Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = concrete internal-defect imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2354 KB  
Article
Application of Radar for Diagnosis of Defects in Concrete Structures: A Structured Image-Based Approach
by Saman Hedjazi, Macy Spears, Ehsanul Kabir and Hossein Taheri
CivilEng 2025, 6(3), 45; https://doi.org/10.3390/civileng6030045 - 27 Aug 2025
Viewed by 209
Abstract
Ground penetrating radar (GPR) is a non-destructive testing (NDT) method increasingly used for evaluating concrete structures by identifying internal flaws and embedded objects. This study presents a structured image-based methodology for interpreting GPR B-scan data using a practical flowchart designed to aid in [...] Read more.
Ground penetrating radar (GPR) is a non-destructive testing (NDT) method increasingly used for evaluating concrete structures by identifying internal flaws and embedded objects. This study presents a structured image-based methodology for interpreting GPR B-scan data using a practical flowchart designed to aid in distinguishing common subsurface anomalies. The methodology was validated through a laboratory experiment involving four concrete slabs embedded with simulated defects, including corroded rebar, hollow pipes, polystyrene sheets (to represent delamination), and hollow containers (to represent voids). Scans were performed using a commercially available device, and the resulting radargrams were analyzed based on signal reflection patterns. The proposed approach successfully identified rebar positions, spacing, and depths, as well as low-dielectric anomalies such as voids and polystyrene inclusions. Some limitations were noted in detecting non-metallic materials with weak dielectric contrast, such as hollow pipes. Overall, the findings demonstrate the reliability and adaptability of the proposed method in improving the interpretation of GPR data for structural diagnostics. The proposed methodology achieved a detection accuracy of approximately 90% across all embedded features, which demonstrates improved interpretability compared to traditional manual GPR assessments, typically ranging between 70 and 80% in similar laboratory conditions. Full article
Show Figures

Figure 1

20 pages, 3596 KB  
Article
Detection of Internal Defects in Concrete Using Delay Multiply and Sum-Enhanced Synthetic Aperture Focusing Technique
by Feng Li, Sheng-Kui Di, Jing Zhang, Dong Yang, Yao Pei and Xiao-Ying Wang
Buildings 2025, 15(11), 1887; https://doi.org/10.3390/buildings15111887 - 29 May 2025
Viewed by 422
Abstract
Traditional techniques for detecting internal defects in concrete are limited by the weak directivity of ultrasonic waves, significant signal attenuation, and low imaging contrast. This paper presents an improved synthetic aperture focusing technique (SAFT) enhanced by the Delay Multiply and Sum (DMAS) algorithm [...] Read more.
Traditional techniques for detecting internal defects in concrete are limited by the weak directivity of ultrasonic waves, significant signal attenuation, and low imaging contrast. This paper presents an improved synthetic aperture focusing technique (SAFT) enhanced by the Delay Multiply and Sum (DMAS) algorithm to address these limitations and improve both the resolution and signal-to-noise ratio. The proposed method sequentially transmits and receives ultrasonic waves through an array of transducers, and applies DMAS-based nonlinear beam-forming to enhance image sharpness and contrast. Its effectiveness was validated through finite element simulations and experimental tests using three precast concrete specimens with artificial defects (specimen size: 240 mm × 300 mm × 100 mm). Compared with the conventional SAFT, the proposed method improves image contrast by approximately 40%, with clearer defect boundaries and a vertical positioning error of less than ±5 mm. This demonstrates the method’s promising potential for practical applications in internal defect visualization of concrete structures. Full article
(This article belongs to the Special Issue UHPC Materials: Structural and Mechanical Analysis in Buildings)
Show Figures

