Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = coal–rock combination specimens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3175 KB  
Article
Creep Deformation Mechanisms of Gas-Bearing Coal in Deep Mining Environments: Experimental Characterization and Constitutive Modeling
by Xiaolei Sun, Xueqiu He, Liming Qiu, Qiang Liu, Limin Qie and Qian Sun
Processes 2025, 13(8), 2466; https://doi.org/10.3390/pr13082466 - 4 Aug 2025
Viewed by 384
Abstract
The impact mechanism of long-term creep in gas-containing coal on coal and gas outbursts has not been fully elucidated and remains insufficiently understood for the purpose of disaster engineering control. This investigation conducted triaxial creep experiments on raw coal specimens under controlled confining [...] Read more.
The impact mechanism of long-term creep in gas-containing coal on coal and gas outbursts has not been fully elucidated and remains insufficiently understood for the purpose of disaster engineering control. This investigation conducted triaxial creep experiments on raw coal specimens under controlled confining pressures, axial stresses, and gas pressures. Through systematic analysis of coal’s physical responses across different loading conditions, we developed and validated a novel creep damage constitutive model for gas-saturated coal through laboratory data calibration. The key findings reveal three characteristic creep regimes: (1) a decelerating phase dominates under low stress conditions, (2) progressive transitions to combined decelerating–steady-state creep with increasing stress, and (3) triphasic decelerating–steady–accelerating behavior at critical stress levels. Comparative analysis shows that gas-free specimens exhibit lower cumulative strain than the 0.5 MPa gas-saturated counterparts, with gas presence accelerating creep progression and reducing the time to failure. Measured creep rates demonstrate stress-dependent behavior: primary creep progresses at 0.002–0.011%/min, decaying exponentially to secondary creep rates below 0.001%/min. Steady-state creep rates follow a power law relationship when subject to deviatoric stress (R2 = 0.96). Through the integration of Burgers viscoelastic model with the effective stress principle for porous media, we propose an enhanced constitutive model, incorporating gas adsorption-induced dilatational stresses. This advancement provides a theoretical foundation for predicting time-dependent deformation in deep coal reservoirs and informs monitoring strategies concerning gas-bearing strata stability. This study contributes to the theoretical understanding and engineering monitoring of creep behavior in deep coal rocks. Full article
Show Figures

Figure 1

20 pages, 4425 KB  
Article
Study on Similar Materials for Weakly Cemented Medium and Indoor Excavation Test
by Shanchao Hu, Lei Yang, Shihao Guo, Chenxi Zhang, Dawang Yin, Jinhao Dou and Yafei Cheng
Materials 2025, 18(13), 2948; https://doi.org/10.3390/ma18132948 - 22 Jun 2025
Viewed by 529
Abstract
The escalating disasters caused by the movement of shallow buried strata in China’s western mining areas are increasingly threatening operational safety. A critical issue in ensuring secure mining practices in these areas is the creep failure of weakly cemented soft rock under low-stress [...] Read more.
The escalating disasters caused by the movement of shallow buried strata in China’s western mining areas are increasingly threatening operational safety. A critical issue in ensuring secure mining practices in these areas is the creep failure of weakly cemented soft rock under low-stress conditions. The unique particle contact mechanisms in weakly cemented mudstone, combined with the persistence of the cemented materials and the particulate matter they form, lead to mechanical responses that differ significantly from those of typical soft rocks during loading. Building on an existing multivariate linear regression equation for new similar materials, this study developed qualified weakly cemented medium similar materials, offering appropriate materials for long-term creep tests of weakly cemented formations. This was accomplished by employing orthogonal proportioning tests. The principal findings of our investigation are as follows: The new, similar material exhibits low strength and prominent creep characteristics, accurately simulating weakly cemented materials in western mining areas. The concentration of rosin–alcohol solution has a measurable impact on key parameters, such as σc, E, and γ in the weakly cemented similar material specimens. Furthermore, the creep characteristics of the specimens diminish progressively with an increase in the proportion of iron powder (I) and barite powder (B). The material was applied to a similar indoor model test simulating the weakly cemented material surrounding the auxiliary haulage roadway in Panel 20314 of the Gaojialiang Coal Mine, with speckle analysis employed for detailed examination. The experimental findings suggest that both the conventional mechanical properties and long-term creep characteristics of the material align with the required specifications, offering robust support for achieving optimal outcomes in the similar model test. Full article
Show Figures

