Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = cloud-to-cloud lightning channel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5148 KB  
Article
Analysis of the Charge Structure Accompanied by Hail During the Development Stage of Thunderstorm on the Qinghai–Tibet Plateau
by Yajun Li, Xiangpeng Fan and Yuxiang Zhao
Atmosphere 2025, 16(8), 906; https://doi.org/10.3390/atmos16080906 - 26 Jul 2025
Viewed by 257
Abstract
The charge structure and lightning activities during the development stage of a thunderstorm with a hail-falling process in Datong County of Qinghai Province on 16 August 2014 were studied by using a multi-station observation network composed of a very-high-frequency, three-dimensional, lightning-radiation-source location system [...] Read more.
The charge structure and lightning activities during the development stage of a thunderstorm with a hail-falling process in Datong County of Qinghai Province on 16 August 2014 were studied by using a multi-station observation network composed of a very-high-frequency, three-dimensional, lightning-radiation-source location system and broadband electric field. The research results show that two discharge regions appeared during the development stage of the thunderstorm. The charge structure was all a negative dipolar polarity in two discharge regions; however, the heights of the charge regions were different. The positive-charge region at a height of 2–3.5 km corresponds to −1–−10 °C and the negative-charge region at a height of 3.5–5 km corresponds to −11–−21 °C in one discharge region; the positive-charge region at a height of 4–5 km corresponds to −15–−21 °C and the negative-charge region at a height of 5–6 km corresponds to −21–−29 °C in another region. The charge regions with the same polarity at different heights in the two discharge regions gradually connected with the occurrence of the hail-falling process during the development stage of the thunderstorm, and the overall height of the charge regions decreased. All the intracloud lightning flashes that occurred in the thunderstorm were of inverted polarity discharge, and the horizontal transmission distance of the discharge channel was short, all within 10 km. The negative intracloud lightning flash, negative cloud-to-ground lightning flash, and positive cloud-to-ground lightning flash generated during the thunderstorm process accounted for 83%, 16%, and 1% of the total number of lightning flashes, respectively. Negative cloud-to-ground lightning flashes mainly occurred more frequently in the early phase of the thunderstorm development stage. As the thunderstorm developed, the frequency of intracloud lightning flashes became greater than that of negative cloud-to-ground lightning flashes, and finally far exceeded it. The frequency of lightning flashes decreases sharply and the intensity of thunderstorms decreases during the hail-falling period. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

11 pages, 1594 KB  
Article
An Engineering Model to Represent Positive Return Strokes—An Extension of the Modified Transmission Line (MTL) Model
by Vernon Cooray, Farhad Rachidi and Marcos Rubinstein
Atmosphere 2024, 15(11), 1265; https://doi.org/10.3390/atmos15111265 - 22 Oct 2024
Viewed by 804
Abstract
An engineering model to represent positive return strokes is introduced as an extension of the Modified Transmission Line model with Linear Current Decay (MTLL). This extension is grounded in experimental data on the electric fields and currents associated with positive return strokes. The [...] Read more.
An engineering model to represent positive return strokes is introduced as an extension of the Modified Transmission Line model with Linear Current Decay (MTLL). This extension is grounded in experimental data on the electric fields and currents associated with positive return strokes. The core premise of the model is that once the return stroke front reaches the cloud, recoil leader-type activities within the cloud feed the lightning channel with a positive charge. This positive charge then travels to the ground in the form of an M-component, enhancing both the amplitude and duration of the impulse current in the channel and at ground level. The propagation of the return stroke current along the channel follows the MTLL model, while the M-component is treated as a current pulse traveling from the cloud to the ground. At ground level, the M-component current is fully reflected. The model successfully generates electromagnetic fields that resemble those observed from positive return strokes, and it is easily applicable to studies involving the interaction of positive return stroke fields with power lines and the Earth’s upper atmosphere. Full article
(This article belongs to the Special Issue Recent Advances in Lightning Research)
Show Figures

