Processing math: 4%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = chemical peculiar star

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3470 KiB  
Article
The Radioactive Elements in the Atmosphere of HD25354—Are They the Result of the Symmetric Decay of the Chemical Elements of the Island of Stability?
by Volodymyr Yushchenko, Vira Gopka, Alexander Yushchenko, Aizat Demessinova, Yeuncheol Jeong, Yakiv Pavlenko, Angelina Shavrina, Faig Musaev and Nazgul Alimgazinova
Galaxies 2024, 12(5), 57; https://doi.org/10.3390/galaxies12050057 - 27 Sep 2024
Cited by 1 | Viewed by 1014
Abstract
In this research, we investigated the observed spectra of the hot peculiar star HD25354 with an effective temperature Teff = 12,800 K, identified the lines of radioactive chemical elements, including the elements with short decay time, and estimated the abundances of these [...] Read more.
In this research, we investigated the observed spectra of the hot peculiar star HD25354 with an effective temperature Teff = 12,800 K, identified the lines of radioactive chemical elements, including the elements with short decay time, and estimated the abundances of these elements. We tried to confirm or reject the existence of promethium lines and lines of other radioactive elements which were detected in previous investigations of this star and explain the physical mechanisms which are responsible for the synthesis of these elements in the stellar atmosphere. We used two high-dispersion spectra of HD25354 observed with the 2 m telescope of Terskol observatory with resolving power near R = 60,000, and a signal to noise ratio near 200. The spectrum of the star from the archive of the 1.93 m telescope of Haute-Provence observatory was also used. The observations were compared with synthetic spectra and the abundance of promethium was found using the best four lines of this element in the observed spectra: logN(Pm) = 5.84 ± 0.16 in the scale logN(H) = 12. It is comparable to the abundances of stable lanthanides in the atmosphere of this star. The abundance of thorium derived from two lines of double-ionized thorium is logN(Th) = 3.59 ± 0.15. The upper limits for technetium, radium, actinium, uranium, and americium abundances are found to be equal to 4.0, 3.0, 1.25, 3.5, and 4.0, respectively. Maybe the existence of promethium lines and lines of other unstable chemical elements in the spectra of HD25354, as well as the other stars of our Galaxy, Magellanic Clouds, and Fornax dwarf galaxy, can be explained by contamination of its atmosphere by the products of kilonova outburst and by symmetric decay of chemical elements with long decay times located at the island of stability (atomic numbers Z = 110–128) of transfermium elements. Maybe the decay of superheavy elements of the island of stability can be one of the reasons for the enhanced abundances of rare earth lanthanides in different types of stars. Full article
Show Figures

Figure 1

12 pages, 3906 KiB  
Article
Modeling the TESS Light Curve of Ap Si Star MX TrA
by Yury Pakhomov, Ilya Potravnov, Anna Romanovskaya and Tatiana Ryabchikova
Universe 2024, 10(9), 341; https://doi.org/10.3390/universe10090341 - 26 Aug 2024
Viewed by 669
Abstract
The TESS light curve of the silicon Ap star MX TrA was modeled using the observational surface distribution of silicon, iron, helium, and chromium obtained previously with the Doppler Imaging technique. The theoretical light curve was calculated using a grid of synthetic fluxes [...] Read more.
The TESS light curve of the silicon Ap star MX TrA was modeled using the observational surface distribution of silicon, iron, helium, and chromium obtained previously with the Doppler Imaging technique. The theoretical light curve was calculated using a grid of synthetic fluxes from line-by-line stellar atmosphere models with individual chemical abundances. The observational TESS light curve was fitted by a synthetic one with an accuracy better than 0.001 mag. The influence of Si and Fe abundance stratification on the amplitude of variability was estimated. Also, the wavelength dependence of the photometric amplitude and phase of the maximum light was modeled showing the typical Ap Si star behavior with increased amplitude and anti-phase variability in far ultraviolet caused by the flux redistribution. Full article
(This article belongs to the Section Solar and Stellar Physics)
Show Figures

