Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (551)

Search Parameters:
Keywords = conductive atomic force microscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1035 KB  
Article
Topographic, Thermal and Chemical Characterization of Oxidized Cu and Cu-Ag Thin Films
by Maria C. Carrupt, Ana M. Ferraria, Ana P. Serro and Ana P. Piedade
Materials 2025, 18(19), 4562; https://doi.org/10.3390/ma18194562 - 30 Sep 2025
Abstract
This study investigated the effects of silver doping, natural ageing, and thermal-induced oxidation on the surface chemistry, morphology, and thermal performance of copper thin films. Ag is used as a doping element in Cu because, in bulk materials it usually refines microstructures, leading [...] Read more.
This study investigated the effects of silver doping, natural ageing, and thermal-induced oxidation on the surface chemistry, morphology, and thermal performance of copper thin films. Ag is used as a doping element in Cu because, in bulk materials it usually refines microstructures, leading to increased hardness and mechanical strength through mechanisms such as solid solution strengthening and twinning. In this work was also used due to its oxidation resistance. Thin films of pure and silver-doped copper (Cu_2Ag and Cu_4Ag) were deposited by RF magnetron sputtering and characterized as-deposited, naturally aged, at room temperature and humidity for one year, and thermally treated at 200 °C, in air. The characterization included X-ray photoelectron spectroscopy (XPS), Atomic Force microscopy (AFM), and thermal analysis, specifically thermal conductivity (λ), thermal diffusivity (α), and thermal capacity (ρ.Cp). Surface XPS analysis revealed changes in copper and silver oxidation states after natural aging and annealing. AFM revelead that the incorporation of silver and heat treatment altered the surface roughness and morphology. Thermal analysis found that for lower silver concentrations, the thermal conductivity increased, but aging and annealing had varying effects depending on the silver content. The Cu_4Ag film showed the best thermal stability after natural ageing. Overall, the results suggest that carefully controlled silver doping can enhance the thermal stability of copper thin films for applications where aging is a concern, such as microelectronics. Full article
(This article belongs to the Section Thin Films and Interfaces)
14 pages, 797 KB  
Article
Quantum Transport and Molecular Sensing in Reduced Graphene Oxide Measured with Scanning Probe Microscopy
by Julian Sutaria and Cristian Staii
Molecules 2025, 30(19), 3929; https://doi.org/10.3390/molecules30193929 - 30 Sep 2025
Abstract
We report combined scanning probe microscopy and electrical measurements to investigate local electronic transport in reduced graphene oxide (rGO) devices. We demonstrate that quantum transport in these materials can be significantly tuned by the electrostatic potential applied with a conducting atomic force microscope [...] Read more.
We report combined scanning probe microscopy and electrical measurements to investigate local electronic transport in reduced graphene oxide (rGO) devices. We demonstrate that quantum transport in these materials can be significantly tuned by the electrostatic potential applied with a conducting atomic force microscope (AFM) tip. Scanning gate microscopy (SGM) reveals a clear p-type response in which local gating modulates the source–drain current, while scanning impedance microscopy (SIM) indicates corresponding shifts of the Fermi level under different gating conditions. The observed transport behavior arises from the combined effects of AFM tip-induced Fermi-level shifts and defect-mediated scattering. These results show that resonant scattering associated with impurities or structural defects plays a central role and highlight the strong influence of local electrostatic potentials on rGO conduction. Consistent with this electrostatic control, the device also exhibits chemical gating and sensing: during exposure to electron-withdrawing molecules (acetone), the source–drain current increases reversibly and returns to baseline upon purging with air. Repeated cycles over 15 min show reproducible amplitudes and recovery. Using a simple transport model, we estimate an increase of about 40% in carrier density during exposure, consistent with p-type doping by electron-accepting analytes. These findings link nanoscale electrostatic control to macroscopic sensing performance, advancing the understanding of charge transport in rGO and underscoring its promise for nanoscale electronics, flexible chemical sensors, and tunable optoelectronic devices. Full article
Show Figures

Graphical abstract

11 pages, 2198 KB  
Article
Effect of Hafnium-Based Thin Film Thickness on Microstructure and Electrical of Yttrium-Doped Hafnium Oxide Ferroelectric Devices Prepared by Magnetron Sputtering
by Bei Ma, Ke Ma, Xinhui Qin, Yingxue Xi, Jin Zhang, Xinyu Yang, Pengfei Yang and Weiguo Liu
Micromachines 2025, 16(9), 1066; https://doi.org/10.3390/mi16091066 - 21 Sep 2025
Viewed by 187
Abstract
This study employs reactive magnetron sputtering technology to fabricate TiN/Y-HfO2/TiN multilayer thin film devices using titanium targets and yttrium-doped high-purity hafnium targets. A systematic investigation was conducted to explore the influence of hafnium-based thin film thickness on the structural and electrical [...] Read more.
This study employs reactive magnetron sputtering technology to fabricate TiN/Y-HfO2/TiN multilayer thin film devices using titanium targets and yttrium-doped high-purity hafnium targets. A systematic investigation was conducted to explore the influence of hafnium-based thin film thickness on the structural and electrical properties of TiN/Y-HfO2/TiN thin film devices. Radio frequency magnetron sputtering was utilized to deposit Y-HfO2 films of varying thicknesses on TiN electrodes by controlling deposition time, with a yttrium doping concentration of 8.24 mol.%. The surface morphology and crystal structure of the thin films were characterized using atomic force microscopy (AFM), Raman spectroscopy, X-ray diffraction (XRD). Results indicate that as film thickness increases, surface roughness and Raman peak intensity increase correspondingly, with the tetragonal phase (t) characteristic peak being most prominent at 65 nm. DC magnetron sputtering was employed to deposit TiN top electrodes, resulting in TiN/Y-HfO2/TiN thin film devices. Following rapid thermal annealing at 700 °C, electrical properties were evaluated using a ferroelectric tester. Leakage current density exhibited a decreasing trend with increasing film thickness, while the maximum polarization intensity gradually increased, reaching a maximum of 11.5 μC/cm2 at 120 nm. Full article
(This article belongs to the Special Issue Recent Advances in Thin-Film Devices)
Show Figures