Figure 1

19 pages, 7944 KB  
Article
Method for Reconstructing Velocity Field Images of the Internal Structures of Bridges Based on Group Sparsity
by Jian Li, Jin Li, Chenli Guo, Hongtao Wu, Chuankun Li, Rui Liu and Lujun Wei
Electronics 2024, 13(22), 4574; https://doi.org/10.3390/electronics13224574 - 20 Nov 2024
Viewed by 864
Abstract
Non-destructive testing (NDT) enables the determination of internal defects and flaws in concrete structures without damaging them, making it a common application in current bridge concrete inspections. However, due to the complexity of the internal structure of this type of concrete, limitations regarding [...] Read more.
Non-destructive testing (NDT) enables the determination of internal defects and flaws in concrete structures without damaging them, making it a common application in current bridge concrete inspections. However, due to the complexity of the internal structure of this type of concrete, limitations regarding measurement point placement, and the extensive detection area, accurate defect detection cannot be guaranteed. This paper proposes a method that combines the Simultaneous Algebraic Reconstruction Technique with Group Sparsity Regularization (SART-GSR) to achieve tomographic imaging of bridge concrete under sparse measurement conditions. Firstly, a mathematical model is established based on the principles of the tomographic imaging of bridge concrete; secondly, the SART algorithm is used to solve for its velocity values; thirdly, on the basis of the SART results, GSR is applied for optimized solution processing; finally, simulation experiments are conducted to verify the reconstruction effects of the SART-GSR algorithm compared with those of the SART and ART algorithms. The results show that the SART-GSR algorithm reduced the relative error to 1.5% and the root mean square error to 89.76 m/s compared to the SART and ART algorithms. This improvement in accuracy makes it valuable for the tomographic imaging of bridge concrete and provides a reference for defect detection in bridge concrete. Full article
Show Figures

Figure 1

14 pages, 9917 KB  
Article
Development of a Capsule-Type Inspection Robot Customized for Ondol Pipelines
by Myungdo Lee and Ung-Kyun Lee
Appl. Sci. 2024, 14(17), 7938; https://doi.org/10.3390/app14177938 - 5 Sep 2024
Cited by 2 | Viewed by 1894
Abstract
Ondol is a heating system unique to Korean homes that increases indoor temperatures by supplying hot water through pipes embedded in floor slabs. Known for its comfort and sustained heating advantages, ondol has garnered international interest in countries requiring efficient heating solutions. Given [...] Read more.
Ondol is a heating system unique to Korean homes that increases indoor temperatures by supplying hot water through pipes embedded in floor slabs. Known for its comfort and sustained heating advantages, ondol has garnered international interest in countries requiring efficient heating solutions. Given the inherent challenges faced during installation and operation, timely inspection of ondol is crucial due to difficulties in detecting and locating defects in buried concrete pipes, often leading to costly rework and removal. However, specialized inspection systems tailored to ondol pipes remain underexplored. Therefore, this paper proposes a robotic inspection system capable of assessing the conditions of ondol pipelines. We analyze the characteristics of ondol piping to establish system requirements and develop a prototype of a compact capsule-shaped inspection robot tailored for ondol pipe inspection. Subsequent laboratory testing validates system performance and usability, confirming field applications through curvature maneuverability and image reception quality tests. This study aims to motivate advancements in ondol-specific system implementation and performance validation, potentially contributing to the smartification of ondol maintenance practices. Full article
Show Figures

Figure 1

20 pages, 5427 KB  
Article
Development of a High-Sensitivity Millimeter-Wave Radar Imaging System for Non-Destructive Testing
by Hironaru Murakami, Taiga Fukuda, Hiroshi Otera, Hiroyuki Kamo and Akito Miyoshi
Sensors 2024, 24(15), 4781; https://doi.org/10.3390/s24154781 - 23 Jul 2024
Viewed by 3011
Abstract
There is an urgent need to develop non-destructive testing (NDT) methods for infrastructure facilities and residences, etc., where human lives are at stake, to prevent collapse due to aging or natural disasters such as earthquakes before they occur. In such inspections, it is [...] Read more.
There is an urgent need to develop non-destructive testing (NDT) methods for infrastructure facilities and residences, etc., where human lives are at stake, to prevent collapse due to aging or natural disasters such as earthquakes before they occur. In such inspections, it is desirable to develop a remote, non-contact, non-destructive inspection method that can inspect cracks as small as 0.1 mm on the surface of a structure and damage inside and on the surface of the structure that cannot be seen by the human eye with high sensitivity, while ensuring the safety of the engineers inspecting the structure. Based on this perspective, we developed a radar module (absolute gain of the transmitting antenna: 13.5 dB; absolute gain of the receiving antenna: 14.5 dB) with very high directivity and minimal loss in the signal transmission path between the radar chip and the array antenna, using our previously developed technology. A single-input, multiple-output (SIMO) synthetic aperture radar (SAR) imaging system was developed using this module. As a result of various performance evaluations using this system, we were able to demonstrate that this system has a performance that fully satisfies the abovementioned indices. First, the SNR in millimeter-wave (MM-wave) imaging was improved by 5.4 dB compared to the previously constructed imaging system using the IWR1443BOOST EVM, even though the measured distance was 2.66 times longer. As a specific example of the results of measurements on infrastructure facilities, the system successfully observed cracks as small as 0.1 mm in concrete materials hidden under glass fiber-reinforced tape and black acrylic paint. In this case, measurements were also made from a distance of about 3 m to meet the remote observation requirements, but the radar module with its high-directivity and high-gain antenna proved to be more sensitive in detecting crack structures than measurements made from a distance of 780 mm. In order to estimate the penetration length of MM waves into concrete, an experiment was conducted to measure the penetration of MM waves through a thin concrete slab with a thickness of 3.7 mm. As a result, Λexp = 6.0 mm was obtained as the attenuation distance of MM waves in the concrete slab used. In addition, transmission measurement experiments using a composite material consisting of ceramic tiles and fireproof board, which is a component of a house, and experiments using composite plywood, which is used as a general housing construction material in Japan, succeeded in making perspective observations of defects in the internal structure, etc., which are invisible to the human eye. Full article
(This article belongs to the Special Issue Radar Imaging, Communications and Sensing)
Show Figures