Figure 1

12 pages, 2249 KB  
Article
Electromagnetic Fields from Cloud-to-Cloud Horizontal Lightning Channel on Perfect Conducting Soil: Induced Potentials in Flying Aircraft
by Gabriel Asensio, Eduardo Faleiro, Jorge Moreno and Gregorio Denche
Appl. Sci. 2023, 13(17), 9584; https://doi.org/10.3390/app13179584 - 24 Aug 2023
Viewed by 1156
Abstract
Calculation expressions for the electric and magnetic fields produced by a horizontal cloud-to-cloud lightning channel, assuming a perfectly conducted ground, are proposed in this paper. These expressions depend on the current model traveling through the channel and serve as the starting point to [...] Read more.
Calculation expressions for the electric and magnetic fields produced by a horizontal cloud-to-cloud lightning channel, assuming a perfectly conducted ground, are proposed in this paper. These expressions depend on the current model traveling through the channel and serve as the starting point to calculate the induced fields and potentials at any point in space. The derived expressions for the fields are used to calculate the induced potentials by the channel on metallic structures such as vertically driven rods in the ground and aircraft in flight. The influence of soil with finite conductivity is discussed, and an estimation of the induced potentials in this situation is proposed. Full article
Show Figures

Figure 1

16 pages, 1167 KB  
Article
Computation of Electric and Magnetic Fields Generated by Cloud-to-Cloud Lightning Channels
by Carlo Petrarca, Marco Balato, Luigi Verolino, Amedeo Andreotti and Dario Assante
Energies 2023, 16(11), 4524; https://doi.org/10.3390/en16114524 - 5 Jun 2023
Cited by 2 | Viewed by 1620
Abstract
The paper presents analytical formulas for computation in the time domain of electromagnetic (EM) fields generated by tortuous cloud-to-cloud (CC) lightning channels over a perfectly conducting ground. For the first time, the study was not limited to a horizontal lightning path [...] Read more.
The paper presents analytical formulas for computation in the time domain of electromagnetic (EM) fields generated by tortuous cloud-to-cloud (CC) lightning channels over a perfectly conducting ground. For the first time, the study was not limited to a horizontal lightning path but was extended to take into account the natural, tortuous geometry of the lightning channel. After the calculation of the step response, a convolution integration was applied for the computation of the fields generated by an arbitrary current source. The produced electric and magnetic fields were then compared with the fields generated by a horizontal channel. The method can be of primary importance to evaluating the hazards for electric and electronic systems of flying aircraft, estimating the voltages induced on overhead transmission lines by CC lightning, and, in general, evaluating the induced effects on sensitive electric and electronic components. Moreover, it may represent a simple, robust, and time-saving tool for estimating important physical parameters that characterize lightning phenomena. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

16 pages, 5300 KB  
Article
Comparison of Cloud Structures of Storms Producing Lightning at Different Distance Based on Five Years Measurements of a Doppler Polarimetric Vertical Cloud Profiler
by Zbyněk Sokol, Jana Popová, Kateřina Skripniková, Rosa Claudia Torcasio, Stefano Federico and Ondřej Fišer
Remote Sens. 2023, 15(11), 2874; https://doi.org/10.3390/rs15112874 - 31 May 2023
Cited by 1 | Viewed by 1547
Abstract
We processed five years of measurements (2018–2022) of a vertically pointing radar MIRA 35c at the Milešovka meteorological observatory with the aim of analyzing the cloud structure of thunderstorms and comparing differences in measured data for cases when lightning discharges were observed very [...] Read more.
We processed five years of measurements (2018–2022) of a vertically pointing radar MIRA 35c at the Milešovka meteorological observatory with the aim of analyzing the cloud structure of thunderstorms and comparing differences in measured data for cases when lightning discharges were observed very close to the radar position, and for cases when lightning discharges were observed at a greater distance from the radar position. The MIRA 35c radar is a Doppler polarimetric radar working at 35 GHz (Ka-band) with a vertical resolution of 28.9 m and a time resolution of approximately 2 s. For the analysis, we considered radar data whose radar reflectivity was at least 10 dBZ at 5 km or higher above the radar to ensure that there was a cloud above the radar. We divided the radar data into “near” data (a lightning discharge was registered up to 1 km from the radar position) and “far” data (a lightning discharge was registered from 7.5 to 10 km from the radar position). We compared the following quantities: (i) Power in co-channel (pow), (ii) power in cross-channel (pow-cx), (iii) phase in co-channel (pha), (iv) phase in cross-channel (pha-cx), (v) equivalent radar reflectivity (Ze), (vi) Linear Depolarization Ratio (LDR), (vii) co-polar correlation coefficient (RHO), (viii) Doppler radial velocity (V), (ix) Doppler spectrum width (RMS), and (x) Differential phase (Phi). Pow, pow-cx, pha, pha-cx, and V are basic data measured by the radar, while Ze, LDR, RHO, RMS, and Phi are derived quantities. Our results showed that the characteristics of the compared radar quantities are clearly distinct for “near” dataset from “far” dataset. Furthermore, we found out that there is a clear evolution close to the time of discharges of the observed radar quantities in the “near” dataset, which is not that obvious in the “far” dataset. Full article
Show Figures