Figure 1

25 pages, 15668 KB  
Article
Study on the Influence of Drilling Parameters on the Mechanical Properties and Pressure Relief Effect of Coal Rock
by Yujiang Zhang, Yexing Chen, Shuai Zhang, Guorui Feng, Yuguo Wang, Shule Li, Qian Wang, Bo Wang and Liang Zhao
Processes 2025, 13(4), 993; https://doi.org/10.3390/pr13040993 - 26 Mar 2025
Viewed by 598
Abstract
Based on considering the stress state distribution and potential failure surface of the specimen during uniaxial compression, the drilling parameters (layout, spacing, position) are set. Thoroughly understanding the influence of different drilling parameters on the pressure relief effect is conducive to reducing the [...] Read more.
Based on considering the stress state distribution and potential failure surface of the specimen during uniaxial compression, the drilling parameters (layout, spacing, position) are set. Thoroughly understanding the influence of different drilling parameters on the pressure relief effect is conducive to reducing the occurrence of coal mine rock burst accidents. Through laboratory tests and numerical simulation tests under different drilling parameters, the influence laws of mechanical parameters, failure characteristics, AE characteristic parameters and energy evolution of specimens under different drilling parameters were studied. The pressure relief effect under different drilling parameters was evaluated by using the pressure relief effect evaluation index (X), and the best combination of drilling parameters was obtained. The results show the following: (1) Compared with the intact specimen, the peak strength of the drilling specimen is significantly reduced, and the drilling layout has the greatest influence on the mechanical properties, followed by the drilling spacing and drilling position. (2) Different drilling layouts will form different weak-strength surfaces in the specimen, and lead the expansion and penetration of cracks, resulting in different failure modes of the specimen. The stress distribution inside the specimen will affect the stress concentration around the borehole, finally affect the damage degree of the specimen. (3) Drilling can not only effectively reduce the energy accumulation capacity, but also enhance the degree of energy dissipation. The AE ringing counts and energy of the triangular-drilling specimens are the least. The AE ringing counts and energy decrease first and then increase with the increase in drilling spacing, and are the smallest at three times the drilling diameter. The AE ringing counts and energy increase gradually with the upward movement of the drilling position. (4) The optimal combination of drilling parameters was obtained by the test, and it was triangular-layout drilling, drilling spacing three times the diameter, and the drilling position in the middle of the specimen, and the value of the pressure relief effect evaluation index (X) was 65.41. The research results can provide some reference for the selection and optimization of drilling pressure relief parameters in rock burst mines. Full article
(This article belongs to the Special Issue Advances in Coal Processing, Utilization, and Process Safety)
Show Figures

Figure 1

16 pages, 4666 KB  
Article
Mechanical Damage Characteristics and Energy Evolution Laws of Primary Coal–Rock Combinations with Different Coal–Rock Ratios
by Yongbo Cai, Xin Zhou, Long Wang, Qiang Fu and Qixian Li
Appl. Sci. 2025, 15(6), 3091; https://doi.org/10.3390/app15063091 - 12 Mar 2025
Cited by 2 | Viewed by 804
Abstract
To investigate the mechanical damage characteristics and energy evolution laws of primary coal–rock combinations with different coal–rock ratios, uniaxial compression tests were conducted. Combined with acoustic emission monitoring results, a comparative analysis was performed on the yield strength, elastic modulus, acoustic emission signal [...] Read more.
To investigate the mechanical damage characteristics and energy evolution laws of primary coal–rock combinations with different coal–rock ratios, uniaxial compression tests were conducted. Combined with acoustic emission monitoring results, a comparative analysis was performed on the yield strength, elastic modulus, acoustic emission signal characteristics, failure characteristics, and energy accumulation–dissipation characteristics of five different coal–rock ratio specimens. The study reveals the following: (1) Defect structures and dimensions of coal bodies influence the strength of specimens, with the peak stress and elastic modulus of specimens showing a decreasing trend with an increasing coal–rock ratio. (2) The transitional zone of primary coal–rock composite exhibits distinct interface effects on coal and rock components. Coal-derived stresses manifest as horizontal tensile stresses, promoting deformation at the interface between coal and rock, whereas rock-derived stresses at the interface manifest as horizontal compressive stresses, restricting deformation at the coal–rock interface. Moreover, positions closer to the interface experience stronger limitations due to the interface effects. (3) Coal–rock interface cracks are more developed in the primary coal–rock composite, with multipoint cracking occurring at the interface during failure, and a feedback mechanism between coal and rock failure exacerbates the damage and dynamic manifestation intensity of coal bodies. (4) The acoustic emission signals from single-rock samples indicate shear failure of the specimens. Conversely, the acoustic emission signals from single-coal samples and combinations suggest that tensile failure is the primary destabilizing factor. Moreover, with an increase in the proportion of coal, specimens transition from tensile failure to tensile–shear composite failure. Full article
Show Figures