Figure 1

20 pages, 7361 KB  
Article
A Concrete Core Void Imaging Approach and Parameter Analysis of Concrete-Filled Steel Tube Members Using Travel Time Tomography: Multi-Physics Simulations and Experimental Studies
by Wenting Zheng, Bin Xu, Zongjun Xia, Jiang Wang, Jingliang Liu, Yudi Yao and Yifei Wang
Sensors 2024, 24(8), 2503; https://doi.org/10.3390/s24082503 - 13 Apr 2024
Cited by 3 | Viewed by 1741
Abstract
Concrete-filled steel tube (CFST) members have been widely used in civil engineering due to their advanced mechanical properties. However, internal defects such as the concrete core voids and interface debonding in CFST structures are likely to weaken their load-carrying capacity and stiffness, which [...] Read more.
Concrete-filled steel tube (CFST) members have been widely used in civil engineering due to their advanced mechanical properties. However, internal defects such as the concrete core voids and interface debonding in CFST structures are likely to weaken their load-carrying capacity and stiffness, which affects the safety and serviceability. Visualizing the inner defects of the concrete cores in CFST members is a critical requirement and a challenging task due to the obvious difference in the material mechanical parameters of the concrete core and steel tube in CFST members. In this study, a curved ray theory-based travel time tomography (TTT) with a least square iterative linear inversion algorithm is first introduced to quantitatively identify and visualize the sizes and positions of the concrete core voids in CFST members. Secondly, a numerical investigation of the influence of different parameters on the inversion algorithm for the defect imaging of CFST members, including the effects of the model weighting matrix, weighting factor and grid size on the void’s imaging quality and accuracy, is carried out. Finally, an experimental study on six CFST specimens with mimicked concrete core void defects is performed in a laboratory and the mimicked defects are visualized. The results demonstrate that TTT can identify the sizes and positions of the concrete core void defects in CFST members efficiently with the use of optimal parameters. Full article
Show Figures