Figure 1

24 pages, 4941 KB  
Article
Warm Core and Deep Convection in Medicanes: A Passive Microwave-Based Investigation
by Giulia Panegrossi, Leo Pio D’Adderio, Stavros Dafis, Jean-François Rysman, Daniele Casella, Stefano Dietrich and Paolo Sanò
Remote Sens. 2023, 15(11), 2838; https://doi.org/10.3390/rs15112838 - 30 May 2023
Cited by 10 | Viewed by 2785
Abstract
Mediterranean hurricanes (Medicanes) are characterized by the presence of a quasi-cloud-free calm eye, spiral-like cloud bands, and strong winds around the vortex center. Typically, they reach a tropical-like cyclone (TLC) phase characterized by an axisymmetric warm core without frontal structures. Yet, some of [...] Read more.
Mediterranean hurricanes (Medicanes) are characterized by the presence of a quasi-cloud-free calm eye, spiral-like cloud bands, and strong winds around the vortex center. Typically, they reach a tropical-like cyclone (TLC) phase characterized by an axisymmetric warm core without frontal structures. Yet, some of them are not fully symmetrical, have a shallow warm-core structure, and a weak frontal activity. Finding a clear definition and potential classification of Medicanes based on their initiation and intensification processes, understanding the role of convection, and identifying the evolution to a TLC phase are all current research topics. In this study, passive microwave (PMW) measurements and products are used to characterize warm core (WC) and deep convection (DC) for six Medicanes that occurred between 2014 and 2021. A well-established methodology for tropical cyclones, based on PMW temperature sounding channels, is used to identify the WC while PMW diagnostic tools and products (e.g., cloud-top height (CTH) and ice water path (IWP)), combined with lightning data, are used for DC detection and characterization. The application of this methodology to Medicanes highlights the possibility to describe their WC depth, intensity, and symmetry and to identify the cyclone center. We also analyze to what extent the occurrence and characteristics of the WC are related to the Medicane’s intensity and DC development. The results show that Medicanes reaching full TLC phase are associated with deep and symmetric WCs, and that asymmetric DC features in the proximity of the center, and in higher CTH and IWP values, with scarce lighting activity. Medicanes that never develop to a fully TLC structure are associated with a shallower WC, weaker and more sparse DC activity, and lower CTHs and IWP values. Ultimately, this study illustrates the potential of PMW radiometry in providing insights into dynamic and thermodynamic processes associated with Medicanes’ WC characteristics and evolution to TLCs, thus contributing to the ongoing discussion about Medicanes’ definition. Full article
(This article belongs to the Special Issue Remote Sensing of Extreme Weather Events: Monitoring and Modeling)
Show Figures