Figure 1

17 pages, 6139 KB  
Article
Experimental Study on the Mechanical Properties and Damage Mechanism of Saturated Coal-Measure Sandstone in an Open Pit Mine Under the Freeze–Thaw Effect
by Yue Cao, Zhijun Xu, Lianhai Tai, Zheng Kong, Peng Wu, Chong Li and Xianbiao Mao
Appl. Sci. 2024, 14(23), 11381; https://doi.org/10.3390/app142311381 - 6 Dec 2024
Cited by 3 | Viewed by 839
Abstract
The damage and degradation of coal-measure sandstone in cold-region open-pit mines due to freeze–thaw effects has become one of the significant factors inducing instability in the rock mass of open-pit mine slopes. This study conducts experiments on the physical and mechanical properties of [...] Read more.
The damage and degradation of coal-measure sandstone in cold-region open-pit mines due to freeze–thaw effects has become one of the significant factors inducing instability in the rock mass of open-pit mine slopes. This study conducts experiments on the physical and mechanical properties of saturated coal-measure sandstone under varying freeze–thaw cycle counts and freezing temperatures, revealing the intrinsic mechanisms of damage and degradation in saturated coal-measure sandstone due to freeze–thaw effects. The experimental results indicate that, with an increase in the number of freeze–thaw cycles and a decrease in the freezing temperature, the elastic modulus and peak compressive strength of the specimens exhibit an exponential decrease. In contrast, the peak strain shows an exponential increase. However, compared to the freezing temperature, the increase in the freeze–thaw cycle frequency leads to a more significant change in the mechanical parameters of the specimens, indicating that the frequency of freeze–thaw cycles has a more pronounced effect on the deformation resistance of saturated coal-measure sandstone than the freezing temperature. The failure mode of coal-measure sandstone specimens under uniaxial compressive loading primarily exhibits shear failure; however, as the number of freeze–thaw cycles increases and the freezing temperature decreases, the specimens begin to exhibit tensile failure modes, which gradually develop into a combined tensile and shear failure mode. Based on the experimental data, two sets of surface equations were fitted to characterize the relationship between the mechanical properties (peak compressive strength, elastic modulus) of the specimens and the experimental parameters (number of freeze–thaw cycles, freezing temperature). The research findings can provide references and insights for engineering disasters caused by the degradation of coal-bearing sandstone in cold-region open-pit mines. Full article
Show Figures

Figure 1

18 pages, 7062 KB  
Article
Compressive Failure Characteristics of a Coal–Rock Combination at Different Angles: Experimental Study and Fractal Analysis
by Long Tang, Shihao Tu, Hongsheng Tu, Kaijun Miao, Wenlong Li, Hongbin Zhao, Jieyang Ma and Lei Zhang
Fractal Fract. 2024, 8(4), 240; https://doi.org/10.3390/fractalfract8040240 - 20 Apr 2024
Cited by 11 | Viewed by 1679
Abstract
In order to explore the influence of dip angles on the deformation and failure of a coal–rock combination, uniaxial compression experiments were carried out on a coal–rock combination with different dip angles, and the acoustic emissions (hereinafter referred to as AE) responses during [...] Read more.
In order to explore the influence of dip angles on the deformation and failure of a coal–rock combination, uniaxial compression experiments were carried out on a coal–rock combination with different dip angles, and the acoustic emissions (hereinafter referred to as AE) responses during loading were collected. Based on the damage mechanics theory and fractal theory, the fractal dimensions of different damage degrees were calculated. The results show that, with the increase in the inclination angle, the compressive strength and elastic modulus of the coal–rock combination gradually decreased, while the AE ringing count gradually increased first and then decreased. At the initial loading stage of the specimen, the greater the damage degree of the coal–rock combination under the same strain condition, the larger the value of its overall fractal dimension. The AE fractal dimension of the coal–rock combination increases gradually between 10% and 20% of the damage degree. It suddenly decreased between 50% and 60%, then increased slightly before gradually decreasing to the minimum between 80% and 100%. The sudden decrease in fractal dimension, a slight increase, and then a continuous decrease can be used as the precursor information for the instability and failure of the coal–rock combination. Full article
(This article belongs to the Special Issue Fractal Analysis and Its Applications in Rock Engineering)
Show Figures