Figure 1

15 pages, 3922 KiB  
Article
Towards a Warm Holographic Equation of State by an Einstein–Maxwell-Dilaton Model
by Rico Zöllner and Burkhard Kämpfer
Symmetry 2024, 16(8), 999; https://doi.org/10.3390/sym16080999 - 6 Aug 2024
Cited by 1 | Viewed by 1360
Abstract
The holographic Einstein–Maxwell-dilaton model is employed to map state-of-the-art lattice QCD thermodynamics data from the temperature (T) axis towards the baryon–chemical potential (μB) axis and aims to gain a warm equation of state (EoS) of deconfined QCD matter [...] Read more.
The holographic Einstein–Maxwell-dilaton model is employed to map state-of-the-art lattice QCD thermodynamics data from the temperature (T) axis towards the baryon–chemical potential (μB) axis and aims to gain a warm equation of state (EoS) of deconfined QCD matter which can be supplemented with a cool and confined part suitable for subsequent compact (neutron) star (merger) investigations. The model exhibits a critical end point (CEP) at TCEP=O(100) MeV and μBCEP=500700 MeV with an emerging first-order phase transition (FOPT) curve which extends to large values of μB without approaching the μB axis. We consider the impact and peculiarities of the related phase structure on the EoS for the employed dilaton potential and dynamical coupling parameterizations. These seem to prevent the design of an overall trustable EoS without recourse to hybrid constructions. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

19 pages, 1152 KiB  
Article
Pre-Main Sequence Ap Star LkHα 324/B in LDN 988 Star Forming Region
by Ilya Potravnov, Tatiana Ryabchikova, Svetlana Artemenko and Maxim Eselevich
Universe 2023, 9(5), 210; https://doi.org/10.3390/universe9050210 - 27 Apr 2023
Cited by 2 | Viewed by 1344
Abstract
We present results of the investigation of the star LkHα 324/B, which belongs to the starforming dark cloud LDN 988. Based on high resolution spectroscopy, we determined its fundamental parameters as Teff=11,175±130 K, [...] Read more.
We present results of the investigation of the star LkHα 324/B, which belongs to the starforming dark cloud LDN 988. Based on high resolution spectroscopy, we determined its fundamental parameters as Teff=11,175±130 K, log(L*/L)=1.87±0.07. According to these parameters, we found that LkHα 324/B is a pre-main sequence star with mass M3M and age t2.9 Myr. Recently, it underwent the phase of actively accreting the Herbig Ae/Be star, but accretion has now ceased in the LkHα 324/B system. This is consistent with the fact that the star is surrounded by a circumstellar disk with an inner cavity, as was determined from its spectral energy distribution. Our analysis revealed the peculiar abundance pattern of LkHα 324/B typical to those of magnetic Ap stars. It possesses mild underabundance of the light elements and excess up to ∼2–4 dex (in comparison to the Sun) of the iron peak and rare earth elements. We found no evidence for abrupt vertical abundances gradients in the lines forming the region of the LkHα 324/B atmosphere, in agreement with the results of the theoretical diffusion calculations in this temperature domain. From the intensification of the magnetically sensitive lines, we deduced that LkHα 324/B probably hosts a global magnetic field of B3.5 kG strength. We suppose that the stabilizing role of this field favored the elements’ separation by diffusion before the star reached the main sequence. Full article
(This article belongs to the Special Issue Star and Planet Formation)
Show Figures

Figure 1

103 pages, 3133 KiB  
Review
BCD Spectrophotometry and Rotation of Active B-Type Stars: Theory and Observations
by Juan Zorec
Galaxies 2023, 11(2), 54; https://doi.org/10.3390/galaxies11020054 - 10 Apr 2023
Cited by 6 | Viewed by 4061
Abstract
This review has two parts. The first one is devoted to the Barbier–Chalonge–Divan (BCD) spectrophotometric system, also known as the Paris spectral classification system. Although the BCD system has been applied and is still used for all stellar objects from O to F [...] Read more.
This review has two parts. The first one is devoted to the Barbier–Chalonge–Divan (BCD) spectrophotometric system, also known as the Paris spectral classification system. Although the BCD system has been applied and is still used for all stellar objects from O to F spectral types, the present account mainly concerns normal and ‘active’ B-type stars. The second part treats topics related to stellar rotation, considered one of the key phenomena determining the structure and evolution of stars. The first part is eminently observational. In contrast, the second part deals with observational aspects related to stellar rotation but also recalls some supporting or basic theoretical concepts that may help better understand the gains and shortcomings of today’s existent interpretation of stellar data. Full article
(This article belongs to the Special Issue Theory and Observation of Active B-type Stars)
Show Figures