Graphical abstract

19 pages, 4788 KB  
Article
Three-Dimensional Mapping on Lightning Discharge Processes Using Two VHF Broadband Interferometers
by Zhuling Sun, Xiushu Qie, Mingyuan Liu, Rubin Jiang and Hongbo Zhang
Remote Sens. 2022, 14(24), 6378; https://doi.org/10.3390/rs14246378 - 16 Dec 2022
Cited by 9 | Viewed by 2575
Abstract
Lightning Very-high-frequency (VHF) broadband interferometer has become an effective approach to map lightning channels in two dimensions with high time resolution. This paper reports an approach to mapping lightning channels in three dimensions (3D) using two simultaneous interferometers separated by about 10 km. [...] Read more.
Lightning Very-high-frequency (VHF) broadband interferometer has become an effective approach to map lightning channels in two dimensions with high time resolution. This paper reports an approach to mapping lightning channels in three dimensions (3D) using two simultaneous interferometers separated by about 10 km. A 3D mapping algorithm was developed based on the triangular intersection method considering the location accuracy of both interferometers and the arrival time of lightning VHF radiation. Simulation results reveal that the horizontal and vertical location errors within 10 km of the center of the two stations are less than 500 m and 700 m, respectively. The 3D development of an intra-cloud (IC) lightning flash and a negative cloud-to-ground (-CG) lightning flash with two different ground terminations in the same thunderstorm are reconstructed, and the extension direction and speed of lightning channels are estimated consequently. Both IC and CG flash discharges showed a two-layer structure in the cloud with discharges occurring in the upper positive charge region and the lower negative charge region, and two horizontally separated positive charge regions were involved in the two flashes. The average distance of the CG ground terminations between the interferometer results and the CG location system was about 448 m. Although disadvantages may still exist in 3D real-time location compared with the lightning mapping array system working with the principle of the time of arrival, interferometry with two or more stations has the advantage of lower station number and is feasible in regions with poor installation conditions, such as heavy-radio-frequency-noise regions or regions that are difficult for the long-baseline location system. Full article
Show Figures

Figure 1

30 pages, 8911 KB  
Article
Remote Monitoring of Mediterranean Hurricanes Using Infrasound
by Constantino Listowski, Edouard Forestier, Stavros Dafis, Thomas Farges, Marine De Carlo, Florian Grimaldi, Alexis Le Pichon, Julien Vergoz, Philippe Heinrich and Chantal Claud
Remote Sens. 2022, 14(23), 6162; https://doi.org/10.3390/rs14236162 - 5 Dec 2022
Cited by 8 | Viewed by 3838
Abstract
Mediterranean hurricanes, or medicanes, are tropical-like cyclones forming once or twice per year over the waters of the Mediterranean Sea. These mesocyclones pose a serious threat to coastal infrastructure and lives because of their strong winds and intense rainfall. Infrasound technology has already [...] Read more.
Mediterranean hurricanes, or medicanes, are tropical-like cyclones forming once or twice per year over the waters of the Mediterranean Sea. These mesocyclones pose a serious threat to coastal infrastructure and lives because of their strong winds and intense rainfall. Infrasound technology has already been employed to investigate the acoustic signatures of severe weather events, and this study aims at characterizing, for the first time, the infrasound detections that can be related to medicanes. This work also contributes to infrasound source discrimination efforts in the context of the Comprehensive Nuclear-Test-Ban Treaty. We use data from the infrasound station IS48 of the International Monitoring System in Tunisia to investigate the infrasound signatures of mesocyclones using a multi-channel correlation algorithm. We discuss the detections using meteorological fields to assess the presence of stratospheric waveguides favoring propagation. We corroborate the detections by considering other datasets, such as satellite observations, a surface lightning detection network, and products mapping the simulated intensity of the swell. High- and low-frequency detections are evidenced for three medicanes at distances ranging between 250 and 1100 km from the station. Several cases of non-detection are also discussed. While deep convective systems, and mostly lightning within them, seem to be the main source of detections above 1 Hz, hotspots of swell (microbarom) related to the medicanes are evidenced between 0.1 and 0.5 Hz. In the latter case, simulations of microbarom detections are consistent with the observations. Multi-source situations are highlighted, stressing the need for more resilient detection-estimation algorithms. Cloud-to-ground lightning seems not to explain all high-frequency detections, suggesting that additional sources of electrical or dynamical origin may be at play that are related to deep convective systems. Full article
(This article belongs to the Special Issue Infrasound, Acoustic-Gravity Waves, and Atmospheric Dynamics)
Show Figures