Figure 1

14 pages, 3506 KB  
Article
Analysis of Dynamic Mechanical Properties and Energy Consumption of Fractured Sandstone under Dynamic–Static Combination Conditions
by Qi Ping, Yijie Xu, Jing Hu, Shijia Sun, Xiangyang Li and Shiwei Wu
Appl. Sci. 2024, 14(6), 2359; https://doi.org/10.3390/app14062359 - 11 Mar 2024
Cited by 3 | Viewed by 1446
Abstract
Under dynamic loads, such as blasting, excavation, or quarrying, rocks with fissures are the first to sustain damage, leading to instability in the engineering rock mass. To investigate the kinetic properties of fractured rocks, fractured coal mine sandstone specimens underwent impact compression tests [...] Read more.
Under dynamic loads, such as blasting, excavation, or quarrying, rocks with fissures are the first to sustain damage, leading to instability in the engineering rock mass. To investigate the kinetic properties of fractured rocks, fractured coal mine sandstone specimens underwent impact compression tests using a dynamic–static combination SHPB (split Hopkinson pressure bar) test device at different loading rates under combined dynamic and static conditions. The damage characteristics of the specimens were analyzed from an energy point of view. The results show that under the dynamic and static combined condition, when five impact loading air pressures are used for loading at different impact rates, the trends of the dynamic stress–strain curves of prefabricated fissured rock samples under various impact pressures were discovered to be similar and were mainly categorized into three main stages of elasticity, yield, and destruction; the specimen’s dynamic compressive strength increases according to a power function relationship; as the average strain rate increases, the dynamic strain increases linearly and the dynamic modulus of elasticity increases in a quadratic relationship, all of which show a significant strain rate effect. The incident energy is a power function of the loading rate. The reflected, transmitted, and absorbed energies by the sample increase with the incident energy. The degree of the sandstone specimen fragmentation gradually grows with increasing impact loading rate and incident energy, as evidenced by a decrease in the scale of the fragments. The absorbed energy in the sample is mainly used for the deformation damage of the rock, and the more intense the fragmentation of the specimen, the more absorbed energy is required. Full article
(This article belongs to the Special Issue The Advances of Rock Dynamics: 2nd Edition)
Show Figures

Figure 1

14 pages, 10396 KB  
Article
Characterization of the Time–Space Evolution of Acoustic Emissions from a Coal-like Material Composite Model and an Analysis of the Effect of the Dip Angle on the Bursting Tendency
by Pengxiang Zhao, Jian Wen, Shugang Li, Weidong Lu, Yongchen He, Fang Lou and Laolao Wang
Sustainability 2024, 16(5), 1711; https://doi.org/10.3390/su16051711 - 20 Feb 2024
Cited by 2 | Viewed by 1453
Abstract
Rock bursts pose a grievous risk to the health and lives of miners and to the industry. One factor that affects rock bursts is the dip angle of the coal seam. Because of the uniquely high gas content of the coal in a [...] Read more.
Rock bursts pose a grievous risk to the health and lives of miners and to the industry. One factor that affects rock bursts is the dip angle of the coal seam. Because of the uniquely high gas content of the coal in a mine in Shanxi Province, China, coal specimens were obtained from this mine to produce coal–rock combination specimens and test the effects of various seam inclinations. Using a DYD-10 uniaxial compression system and a PCI-8 acoustic emission (AE) signal acquisition system, we investigated the spatial and temporal evolution characteristics of the burst tendency of specimens with different coal seam inclination angles (0°, 10°, 20°, 30°, 35°, 40°, and 45°). Uniaxial pressure was applied to the specimens, and we found that, as the inclination angle increased, the coal–rock combination specimens exhibited structural damage and destabilization, which was attributed to the generation of an interface slip phenomenon. In all tests, the coal exhibited greater damage than the rock. There was an energy convergence at the coal–rock interlayer interface, which was the main carrier for the accumulated energy. The impact energy dissipation index is defined according to the energy dissipation properties of the loading process of coal–rock composites. As the inclination angle increased, the impact energy dissipation index, energy storage limit, compressive strength, elastic modulus, and other indexes gradually decreased. This effect was strongest where the angles were 40° and 45°. The indexes used to assess the impact propensity decreased to a notable degree at these angles, revealing that the burst tendency of coal–rock is curtailed as the inclination angle increases. The results of this research are of great importance to the early evaluation of mine burst risks and the sustainable development of coal utilization. Full article
(This article belongs to the Topic Mining Safety and Sustainability, 2nd Volume)
Show Figures

