influence carrier transport. The effects of synthesis temperature, plasma power, deposition time, gas flow, and pressure on graphene’s structure and electronic properties were systematically studied. Raman spectroscopy revealed non-monotonic changes in layer number, defect density, and doping levels, reflecting the complex interplay between growth, etching, and self-doping mechanisms. The surface morphology and conductivity were assessed by atomic force microscopy (AFM). Charge carrier mobility, extracted from graphene-based field-effect transistors, showed strong correlations with Raman features, including the intensity ratios and positions of the Two-dimension (2D) and G peaks. Importantly, mobility did not correlate with defect density but was linked to reduced self-doping and a weaker graphene–substrate interaction rather than intrinsic structural disorder. These findings suggest that charge transport in PECVD-grown graphene is predominantly limited by interfacial and doping effects. This study offers valuable insights into the synthesis–structure–property relationship, which is crucial for optimizing graphene for electronic and sensing applications. Full article
Show Figures

Graphical abstract

22 pages, 17668 KB  
Article
Enhancing the Aerodynamic Performance of Airfoils Using DBD Plasma Actuators: An Experimental Approach
by Eder Ricoy-Zárate, Horacio Martínez, Erik Rosado-Tamariz, Andrés Blanco-Ortega and Rafael Campos-Amezcua
Processes 2025, 13(9), 2725; https://doi.org/10.3390/pr13092725 - 26 Aug 2025
Viewed by 1146
Abstract
This research presents an experimental analysis of the influence of atmospheric pressure plasma on the performance of a micro horizontal-axis wind turbine blade. The investigation was conducted using an NACA 4412 airfoil equipped with a dielectric barrier discharge (DBD) plasma actuator. The electrodes [...] Read more.
This research presents an experimental analysis of the influence of atmospheric pressure plasma on the performance of a micro horizontal-axis wind turbine blade. The investigation was conducted using an NACA 4412 airfoil equipped with a dielectric barrier discharge (DBD) plasma actuator. The electrodes were configured asymmetrically, with a 2 mm gap and copper electrodes that are 0.20 mm in thickness. A high voltage of 6 kV was applied, resulting in a current of 0.071 mA and a power output of 0.426 W. Optical emission spectroscopy identified the excited components through the interaction of the high-voltage AC electric field with air molecules: N2, N2+, O2+, and O. The electrohydrodynamic force mainly results from the observed charged ions that, when accelerated by the electric field, transfer momentum to neutral molecules via collisions, leading to the formation of the observed jet plasma. The findings indicated a notable enhancement in aerodynamic performance attributable to the electrohydrodynamic (EHD) flow generated by the plasma. The estimated electrohydrodynamic force (8.712×104 N) is capable of maintaining the flow attached to the airfoil surface, thereby augmenting flow circulation and, consequently, enhancing the lift force. According to blade element theory, the lift and drag coefficients directly influence the torque and mechanical power generated by the wind turbine rotor. Schlieren imaging was utilized to observe alterations in air density and flow patterns. Lissajous curve analysis was used to examine the electrical discharge behavior, showing that only 7.04% of the input power was converted into heat. This indicates that nearly all input electric energy was transformed into EHD force by the atmospheric pressure plasma. Compared to traditional aerodynamic control methods, DBD actuators are a feasible alternative for small wind turbines due to their lightweight design, absence of moving parts, ability to be surface-embedded without altering blade geometry, and capacity to generate active, dynamic flow control with reduced energy consumption. Full article
(This article belongs to the Special Issue Modeling and Optimization for Multi-scale Integration)
Show Figures

Figure 1

Back to TopTop