Figure 1

27 pages, 18288 KB  
Article
A New Method for Modeling and Parameter Identification of Positively Charged Downward Lightning Leader Based on Remote Lightning Electric Field Signatures Recorded in the ELF/MF Range and 3D Doppler Radar Scanning Data
by Grzegorz Karnas, Piotr Barański and Grzegorz Masłowski
Energies 2022, 15(22), 8566; https://doi.org/10.3390/en15228566 - 16 Nov 2022
Cited by 3 | Viewed by 1584
Abstract
The aim of this paper is modeling and parameter identification of the leader stage preceding the positive stroke of natural cloud-to-ground lightning. This research is based on electric field and 3D Doppler radar data recorded during thunderstorms in Poland, as supplied by database [...] Read more.
The aim of this paper is modeling and parameter identification of the leader stage preceding the positive stroke of natural cloud-to-ground lightning. This research is based on electric field and 3D Doppler radar data recorded during thunderstorms in Poland, as supplied by database information from long range lightning location systems. The numerical simulation performed in the MATLAB platform showed that a high number of assumed model parameters, such as non-uniform leader tip speed and lightning channel charge density, allowed us to obtain greater compliance between simulated and measured electric field signatures than in the classical approach. The proposed model can be implemented in lightning location systems and forest fire warning systems, operating globally to reduce the risk of damages caused by positive cloud-to-ground flashes being one of the most dangerous type of lightning events. An alternative application of the model can be for research, including ground-based lightning data supplementation for the corresponding satellite and airborne registrations. Full article
(This article belongs to the Topic High Voltage Engineering)
Show Figures

Graphical abstract

13 pages, 2977 KB  
Article
Energetic Radiation from Subsequent-Stroke Leaders: The Role of Reduced Air Density in Decayed Lightning Channels
by Istvan Kereszy, Vladimir Rakov, Levente Czumbil, Alexandru Muresan, Ziqin Ding, Dan Micu and Vernon Cooray
Appl. Sci. 2022, 12(15), 7520; https://doi.org/10.3390/app12157520 - 26 Jul 2022
Cited by 3 | Viewed by 2376
Abstract
Leaders of subsequent strokes in negative cloud-to-ground lightning are known to produce X-ray/gamma-ray emissions detectable at distances of a few kilometers or less from the lightning channel. These leaders usually develop in decayed but still warm channels of preceding strokes. We computed electric [...] Read more.
Leaders of subsequent strokes in negative cloud-to-ground lightning are known to produce X-ray/gamma-ray emissions detectable at distances of a few kilometers or less from the lightning channel. These leaders usually develop in decayed but still warm channels of preceding strokes. We computed electric field waveforms at different points along the path of subsequent leader as those points are traversed by the leader tip. For a typical subsequent leader, the electric field peak is a few MV/m, which is sufficient for production of energetic radiation in a warm (reduced air density) channel. We examined the dependence of electric field peak on the leader model input parameters, including the prospective return-stroke peak current (a proxy for the leader tip potential) and leader propagation speed, and compared model predictions with measurements. Full article
(This article belongs to the Special Issue Physics Principles, Measurements and Characteristics of Lightning)
Show Figures

Figure 1

21 pages, 3800 KB  
Review
Advances in Lightning Monitoring and Location Technology Research in China
by Yijun Zhang, Yang Zhang, Mengjin Zou, Jingxuan Wang, Yurui Li, Yadan Tan, Yuwen Feng, Huiyi Zhang and Shunxing Zhu
Remote Sens. 2022, 14(5), 1293; https://doi.org/10.3390/rs14051293 - 7 Mar 2022
Cited by 26 | Viewed by 6545
Abstract
Monitoring lightning and its location is important for understanding thunderstorm activity and revealing lightning discharge mechanisms. This is often realized based on very low-frequency/low-frequency (VLF/LF) signals, very high-frequency (VHF) signals, and optical radiation signals generated during the lightning discharge process. The development of [...] Read more.
Monitoring lightning and its location is important for understanding thunderstorm activity and revealing lightning discharge mechanisms. This is often realized based on very low-frequency/low-frequency (VLF/LF) signals, very high-frequency (VHF) signals, and optical radiation signals generated during the lightning discharge process. The development of lightning monitoring and location technology worldwide has largely evolved from a single station to multiple stations, from the return strokes (RSs) of cloud-to-ground (CG) lightning flashes to total lightning flashes, from total lightning flashes to lightning discharge channels, and from ground-based lightning observations to satellite-based lightning observations, all of which have aided our understanding of atmospheric electricity. Lightning monitoring and positioning technology in China has kept up with international advances. In terms of lightning monitoring based on VLF/LF signals, single-station positioning technology has been developed, and a nationwide CG lightning detection network has been built since the end of the twentieth century. Research on total lightning flash positioning technology began at the beginning of the 21st century, and precision total lightning flash positioning technology has improved significantly over the last 10 years. In terms of positioning technology based on VHF signals, narrowband interferometers and wideband interferometers have been developed, and long-baseline radiation source positioning technology and continuous interferometers have been developed over the last ten years, significantly improving the channel characterization ability of lightning locations. In terms of lightning monitoring based on optical signals, China has for the first time developed lightning mapping imagers loaded by geosynchronous satellites, providing an important means for large-scale and all-weather lightning monitoring. Full article
Show Figures