Figure 1

16 pages, 20806 KB  
Article
Study on Dynamic Crack Expansion and Size Effect of Back–Filling Concrete under Uniaxial Compression
by Xicai Gao, Huan Xia, Kai Fan, Leilei Yi and Jianhui Yin
Materials 2023, 16(23), 7503; https://doi.org/10.3390/ma16237503 - 4 Dec 2023
Cited by 3 | Viewed by 1613
Abstract
With the continuous expansion of the application range of gob–side entry retaining technology, the depth, height, and advancing speed of coal seams also increase, which brings great problems to the stability control of surrounding rock structures of gob–side entry retaining. As one of [...] Read more.
With the continuous expansion of the application range of gob–side entry retaining technology, the depth, height, and advancing speed of coal seams also increase, which brings great problems to the stability control of surrounding rock structures of gob–side entry retaining. As one of the main bearing structures of the surrounding rock, the stability of the roadway–side support body is a key factor for the success of gob–side entry retaining. In order to study the deformation characteristics and instability mechanism of roadway-side support body, based on the roadway–side support materials of gob-side entry retaining, the dynamic expansion test of back–filling concrete cracks under uniaxial compression was carried out. The YOLOv5 algorithm was applied to establish the fine identification and quantitative characterization method of macroscopic cracks of the samples, and the dynamic expansion rule of roadway-side support body cracks and its dimensional effect were revealed by combining the fractal theory. The results show that the F1 value and average precision mean of the intelligent dynamic crack identification model reached 75% and 71%, respectively, the GIoU loss value tends to fit around 0.038, and the model reached the overall optimal solution. During the uniaxial compression process, micro cracks on the surface of the back–filling concrete first initiated at the end, and after reaching the yield stress, the macroscopic cracks developed significantly. Moreover, several secondary cracks expanded, pooled, and connected from the middle of the specimen to the two ends, inducing the overall instability of the specimen. The surface crack expansion rate, density, and fractal dimension all show stage change characteristics with the increase in stress, and the main crack expansion rate has obvious precursor characteristics. With the increase in the size, the decrease in crack density after back–filling concrete failures gradually decreases from 93.19% to 4.08%, the surface crack network develops from complex to simple, and the failure mode transits from tensile failure to shear failure. The above research results provide a basic experimental basis for design optimization and instability prediction of a roadway–side support body for engineering-scale applications. Full article
Show Figures