Figure 1

22 pages, 830 KiB  
Article
Reddening-Free Q Parameters to Classify B-Type Stars with Emission Lines
by Yael Aidelman and Lydia Sonia Cidale
Galaxies 2023, 11(1), 31; https://doi.org/10.3390/galaxies11010031 - 15 Feb 2023
Cited by 3 | Viewed by 2276
Abstract
The emission-line B-type stars constitute a heterogeneous group. Many of these stars show similar optical spectroscopic features and color indices, making it difficult to classify them adequately by means of photometric and spectroscopic techniques. Thus, it is relevant to deal with appropriate classification [...] Read more.
The emission-line B-type stars constitute a heterogeneous group. Many of these stars show similar optical spectroscopic features and color indices, making it difficult to classify them adequately by means of photometric and spectroscopic techniques. Thus, it is relevant to deal with appropriate classification criteria to avoid as many selection effects as possible. For this purpose, we analyzed different reddening-free Q parameters, taking advantage of the Gaia and 2MASS photometric surveys, for both main sequence and emission-line B-type stars. Along with this work, we provided various criteria to search for normal and emission-line B-type stars, using different color–color, Q–color, and QQ diagrams. It was also possible to identify stars in different transition phases (i.e., (RpJ) vs. (JKs) diagrams) and to classify them according to their NIR radiation excesses (i.e., the (BpRp) vs. (HKs) diagram). Other diagrams, such as the QJKHK vs. (HKs) or QBpJHK vs. (BpKs), were very useful to search for and classify different classes of B-type stars with emission lines. These diagrams highlighted the presence of several stars, classified as CBe, with large color excesses that seemed to be caused by the presence of dust in their envelopes. Therefore, these stars would be misclassified. Three groups of HAeBe stars with different intrinsic dust properties were also distinguished. The amount of intrinsic dust emission in the diverse groups of emission-line stars was well-recognized via the QJHK vs. QBpRpHK diagram. The different selection criteria are very important tools for automated designs of machine learning and optimal search algorithms. Full article
(This article belongs to the Special Issue Theory and Observation of Active B-type Stars)
Show Figures

Figure 1

18 pages, 1072 KiB  
Article
The Barium Odd Isotope Fractions in Seven Ba Stars
by Fang Wen, Wenyuan Cui, Miao Tian, Xiaoxiao Zhang, Jianrong Shi and Bo Zhang
Universe 2022, 8(11), 596; https://doi.org/10.3390/universe8110596 - 12 Nov 2022
Viewed by 1442
Abstract
Based on the spectra with high resolution and a high signal-to-noise ratio, we investigate the enrichment history of the s-process element in seven barium (Ba) stars by measuring their Ba odd isotope fraction. It is found that the relative contributions of the s-process [...] Read more.
Based on the spectra with high resolution and a high signal-to-noise ratio, we investigate the enrichment history of the s-process element in seven barium (Ba) stars by measuring their Ba odd isotope fraction. It is found that the relative contributions of the s-process to their Ba abundance are 91.4±25.7%, 91.4±34.3%, 82.9±28.5%, 77.1±31.4%, and 71.4±37.1% for REJ 0702+129, HD 13611, BD+80°670, HR 5692, and HD 202109, respectively. Our results suggest that these five Ba stars have a prominent s-process signature, which indicates that their heavy elements mainly come from their former AGB companions (now WDs) by mass transfer, while the r-process contribution can naturally be explained by the evolution of the Milky Way. The s-process contribution of BD+80°670 is 51.4±31.4%, which is the lowest among our seven sample stars. Considering its lower values of both [Ba/Nd] and [Ba/Eu], we suspect that BD+68°1027 is likely to be a r-rich Ba star and has similar origins to the CEMP-r/s stars. HD 218356 has an unreasonable s-process contribution over 100%. Combining its stellar atmospheric parameters and the evolutionary stage, we speculate that HD 218356 is a more evolved extrinsic Ba star, and its massive companion should have the largest s-process efficiency in our samples. Full article
(This article belongs to the Section Solar and Stellar Physics)
Show Figures