Figure 1

22 pages, 7351 KB  
Article
Influence of the Pre-Existing Defects on the Strain Distribution in Concrete Compression Stress Field by the AE and DICM Techniques
by Nadezhda Morozova, Kazuma Shibano, Yuma Shimamoto and Tetsuya Suzuki
Appl. Sci. 2023, 13(11), 6727; https://doi.org/10.3390/app13116727 - 31 May 2023
Cited by 3 | Viewed by 1827
Abstract
This research investigates the influence of the pre-existing defects within concrete taken from the in-service irrigation structure on the strain distribution. The X-ray Computed Tomography (CT) technique is employed to investigate the internal concrete matrix and evaluate the defect distribution in it. The [...] Read more.
This research investigates the influence of the pre-existing defects within concrete taken from the in-service irrigation structure on the strain distribution. The X-ray Computed Tomography (CT) technique is employed to investigate the internal concrete matrix and evaluate the defect distribution in it. The cracking system in a concrete matrix is detected as a damage type caused by the severe environment, and it is varied by the different degrees in all samples. The geometric properties of defects and their spatial location are obtained by image processing of CT images. The compression test with Acoustic Emission (AE) and Digital Image Correlation (DIC) measurements is conducted to analyze the fracture processes and acquire the damage spatial information. The AE signal descriptors are effective parameters for real-time detection and potential local damage monitoring. Moreover, the analysis of the DICM strain and displacement fields reveals the most potential fracture zones. The AE source location analysis indicated a connection between pre-existing defects and strain localization. The AE events and strain are high in the defect areas. Additionally, the amplitude and frequency of the AE events correlated with the location of the defects indicating that the structure weakness at that point leads to concentrated deformation development. Full article
(This article belongs to the Special Issue Health Monitoring and Maintenance of Civil Structures)
Show Figures

Figure 1

22 pages, 15879 KB  
Article
Imaging Concrete Structures with Ultrasonic Shear Waves—Technology Development and Demonstration of Capabilities
by Kien Dinh, Khiem Tran, Nenad Gucunski, Christopher C. Ferraro and Tu Nguyen
Infrastructures 2023, 8(3), 53; https://doi.org/10.3390/infrastructures8030053 - 14 Mar 2023
Cited by 13 | Viewed by 4194
Abstract
Since 1987 when dry-point-contact (DPC) transducers were invented in the USSR, ultrasonic shear wave devices based on those transducers have been commercialized and have become one of the most effective technologies for imaging concrete. That said, the objectives of this paper are (1) [...] Read more.
Since 1987 when dry-point-contact (DPC) transducers were invented in the USSR, ultrasonic shear wave devices based on those transducers have been commercialized and have become one of the most effective technologies for imaging concrete. That said, the objectives of this paper are (1) to provide a brief review of the historical development of these powerful devices and (2) to provide a comprehensive assessment of their capabilities in imaging internal entities and structural defects. Regarding the former, the paper presents the context that gave birth to DPC technology and different generations of ultrasonic shear wave devices for concrete inspection. For the latter, one of the state-of-the-art ultrasonic shear wave devices (MIRA 3D) was used to collect data on concrete specimens with different built-in flaws/defects. Those data are then visualized with a commonly used data processing algorithm, the so-called synthetic aperture focusing technique (SAFT). Finally, based on the resulting images, the capabilities of the device are discussed in detail for each concrete imaging problem. A main limitation of ultrasonic shear wave technique for concrete inspection is that it requires a significant amount of time and effort for data collection. Full article
Show Figures

Figure 1

29 pages, 10197 KB  
Article
The Application of Two-Dimensional Continuous Wavelet Transform Based on Active Infrared Thermography for Subsurface Defect Detection in Concrete Structures
by Ali K. Saleh, Zafer Sakka and Hasan Almuhanna
Buildings 2022, 12(11), 1967; https://doi.org/10.3390/buildings12111967 - 13 Nov 2022
Cited by 9 | Viewed by 3463
Abstract
The early condition-based assessment of civil infrastructures plays an essential role in extending their service life, preventing undesirable sudden failures, and reducing maintenance and rehabilitation costs. One of the most commonly used and fastest nondestructive testing (NDT) techniques is infrared thermography (IRT), which [...] Read more.
The early condition-based assessment of civil infrastructures plays an essential role in extending their service life, preventing undesirable sudden failures, and reducing maintenance and rehabilitation costs. One of the most commonly used and fastest nondestructive testing (NDT) techniques is infrared thermography (IRT), which has emerged as a powerful method for assessing general concrete quality and detecting subsurface damage in structural members. Nevertheless, the accurate detection and classification of localized defects is still a challenging task to achieve. The contribution made by enhancing defect detection using two-dimensional (2D) wavelet transformation (WT) as a post-processing method, however, has received little attention within the field of active IR thermography. In this study, we explored the use of continuous wavelet transform (CWT) to visualize how the wavelet function at different frequencies could enhance the damage features of thermal images. A concrete slab under an applied heat flux was tested experimentally by an IR camera with well-controlled excitation sources. The qualitative visualization of thermograms was translated into quantitative results by extracting, processing, and post-processing the values assigned to the pixels in the thermal images. With the assumption of there being no oriented damage features, an isotropic (non-directional) Mexican hat wavelet was utilized as the mother wavelet. The experimental results showed that the 2D-CWT method achieved strong detection performance in extracting discriminatory features (defective areas) from the acquired thermal images. Compared with raw thermograms, the resultant CWT-transformed images were less affected by the non-uniform heating effect, and the boundaries of the defects contrasted more strongly. The 2D-CWT method demonstrates good sensitivity when an appropriate wavelet type and scale factor are chosen. Due to the desire to detect localized defects, adjusting the scale factor of the wavelet is important to improve the efficiency of detection as lower scale factors provide the finer details of thermal images, whereas higher scale factors provide the general outline of internal defects. The findings of this study represent a further step toward improving thermographic data for more precise defect-detection imaging, and principally for large concrete structures, that can be verified easily using other NDT surveys. Full article
(This article belongs to the Section Building Structures)
Show Figures