Figure 1

20 pages, 10371 KB  
Article
Dynamic Compressive Mechanical Property Characteristics and Fractal Dimension Applications of Coal-Bearing Mudstone at Real-Time Temperatures
by Shiru Guo, Lianying Zhang, Hai Pu, Yadong Zheng, Bing Li, Peng Wu, Peitao Qiu, Chao Ma and Yiying Feng
Fractal Fract. 2023, 7(9), 695; https://doi.org/10.3390/fractalfract7090695 - 18 Sep 2023
Cited by 5 | Viewed by 1968
Abstract
Coal-bearing rocks are inevitably exposed to high temperatures and impacts (rapid dynamic load action) during deep-earth resource extraction, necessitating the study of their mechanical properties under such conditions. This paper reports on dynamic compression tests conducted on coal-bearing mudstone specimens at real-time temperatures [...] Read more.
Coal-bearing rocks are inevitably exposed to high temperatures and impacts (rapid dynamic load action) during deep-earth resource extraction, necessitating the study of their mechanical properties under such conditions. This paper reports on dynamic compression tests conducted on coal-bearing mudstone specimens at real-time temperatures (the temperature of the rock remains constant throughout the impact process) ranging from 25 °C to 400 °C using a temperature Hopkinson (T-SHPB) test apparatus developed in-house. The objective is to analyze the relationship between mechanical properties and the fractal dimension of fractured fragments and to explore the mechanical response of coal-bearing mudstone specimens to the combined effects of temperature and impact using macroscopic fracture characteristics. The study found that the peak stress and dynamic elastic modulus initially increased and then decreased with increasing temperature, increasing in the 25–150 °C range and monotonically decreasing in the 150–400 °C range. Based on the distribution coefficients and fractal dimensions of the fractured fragments, it was found that the degree of damage of coal-bearing mudstone shows a trend of an initial decrease and then an increase with increasing temperature. In the temperature range of 25–150 °C, the expansion of clay minerals within the mudstone filled the voids between the skeletal particles, resulting in densification and decreased damage. In the temperature range of 150–400 °C, thermal stresses increased the internal fractures and reduced the overall strength of the mudstone, resulting in increased damage. Negative correlations between fractal dimensions, the modulus of elasticity, and peak stress could be used to predict rock properties in engineering. Full article
Show Figures

Figure 1

17 pages, 20658 KB  
Article
Evaluating Fractal Damage and Acoustic Emissions of Soft Rock–Coal Combinations in a Deep Mining Area
by Bin Liang, Dong Wang, Yujing Jiang, Xiaoming Sun, Hengjie Luan, Changsheng Wang, Ling Dong and Lugen Chen
Processes 2023, 11(9), 2599; https://doi.org/10.3390/pr11092599 - 30 Aug 2023
Cited by 5 | Viewed by 1528
Abstract
Weakly cemented soft rock mines in the Ordos Basin are susceptible to mining disasters, including roof collapse and substantial deformation of surrounding rocks, during coal mining operations. Researching the damage characteristics of structures composed of low-strength “soft rock–coal” combinations is crucial for effectively [...] Read more.
Weakly cemented soft rock mines in the Ordos Basin are susceptible to mining disasters, including roof collapse and substantial deformation of surrounding rocks, during coal mining operations. Researching the damage characteristics of structures composed of low-strength “soft rock–coal” combinations is crucial for effectively preventing and controlling disasters in deep soft rock mining. To investigate the fractal damage characteristics of soft rock–coal combinations with different height ratios, uniaxial compression tests were conducted on specimens containing soft rock percentages of 20%, 40%, 50%, 60%, and 80%. The results show that the uniaxial compressive strength and modulus of elasticity of the soft rock–coal combinations increased with increasing proportions of soft rock. The soft rock–coal combination was clearly segmented, and the 40%, 50%, and 60% soft rock–coal combinations had good self-similarity. The fractal dimensions were 2.374, 2.508 and 2.586, which are all within the interval [2, 3]. When the percentage of soft rock was 20%, the specimen damage yielded flaky coal bodies with smaller grain size, whereas the coal–rock interface was spalled by small conical rock bodies. As the soft rock proportion increased, the percentage mass of fragments with particle size greater than 20 mm increased from 83.34% to 94.15%. The failure mode in soft rock–coal combinations is primarily attributed to the partial tensile splitting of the coal body. As the proportion of soft rock increased, there was a gradual reduction in the extent of coal body damage. Moreover, the acoustic emission absolute energies and counts decreased as the proportion of soft rock increased. The acoustic emission energy was reduced from 2.46 × 109 attoJ to 3.41 × 108 attoJ, and the acoustic emission counts were reduced from 18,276 to 7852. Full article
(This article belongs to the Special Issue Advanced Technologies of Deep Mining)
Show Figures