Figure 1

12 pages, 841 KiB  
Review
Post-AGB Stars as Tracers of AGB Nucleosynthesis: An Update
by Devika Kamath and Hans Van Winckel
Universe 2022, 8(4), 233; https://doi.org/10.3390/universe8040233 - 11 Apr 2022
Cited by 7 | Viewed by 2877
Abstract
The chemical evolution of galaxies is governed by the chemical yields from stars, and here we focus on the important contributions from asymptotic giant branch (AGB) stars. AGB nucleosynthesis is, however, still riddled with complexities. Observations from post-asymptotic giant branch (post-AGB) stars serve [...] Read more.
The chemical evolution of galaxies is governed by the chemical yields from stars, and here we focus on the important contributions from asymptotic giant branch (AGB) stars. AGB nucleosynthesis is, however, still riddled with complexities. Observations from post-asymptotic giant branch (post-AGB) stars serve as exquisite tools to quantify and understand AGB nucleosynthesis. In this contribution, we review the invaluable constraints provided by post-AGB stars with which to study AGB nucleosynthesis, especially the slow neutron capture nucleosynthesis (i.e., the s-process). Full article
Show Figures

Figure 1

25 pages, 882 KiB  
Review
Trojan Horse Investigation for AGB Stellar Nucleosynthesis
by Maria Letizia Sergi, Giuseppe D’Agata, Giovanni Luca Guardo, Giuseppe Gabriele Rapisarda, Vaclav Burjan, Silvio Cherubini, Marisa Gulino, Iolanda Indelicato, Marco La Cognata, Livio Lamia, Dario Lattuada, Jaromir Mrázek, Alessandro Alberto Oliva, Rosario Gianluca Pizzone, Stefano Romano, Roberta Spartá, Oscar Trippella and Aurora Tumino
Universe 2022, 8(2), 128; https://doi.org/10.3390/universe8020128 - 16 Feb 2022
Cited by 5 | Viewed by 2663
Abstract
Asymptotic Giant Branch (AGB) stars are among the most important astrophysical sites influencing the nucleosynthesis and the chemical abundances in the Universe. From a pure nuclear point of view, several processes take part during this peculiar stage of stellar evolution thus requiring detailed [...] Read more.
Asymptotic Giant Branch (AGB) stars are among the most important astrophysical sites influencing the nucleosynthesis and the chemical abundances in the Universe. From a pure nuclear point of view, several processes take part during this peculiar stage of stellar evolution thus requiring detailed experimental cross section measurements. Here, we report on the most recent results achieved via the application of the Trojan Horse Method (THM) and Asymptotic Normalization Coefficient (ANC) indirect techniques, discussing the details of the experimental procedure and the deduced reaction rates. In addition, we report also on the on going studies of interest for AGB nucleosynthesis. Full article
Show Figures

Figure 1

11 pages, 440 KiB  
Article
The Complex Behaviour of s-Process Element Abundances at Young Ages
by Valentina D’Orazi, Martina Baratella, Maria Lugaro, Laura Magrini and Marco Pignatari
Universe 2022, 8(2), 110; https://doi.org/10.3390/universe8020110 - 9 Feb 2022
Cited by 8 | Viewed by 2610
Abstract
Open clusters appear as simple objects in many respects, with a high degree of homogeneity in their (initial) chemical composition, and the typical solar-scaled abundance pattern that they exhibit for the majority of the chemical species. The striking singularity is represented by heavy [...] Read more.
Open clusters appear as simple objects in many respects, with a high degree of homogeneity in their (initial) chemical composition, and the typical solar-scaled abundance pattern that they exhibit for the majority of the chemical species. The striking singularity is represented by heavy elements produced from the slow process of the neutron-capture reactions. In particular, young open clusters (ages less than a few hundred Myr) give rise to the so-called barium puzzle: that is an extreme enhancement in their [Be/Fe] ratios, up to a factor of four of the solar value, which is not followed by other nearby s-process elements (e.g., lanthanum and cerium). The definite explanation for such a peculiar trend is still wanting, as many different solutions have been envisaged. We review the status of this field and present our new results on young open clusters and the pre-main sequence star RZ Piscium. Full article
Show Figures