Graphical abstract

16 pages, 5352 KB  
Article
Ultrasonic Quality Assurance at Magnesia Shotcrete Sealing Structures
by Vera Lay, Ute Effner, Ernst Niederleithinger, Jennifer Arendt, Martin Hofmann and Wolfram Kudla
Sensors 2022, 22(22), 8717; https://doi.org/10.3390/s22228717 - 11 Nov 2022
Cited by 8 | Viewed by 2048 | Correction
Abstract
Engineered barriers are a key element to enable safe nuclear waste disposal. One method currently under research for their construction is magnesia concrete applied in a shotcrete procedure. In this study, the ultrasonic echo method is evaluated as a means for quality assurance. [...] Read more.
Engineered barriers are a key element to enable safe nuclear waste disposal. One method currently under research for their construction is magnesia concrete applied in a shotcrete procedure. In this study, the ultrasonic echo method is evaluated as a means for quality assurance. Imaging of internal structures (backwall, boreholes) and defects, such as delamination, has successfully been achieved in the shotcrete. Additionally, detailed information about the potential cause of selected reflectors are obtained by phase analysis. In several test blocks of various sizes, no consistent concrete section boundaries have been found by ultrasonic imaging, which was verified by subsequent drilling and complementary tests. An experiment with artificial defects imitating cracks, air-filled voids, and material with lower density has been challenging and shows the limitations of the current methods. Although significant defects, such as a large delamination, are reliably identified, several smaller defects are not identified. Generally, ultrasonic imaging provides a suitable base as a mean for quality assurance during and after the construction of sealing structures. However, further developments are required to enhance the reliability of the method and a full validation is still pending. Still, the method has potential to increase the safety of nuclear waste repositories. Full article
(This article belongs to the Special Issue Nondestructive Sensing and Imaging in Ultrasound)
Show Figures

Figure 1

12 pages, 6059 KB  
Article
Containment Liner Plate Void Defect Detection Technique Using Phased Array Ultrasonic Testing and Acoustic Resonance Method
by Yun-Taek Yeom, Yeong-Won Choi, Hak-Joon Kim, Hun-Hee Kim, Jae-Suk Park, Sung-Woo Ryu and Sung-Jin Song
Materials 2022, 15(4), 1330; https://doi.org/10.3390/ma15041330 - 11 Feb 2022
Cited by 9 | Viewed by 3126
Abstract
The CLP (containment liner plate) of a nuclear power plant protects the internal system from the external environment and sudden changes in internal pressure or temperature, and it is a structure that blocks and protects radioactive materials leaking inside and outside in the [...] Read more.
The CLP (containment liner plate) of a nuclear power plant protects the internal system from the external environment and sudden changes in internal pressure or temperature, and it is a structure that blocks and protects radioactive materials leaking inside and outside in the event of a nuclear accident and is composed of a liner plate, reinforcing bars, tendons, and concrete. Recently, corrosion on the rear side of the liner plate and concrete voids has emerged as a severe defect in nuclear power plants across South Korea. Therefore, in this study, we proposed a new inspection method that a line-type inspection method applied phased array ultrasonic testing and the area inspection method applied acoustic resonance method using developed moveable tapper. The acoustic signals were signal-processed and reproduced to a mapping image following the inspection area, and with the image, it was possible to determine the type of defect. Furthermore, an automated inspection system for within the CLP was proposed. Full article
(This article belongs to the Special Issue Nondestructive Evaluation of Material)
Show Figures