Figure 1

15 pages, 9535 KB  
Article
Mechanical Properties and Strength Characteristics of Rock–Coal–Rock Assemblages under Different Peripheral Pressures
by Hongda Wang, Jucai Chang, Tuo Wang, Hualei Zhang and Yijun Guo
Sustainability 2023, 15(16), 12463; https://doi.org/10.3390/su151612463 - 16 Aug 2023
Cited by 5 | Viewed by 1967
Abstract
To investigate the deformation and damage characteristics of internal coal bodies of small pillars under different pressures, rock–coal–rock assemblage samples were subjected to the conventional triaxial compression test to analyze the mechanical behavior characteristics under different pressures. The results showed that, with the [...] Read more.
To investigate the deformation and damage characteristics of internal coal bodies of small pillars under different pressures, rock–coal–rock assemblage samples were subjected to the conventional triaxial compression test to analyze the mechanical behavior characteristics under different pressures. The results showed that, with the increase in peripheral pressure, the peak strength and modulus of elasticity of the assemblage specimens increased, the range of fracture compaction stage gradually decreased, and the specimen was gradually transformed from brittle to ductile. With an increase in peripheral pressure, the residual strength gradually increased, and the strength decay coefficient gradually decreased. The strength decay coefficient decreased the most at 0–10 MPa, and this decrease slowed down after exceeding 15 MPa. When the peripheral pressure was 0 MPa, the damage degree of the coal pillar was larger. With the increase in peripheral pressure, the number of cracks in the coal column increased, the damage degree increased more, and mixed damage characteristics of tension–shear were found. Based on the Hoek–Brown criterion, the strength criterion applicable to the specimen of rock–coal–rock combination was obtained through numerical fitting iteration, which provides an experimental and theoretical basis for realizing the stability control of small coal columns. Full article
(This article belongs to the Special Issue Green and Scientific Design of Deep Underground Engineering)
Show Figures

Figure 1

18 pages, 4299 KB  
Article
Experimental Study of Mechanical Properties and Failure Characteristics of Coal–Rock-like Composite Based on 3D Printing Technology
by Ying Chen, Zikai Zhang, Chen Cao, Shuai Wang, Guangyuan Xu, Yang Chen and Jinliang Liu
Materials 2023, 16(10), 3681; https://doi.org/10.3390/ma16103681 - 11 May 2023
Cited by 6 | Viewed by 2136
Abstract
Coal contains cracks and has strong heterogeneity, so the data dispersion is large in laboratory tests. In this study, 3D printing technology is used to simulate hard rock and coal, and the rock mechanics test method is used to carry out the coal–rock [...] Read more.
Coal contains cracks and has strong heterogeneity, so the data dispersion is large in laboratory tests. In this study, 3D printing technology is used to simulate hard rock and coal, and the rock mechanics test method is used to carry out the coal–rock combination experiment. The deformation characteristics and failure modes of the combination are analyzed and compared with the relevant parameters of the single body. The results show that the uniaxial compressive strength of the composite sample is inversely proportional to the thickness of the weak body and directly proportional to the thickness of the strong body. The Protodyakonov model or ASTM model can be used as a verification method for the results of a uniaxial compressive strength test of coal–rock combination. The elastic modulus of the combination is the equivalent elastic modulus, and the elastic modulus of the combination is between the elastic modulus of the two constituent monomers, which can be analyzed using the Reuss model. The failure of the composite sample occurs in the low-strength material, while the high-strength section is rebounding as an extra load on the low-strength body, which may cause a sharp increase in the strain rate of the weak body. The main failure mode of the sample with a small height–diameter ratio is splitting, and the failure mode of the sample with a large height–diameter ratio is shear fracturing. When the height–diameter ratio is not greater than 1, it shows pure splitting, and when the height–diameter ratio is 1~2, it shows a mixed mode of splitting and shear fracture. The shape has a significant effect on the uniaxial compressive strength of the composite specimen. For the impact propensity, it can be determined that the uniaxial compressive strength of the combination is higher than that of the single body, and the dynamic failure time is lower than that of the single body. It can hardly determine the elastic energy and the impact energy of the composite with the relationship to the weak body. The proposed methodology provides new cutting-edge test technologies in the study of coal and coal-like materials, with an exploration of their mechanical properties under compression. Full article
Show Figures