Figure 1

15 pages, 67699 KB  
Technical Note
A New Hybrid Algorithm to Image Lightning Channels Combining the Time Difference of Arrival Technique and Electromagnetic Time Reversal Technique
by Fengquan Li, Zhuling Sun, Mingyuan Liu, Shanfeng Yuan, Lei Wei, Chunfa Sun, Huimin Lyu, Kexin Zhu and Guoying Tang
Remote Sens. 2021, 13(22), 4658; https://doi.org/10.3390/rs13224658 - 18 Nov 2021
Cited by 9 | Viewed by 2560
Abstract
Very-high-frequency (VHF) electromagnetic signals have been well used to image lightning channels with high temporal and spatial resolution due to their capability to penetrate clouds. A lightning broadband VHF interferometer with three VHF antennas configured in a scalene-triangle shape has been installed in [...] Read more.
Very-high-frequency (VHF) electromagnetic signals have been well used to image lightning channels with high temporal and spatial resolution due to their capability to penetrate clouds. A lightning broadband VHF interferometer with three VHF antennas configured in a scalene-triangle shape has been installed in Lhasa since 2019, to detect the lightning VHF signals. Using the signals from the VHF interferometer, a new hybrid algorithm, called the TDOA-EMTR technique, combining the time difference of arrival (TDOA) and the electromagnetic time reversal (EMTR) technique is introduced to image the two-dimensional lightning channels. The TDOA technique is firstly applied to calculate the initial solutions for the whole lightning flash. According to the results by the TDOA method, the domain used for the EMTR technique is predetermined, and then the EMTR technique is operated to obtain the final positioning result. Unlike the original EMTR technique, the low-power frequency points for each time window are removed based on the FFT spectrum. Metrics used to filter noise events are adjusted. Detailed imaging results of a negative cloud-to-ground (CG) lightning flash and an intra-cloud (IC) lightning flash by the TDOA method and the TDOA-EMTR are presented. Compared with the original EMTR method, the positioning efficiency can be improved by more than a factor of 3 to 4, depending on the scope of the pre-determined domain. Results show that the new algorithm can obtain much weaker radiation sources and simultaneously occurring sources, compared with the TDOA method. Full article
Show Figures

Figure 1

18 pages, 6875 KB  
Article
A New Approach of 3D Lightning Location Based on Pearson Correlation Combined with Empirical Mode Decomposition
by Yanhui Wang, Yingchang Min, Yali Liu and Guo Zhao
Remote Sens. 2021, 13(19), 3883; https://doi.org/10.3390/rs13193883 - 28 Sep 2021
Cited by 14 | Viewed by 3020
Abstract
To improve the accuracy of pulse matching and the mapping quality of lightning discharges, the Pearson correlation method combined with empirical mode decomposition (EMD) is introduced for discharge electric field pulse matching. This paper uses the new method to locate the lightning channels [...] Read more.
To improve the accuracy of pulse matching and the mapping quality of lightning discharges, the Pearson correlation method combined with empirical mode decomposition (EMD) is introduced for discharge electric field pulse matching. This paper uses the new method to locate the lightning channels of an intra-cloud (IC) lightning flash and a cloud-to-ground (CG) lightning flash and analyzes the location results for the two lightning flashes. The results show that this method has a good performance in lightning location. Compared with the pulse-peak feature matching method, the positioning results of the new method are significantly improved, which is mainly due to the much larger number of positioning points (matched pulses). The number of located radiation sources has increased by nearly a factor of seven, which can significantly improve the continuity of the lightning channel and clearly distinguish the developmental characteristics. In the CG flash, there were three negative recoil streamers in the positive leader channel. After the three negative recoil streamers were finished, taking approximately 1 ms, 12 ms, and 2 ms, respectively, the negative leader channel underwent a K-process. The three negative recoil streamers are not connected to the K-processes in the negative leader channel. We think that the three negative recoil streamers may have triggered the three K-processes, respectively. Full article
Show Figures