Figure 1

4 pages, 1335 KB  
Proceeding Paper
Defect Segmentation in Concrete Structures Combining Registered Infrared and Visible Images: A Comparative Experimental Study
by Sandra Pozzer, Marcos Paulo Vieira de Souza, Bata Hena, Reza Khoshkbary Rezayiye, Setayesh Hesam, Fernando Lopez and Xavier Maldague
Eng. Proc. 2021, 8(1), 29; https://doi.org/10.3390/engproc2021008029 - 1 Dec 2021
Cited by 5 | Viewed by 2389
Abstract
This study investigates the semantic segmentation of common concrete defects when using different imaging modalities. One pre-trained Convolutional Neural Network (CNN) model was trained via transfer learning and tested to detect concrete defect indications, such as cracks, spalling, and internal voids. The model’s [...] Read more.
This study investigates the semantic segmentation of common concrete defects when using different imaging modalities. One pre-trained Convolutional Neural Network (CNN) model was trained via transfer learning and tested to detect concrete defect indications, such as cracks, spalling, and internal voids. The model’s performance was compared using datasets of visible, thermal, and fused images. The data were collected from four different concrete structures and built using four infrared cameras that have different sensitivities and resolutions, with imaging campaigns conducted during autumn, summer, and winter periods. Although specific defects can be detected in monomodal images, the results demonstrate that a larger number of defect classes can be accurately detected using multimodal fused images with the same viewpoint and resolution of the single-sensor image. Full article
Show Figures

Figure 1

21 pages, 5030 KB  
Article
Key Factors Determining the Self-Healing Ability of Cement-Based Composites with Mineral Additives
by Kamil Tomczak, Jacek Jakubowski and Łukasz Kotwica
Materials 2021, 14(15), 4211; https://doi.org/10.3390/ma14154211 - 28 Jul 2021
Cited by 6 | Viewed by 2819
Abstract
This paper reveals the relationships between key factors that determine the ability of cementitious composites to self-heal autogenously and specific measures for quantifying the effects of this process. The following material factors: water-to-binder ratio (w/b), uniaxial compressive strength and age of the composite [...] Read more.
This paper reveals the relationships between key factors that determine the ability of cementitious composites to self-heal autogenously and specific measures for quantifying the effects of this process. The following material factors: water-to-binder ratio (w/b), uniaxial compressive strength and age of the composite at the time of defect formation were considered, as well as the method and degree of damage to the tested material. The subjects of this study were mortars and concretes in which Portland cement was partially replaced, to varying degrees, with mechanically activated fluidized bed combustion fly ash (MAFBC fly ash) and siliceous fly ash. The samples were subjected to three-point bending or cyclic compression tests after 14 or 28 days of aging, in order to induce defects and then cured in water for 122 days. Microscopic (MO) and high-resolution scanning (HRS) observations along with computer image processing techniques were used to visualize and quantify the changes occurring in the macro-crack region near the outer surface of the material during the self-sealing process. Techniques based on the measurement of the ultrasonic pulse velocity (UPV) allowed the quantification of the changes occurring inside the damaged materials. Mechanical testing of the composites allowed quantification of the effects of the activity of the binder-supplementary cementitious materials (SCMs) systems. The analysis of the results indicates a significant influence of the initial crack width on the ability to completely close the cracks; however, there are repeated deviations from this rule and local variability of the self-sealing process. It has been shown that the compressive strength of a material is an important indicator of binder activity concerning crack width reduction due to self-sealing. Regardless of the crack induction method, the internal material changes caused by self-sealing are dependent on the degree of material damage. Full article
Show Figures