Figure 1

14 pages, 10566 KB  
Article
Seepage Characteristics and Influencing Factors of Weakly Consolidated Rocks in Triaxial Compression Test under Mining-Induced Stress Path
by Zhiwen Chen, Honglin Liu, Chengyu Zhu, Shuqi Ma, Yinjian Hang and Wenjie Luo
Minerals 2022, 12(12), 1536; https://doi.org/10.3390/min12121536 - 29 Nov 2022
Cited by 6 | Viewed by 2143
Abstract
The rock of weakly consolidated coal measure strata has the characteristics of low mechanical strength and strong water sensitivity. Under the stress and seepage disturbance caused by coal seam mining, the surrounding rock structure is prone to instability, which leads to mine safety [...] Read more.
The rock of weakly consolidated coal measure strata has the characteristics of low mechanical strength and strong water sensitivity. Under the stress and seepage disturbance caused by coal seam mining, the surrounding rock structure is prone to instability, which leads to mine safety accidents and water resources loss. In order to master the mechanical response and permeability evolution law of weakly consolidated rock under the disturbance of coal seam mining, the specimens of Jurassic mudstone, sandy mudstone, and sandstone in the Ili mining area of China were collected, and a triaxial compression seepage test was carried out. A comprehensive analysis was carried out on the mineral composition and microstructure characteristics of the rock. The results show the following: (1) Compared to the constant confining pressure condition, mining-induced stress promotes the fracture development rate of weakly consolidated rocks. The ratios of strain at the yield point of mudstone, sandy mudstone, and sandstone under mining-induced stress and constant confining pressure are 0.33, 0.43, and 0.79, respectively, and the ratios of strain at the failure point were 0.48, 0.52, and 0.72, respectively. (2) Under the condition of mining-induced stress, the permeability change range and the permeability recovery rate of the three types of rocks were different, which decreased in the order of mudstone, sandy mudstone, and sandstone. (3) In the process of the triaxial compression test, there was a strong hysteresis in the permeability change of the mudstone, and the permeability and hysteresis of the three types of rocks decreased with the increase in the clay mineral content. (4) Combined with the analysis of the rock mineral composition and microstructure characteristics, it is believed that the clay minerals in the rock after water mud and swelling are the main reasons for the hysteresis of the permeability change of weakly consolidated rock, and the content of clay minerals is the main factor affecting the permeability characteristics of the weakly consolidated rock. Full article
(This article belongs to the Special Issue Green Mining of Coal Mine in China)
Show Figures

Figure 1

16 pages, 4096 KB  
Article
Test Study of Seepage Characteristics of Coal Rock under Various Thermal, Hydraulic, and Mechanical Conditions
by Yanlin Zhao, Qiang Liu, Liming Tang, Jian Liao, Le Chang, Xiaguang Wang, Yang Li and Sheng Ren
Machines 2022, 10(11), 1012; https://doi.org/10.3390/machines10111012 - 2 Nov 2022
Cited by 7 | Viewed by 1877
Abstract
The seepage characteristics of rocks under conditions of multi-field activity have always been important in the field of rock mechanics. This study used the MTS815 multi-functional electro-hydraulic servo rock testing machine to conduct seepage tests on long-flame coal specimens under different confining pressures, [...] Read more.
The seepage characteristics of rocks under conditions of multi-field activity have always been important in the field of rock mechanics. This study used the MTS815 multi-functional electro-hydraulic servo rock testing machine to conduct seepage tests on long-flame coal specimens under different confining pressures, water pressures, and temperatures. This paper presents and discusses the seepage characteristics of coal specimens under the action of thermal hydraulic mechanical multi-field combinations. Considering parameters such as volumetric strain, temperature, thermal expansion coefficient, and initial porosity, the relationships of each parameter with porosity were obtained. The test results revealed that the volumetric strain of coal specimens increased gradually with the increase of temperature. The dynamic viscosity of water decreased with the increase of temperature, which accelerated the movement and circulation of water molecules. The increase in temperature caused the volume of the coal specimen to expand, the pores in the coal specimen squeezed against each other, the pore volume decreased, and the size of the seepage channel slowly decreased, which inhibited the seepage process. Furthermore, permeability gradually decreased with the increase of temperature. This inhibited the occurrence of seepage, and the higher the confining pressure, the lower was the permeability. The porosity of coal specimens decreased with the increase in temperature, which had an inhibitory effect on the seepage behavior. The results of this study provide experimental and theoretical support for the safe mining of coal and rock in underground mines. Full article
(This article belongs to the Special Issue Advances in Fracture Mechanics for Structural Integrity Assessment)
Show Figures

Figure 1

Back to TopTop