Figure 1

17 pages, 917 KiB  
Article
Extremely Metal-Poor Asymptotic Giant Branch Stars
by Mario Cirillo, Luciano Piersanti and Oscar Straniero
Universe 2022, 8(1), 44; https://doi.org/10.3390/universe8010044 - 11 Jan 2022
Cited by 1 | Viewed by 1774
Abstract
Little is known about the first stars, but hints on this stellar population can be derived from the peculiar chemical composition of the most metal-poor objects in the Milky Way and in resolved stellar populations of nearby galaxies. In this paper, we review [...] Read more.
Little is known about the first stars, but hints on this stellar population can be derived from the peculiar chemical composition of the most metal-poor objects in the Milky Way and in resolved stellar populations of nearby galaxies. In this paper, we review the evolution and nucleosynthesis of metal-poor and extremely metal-poor (EMP) stars with low and intermediate masses. In particular, new models of 6 M with three different levels of metallicity, namely Z=104, 106 and 1010, are presented. In addition, we illustrate the results obtained for a 2 M, Z=105 model. All these models have been computed by means of the latest version of the FuNS code. We adopted a fully coupled scheme of solutions for the complete set of differential equations describing the evolution of the physical structure and the chemical abundances, as modified by nuclear processes and convective mixing. The scarcity of CNO in the material from which these stars formed significantly affects their evolution, their final fate and their contribution to the chemical pollution of the ISM in primordial galaxies. We show the potential of these models for the interpretation of the composition of EMP stars, with particular emphasis on CEMP stars. Full article
Show Figures

Figure 1

20 pages, 799 KiB  
Review
Mixing and Magnetic Fields in Asymptotic Giant Branch Stars in the Framework of FRUITY Models
by Diego Vescovi
Universe 2022, 8(1), 16; https://doi.org/10.3390/universe8010016 - 28 Dec 2021
Cited by 6 | Viewed by 3477
Abstract
In the last few years, the modeling of asymptotic giant branch (AGB) stars has been much investigated, both focusing on nucleosynthesis and stellar evolution aspects. Recent advances in the input physics required for stellar computations made it possible to construct more accurate evolutionary [...] Read more.
In the last few years, the modeling of asymptotic giant branch (AGB) stars has been much investigated, both focusing on nucleosynthesis and stellar evolution aspects. Recent advances in the input physics required for stellar computations made it possible to construct more accurate evolutionary models, which are an essential tool to interpret the wealth of available observational and nucleosynthetic data. Motivated by such improvements, the FUNS stellar evolutionary code has been updated. Nonetheless, mixing processes occurring in AGB stars’ interiors are currently not well-understood. This is especially true for the physical mechanism leading to the formation of the 13C pocket, the major neutron source in low-mass AGB stars. In this regard, post-processing s-process models assuming that partial mixing of protons is induced by magneto-hydrodynamics processes were shown to reproduce many observations. Such mixing prescriptions have now been implemented in the FUNS code to compute stellar models with fully coupled nucleosynthesis. Here, we review the new generation of FRUITY models that include the effects of mixing triggered by magnetic fields by comparing theoretical findings with observational constraints available either from the isotopic analysis of trace-heavy elements in presolar grains or from carbon AGB stars and Galactic open clusters. Full article
Show Figures