Figure 1

30 pages, 8031 KB  
Article
Use of the AE Effect to Determine the Stresses State in AAC Masonry Walls under Compression
by Radosław Jasiński, Krzysztof Stebel and Paweł Kielan
Materials 2021, 14(13), 3459; https://doi.org/10.3390/ma14133459 - 22 Jun 2021
Cited by 9 | Viewed by 2157
Abstract
Safety and reliability of constructions operated are predicted using the known mechanical properties of materials and geometry of cross-sections, and also the known internal forces. The extensometry technique (electro-resistant tensometers, wire gauges, sensor systems) is a common method applied under laboratory conditions to [...] Read more.
Safety and reliability of constructions operated are predicted using the known mechanical properties of materials and geometry of cross-sections, and also the known internal forces. The extensometry technique (electro-resistant tensometers, wire gauges, sensor systems) is a common method applied under laboratory conditions to determine the deformation state of a material. The construction sector rarely uses ultrasonic extensometry with the acoustoelastic (AE) method which is based on the relation between the direction of ultrasonic waves and the direction of normal stresses. It is generally used to identify stress states of machine or vehicles parts, mainly made of steel, characterized by high homogeneity and a lack of inherent internal defects. The AE effect was detected in autoclaved aerated concrete (AAC), which is usually used in masonry units. The acoustoelastic effect was used in the tests described to identify the complex stress state in masonry walls (masonry units) made of AAC. At first, the relationships were determined for mean hydrostatic stresses P and mean compressive stresses σ3 with relation to velocities of the longitudinal ultrasonic wave cp. These stresses were used to determine stresses σ3. The discrete approach was used which consists in analyzing single masonry units. Changes in velocity of longitudinal waves were identified at a test stand to control the stress states of an element tested by the digital image correlation (DIC) technique. The analyses involved density and the impact of moisture content of AAC. Then, the method was verified on nine walls subjected to axial compression and the model was validated with the FEM micromodel. It was demonstrated that mean compressive stresses σ3 and hydrostatic stresses, which were determined for the masonry using the method considered, could be determined even up to ca. 75% of failure stresses at the acceptable error level of 15%. Stresses σ1 parallel to bed joints were calculated using the known mean hydrostatic stresses and mean compressive stresses σ3. Full article
(This article belongs to the Special Issue Testing of Materials and Elements in Civil Engineering (2nd Edition))
Show Figures

Figure 1

14 pages, 26399 KB  
Article
QSI Methods for Determining the Quality of the Surface Finish of Concrete
by Francisco Javier Benito Saorin, Isabel Miñano Belmonte, Carlos Parra Costa, Carlos Rodriguez Lopez and Manuel Valcuende Paya
Sustainability 2018, 10(4), 931; https://doi.org/10.3390/su10040931 - 23 Mar 2018
Cited by 9 | Viewed by 5088
Abstract
The surface finish of a concrete element may become an index of its quality, relating the external and internal porosity with the mechanical and durability properties. Few methods are used to determine the surface quality of concrete elements. Mention must be made the [...] Read more.
The surface finish of a concrete element may become an index of its quality, relating the external and internal porosity with the mechanical and durability properties. Few methods are used to determine the surface quality of concrete elements. Mention must be made the Quality Surface Index (QSI) proposes a simplified method to quantify the surface occupied by the pores in relation with the total surface inspected, analyzing groups of pores by their diameter. The method of the CIB W29 (Commission W29 “Concrete Surface Finishings”) proposes an inspection of the concrete element and its visual comparison with some standard templates. Finally, the digital processing of images allows the zones with surface defects to be delimited and quantified according to premises of quality introduced into the control software. These three methods are employed in this work and are applied in three concrete walls situated three meters from the observer (M-1, M-2 and M-3). Following the conversion of the results of the method with ImageJ and QSI, the results suppose differences that go from 0.1 tenths (2%) for M-3 up to 0.3 tenths (8%) for M-1. All values are within the obtained range with CIB W29 templates. This can validate the QSI and digital processing methods and allows a quick verification of the results. With the digital method, it is obtained that 23.5% of the total pores of M-1 have a diameter of less than 10 mm2 and 44% of less than 100 mm2. For M-2 and M-3 the proportions of pores with a dimension below 10 mm2 is of 43.1% and 27.7%, respectively, and that 77.5% and 60.7% are smaller than 100 mm2. From all the above it can be highlighted that M-1 is the one with the lowest amount of pores, however the proportion of the largest is greater than for M-2 and M-3. In the case of M-3, although it has a lower proportion of larger pores than M-1, its greater amount means it is the worst in terms of surface finish of the three. Full article
(This article belongs to the Special Issue Sustainable Cementitious Materials for the Construction Industry)
Show Figures

Figure 1

Back to TopTop