Graphical abstract

21 pages, 7593 KB  
Article
Differences in Cloud Radar Phase and Power in Co- and Cross-Channel—Indicator of Lightning
by Zbyněk Sokol and Jana Popová
Remote Sens. 2021, 13(3), 503; https://doi.org/10.3390/rs13030503 - 31 Jan 2021
Cited by 4 | Viewed by 2580
Abstract
Thunderstorms and especially induced lightning discharges have still not been fully understood, although they are known to cause many casualties yearly worldwide. This study aims at filling the gap of knowledge by investigating the potential of phase and power of the co- and [...] Read more.
Thunderstorms and especially induced lightning discharges have still not been fully understood, although they are known to cause many casualties yearly worldwide. This study aims at filling the gap of knowledge by investigating the potential of phase and power of the co- and cross-channels of a vertical cloud radar to indicate lightning close to the radar site. We performed statistical and correlation analyses of vertical profiles of phase and power spectra in the co- and the cross-channel for 38 days of thunderstorms producing lightning up to 20 km from the radar in 2018–2019. Specifically, we divided the dataset into “near” and “far” data according to the observed distance of lightning to the radar and analyzed it separately. Although the results are quite initial given the limited number of “near” data, they clearly showed different structures of “near” and “far” data, thus confirming the potential of radar data to indicate lightning. Moreover, for the first time in this study the predictability of lightning using cloud radar quantities was evaluated. We applied a Regression Tree Model to diagnose lightning and verified it using Receiver Operating Characteristic (ROC) and Critical Success Index (CSI). ROC provided surprisingly good results, while CSI was not that good but considering the very rare nature of lightning its values are high as well. Full article
Show Figures

Graphical abstract

27 pages, 5157 KB  
Article
Modeling Compact Intracloud Discharge (CID) as a Streamer Burst
by Vernon Cooray, Gerald Cooray, Marcos Rubinstein and Farhad Rachidi
Atmosphere 2020, 11(5), 549; https://doi.org/10.3390/atmos11050549 - 25 May 2020
Cited by 18 | Viewed by 4297
Abstract
Narrow Bipolar Pulses are generated by bursts of electrical activity in the cloud and these are referred to as Compact Intracloud Discharges (CID) or Narrow Bipolar Events in the current literature. These discharges usually occur in isolation without much electrical activity before or [...] Read more.
Narrow Bipolar Pulses are generated by bursts of electrical activity in the cloud and these are referred to as Compact Intracloud Discharges (CID) or Narrow Bipolar Events in the current literature. These discharges usually occur in isolation without much electrical activity before or after the event, but sometimes they are observed to initiate lightning flashes. In this paper, we have studied the features of CIDs assuming that they consist of streamer bursts without any conducting channels. A typical CID may contain about 109 streamer heads during the time of its maximum growth. A CID consists of a current front of several nanosecond duration that travels forward with the speed of the streamers. The amplitude of this current front increases initially during the streamer growth and decays subsequently as the streamer burst continues to propagate. Depending on the conductivity of the streamer channels, there could be a low-level current flow behind this current front which transports negative charge towards the streamer origin. The features of the current associated with the CID are very different from those of the radiation field that it generates. The duration of the radiation field of a CID is about 10–20 μs, whereas the duration of the propagating current pulse associated with the CID is no more than a few nanoseconds in duration. The peak current of a CID is the result of a multitude of small currents associated with a large number of streamers and, if all the forward moving streamer heads are located on a single horizontal plane, the cumulative current that radiates at its peak value could be about 108 A. On the other hand, the current associated with an individual streamer is no more than a few hundreds of mA. However, if the location of the forward moving streamer heads are spread in a vertical direction, the peak current can be reduced considerably. Moreover, this large current is spread over an area of several tens to several hundreds of square meters. The study shows that the streamer model of the CID could explain the fine structure of the radiation fields present both in the electric field and electric field time derivative. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

Back to TopTop