Figure 1

21 pages, 366 KiB  
Review
Studies of Magnetic Chemically Peculiar Stars Using the 6-m Telescope at SAO RAS
by Iosif Romanyuk
Universe 2021, 7(12), 465; https://doi.org/10.3390/universe7120465 - 29 Nov 2021
Cited by 3 | Viewed by 2046
Abstract
We present a survey of the most important results obtained in observations with the 6-m telescope in the studies of magnetic fields of chemically peculiar stars. It is shown that we have found more than 200 new magnetic chemically peculiar stars, which is [...] Read more.
We present a survey of the most important results obtained in observations with the 6-m telescope in the studies of magnetic fields of chemically peculiar stars. It is shown that we have found more than 200 new magnetic chemically peculiar stars, which is more than 30% of their total known number. Observations of ultra-slow rotators (stars with rotation periods of years and decades) have shown that there are objects with strong fields among them, several kG in magnitude. In the association of young stars in Orion, it has been found that the occurrence and strength of magnetic fields of chemically peculiar stars decrease sharply with age in the interval from 2 to 10 Myr. These data indicate the fossil nature of magnetic fields of chemically peculiar stars. About 10 magnetic stars were found based on ultra-accurate photometry data obtained from the Kepler and TESS satellites. A new effective method of searching for magnetic stars was developed. In addition, the exact rotation periods make it possible to build reliable curves of the longitudinal field component variability with the phase of the star’s rotation period, and hence to create its magnetic model. The survey is dedicated to the memory of Prof. Yuri Nikolaevich Gnedin. Full article
(This article belongs to the Special Issue Advances in the Physics of Stars - in Memory of Prof. Yuri N. Gnedin)
11 pages, 582 KiB  
Review
The Missing Lead: Developments in the Lead (Pb) Discrepancy in Intrinsically s-Process Enriched Single Post-AGB Stars
by Devika Kamath and Hans Van Winckel
Universe 2021, 7(11), 446; https://doi.org/10.3390/universe7110446 - 19 Nov 2021
Cited by 1 | Viewed by 1668
Abstract
Lead (Pb) is predicted to have large over-abundances with respect to other s-process elements in Asymptotic Giant Branch (AGB) stars, especially of low metallicities. However, our previous abundance studies of s-process enriched post-Asymptotic Giant Branch (post-AGB) stars in the Galaxy and [...] Read more.
Lead (Pb) is predicted to have large over-abundances with respect to other s-process elements in Asymptotic Giant Branch (AGB) stars, especially of low metallicities. However, our previous abundance studies of s-process enriched post-Asymptotic Giant Branch (post-AGB) stars in the Galaxy and the Magellanic Clouds show a discrepancy between observed and predicted Pb abundances. For the subset of post-AGB stars with low metallicities the determined upper limits based on detailed chemical abundance studies are much lower than what is predicted. Recent theoretical studies have pointed to the occurrence of the i-process to explain the observed chemical patterns, especially of Pb. A major development, in the observational context, is the release of the GAIA EDR3 parallaxes of the post-AGBs in the Galaxy, which has opened the gateway to systematically studying the sample of stars as a function of current luminosities (which can be linked to their initial masses). In this paper, we succinctly review the Pb discrepancy in post-AGB stars and present the latest observational and theoretical developments in this research landscape. Full article
(This article belongs to the Special Issue AGB Stars: Element Forges of the Universe)
Show Figures

Figure 1

10 pages, 510 KiB  
Article
s-Processing in Asymptotic Giant Branch Stars in the Light of Revised Neutron-Capture Cross Sections
by Diego Vescovi and René Reifarth
Universe 2021, 7(7), 239; https://doi.org/10.3390/universe7070239 - 11 Jul 2021
Cited by 3 | Viewed by 2744
Abstract
Current AGB stellar models provide an adequate description of the s-process nucleosynthesis that occurs. Nonetheless, they still suffer from many uncertainties related to the modeling of the 13C pocket formation and the adopted nuclear reaction rates. For many important s-process isotopes, a [...] Read more.
Current AGB stellar models provide an adequate description of the s-process nucleosynthesis that occurs. Nonetheless, they still suffer from many uncertainties related to the modeling of the 13C pocket formation and the adopted nuclear reaction rates. For many important s-process isotopes, a best set of neutron-capture cross sections was recently re-evaluated. Using stellar models prescribing that the 13C pocket is a by-product of magnetic-buoyancy-induced mixing phenomena, s-process calculations were carried out with this database. Significant effects are found for a few s-only and branching point isotopes, pointing out the need for improved neutron-capture cross section measurements at low energy. Full article
(This article belongs to the Special Issue AGB Stars: Element Forges of the Universe)
Show Figures

Figure 1

Back to TopTop