Figure 1

22 pages, 19737 KB  
Article
Temporal Sculpting of Laser Pulses for Functional Engineering of Al2O3/AgO Films: From Structural Control to Enhanced Gas Sensing Performance
by Doaa Yaseen Doohee, Abbas Azarian and Mohammad Reza Mozaffari
Sensors 2025, 25(18), 5836; https://doi.org/10.3390/s25185836 - 18 Sep 2025
Viewed by 317
Abstract
This study examines the effects of laser pulse duration on the structural, morphological, optical, and gas-sensing characteristics of Al2O3/AgO thin films deposited on glass substrates using pulsed laser deposition (PLD). Pulse durations of 10, 8, and 6 nanoseconds were [...] Read more.
This study examines the effects of laser pulse duration on the structural, morphological, optical, and gas-sensing characteristics of Al2O3/AgO thin films deposited on glass substrates using pulsed laser deposition (PLD). Pulse durations of 10, 8, and 6 nanoseconds were achieved through optical lens modifications to control both energy density and laser spot size. X-ray diffraction (XRD) and atomic force microscopy (AFM) analyses showed a distinct reduction in both crystallite and grain sizes with decreasing pulse width, along with significant improvements in surface morphology refinement and film compactness. Hall effect measurements revealed a transition from n-type to p-type conductivity with decreasing pulse width, demonstrating increased hole concentration and reduced carrier mobility attributed to grain boundary scattering. Furthermore, current-voltage (I-V) characteristics demonstrated improved photoconductivity under illumination, with the most pronounced enhancement observed in samples prepared using longer pulse durations. Gas sensing measurements for NO2 and H2S revealed enhanced sensitivity, improved response/recovery characteristics at 250 °C, with optimal performance achieved in films deposited using shorter pulse durations. This improvement is attributed to their larger surface area and higher density of active adsorption sites. Our results demonstrate a clear relationship between laser pulse parameters and the functional properties of Al2O3/AgO films, providing valuable insights for optimizing deposition processes to develop advanced gas sensors. Full article
(This article belongs to the Special Issue Spectroscopy Gas Sensing and Applications)
Show Figures

Figure 1

23 pages, 6245 KB  
Article
Removal of Cu and Pb in Contaminated Loess by Electrokinetic Remediation Using Novel Hydrogel Electrodes Coupled with Focusing Position Adjustment and Exchange Electrode
by Chengbo Liu, Wenle Hu, Xiang Zhu, Shixu Zhang and Weijing Wang
Processes 2025, 13(9), 2915; https://doi.org/10.3390/pr13092915 - 12 Sep 2025
Viewed by 271
Abstract
Electrokinetic (EK) remediation is a promising approach for the removal of heavy metals from fine-grained soils; however, its efficiency is often hindered by electrode polarization, pH imbalance, and ion accumulation. In this study, we developed a novel hydrogel-based electrode (NH electrode), composed of [...] Read more.
Electrokinetic (EK) remediation is a promising approach for the removal of heavy metals from fine-grained soils; however, its efficiency is often hindered by electrode polarization, pH imbalance, and ion accumulation. In this study, we developed a novel hydrogel-based electrode (NH electrode), composed of sodium alginate and multilayer graphene oxide (GO), to enhance the electrokinetic removal of Cu2+ and Pb2+ from loess. The electrode was systematically characterized by atomic force microscopy (AFM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), confirming its structural integrity, electrochemical activity, and interfacial conductivity. The NH electrode exhibited a smooth layered graphene structure with abundant oxygen-containing functional groups (AFM), negligible electrochemical polarization (CV), and low internal resistance with high conductivity (EIS), enabling efficient ion transport and adsorption. Electrokinetic tests revealed that the NH electrode outperformed conventional graphene (Gr) and electrokinetic graphite (EKG) electrodes. Single regulation strategies, including focusing position adjustment and electrode exchange, improved local removal efficiency by mitigating ion accumulation in targeted regions. The combined regulation strategy, integrating both measures, achieved the most uniform Cu2+ and Pb2+ removal, significantly suppressing hydroxide precipitation in cathodic zones and enhancing ion migration in the mid-section. Compared with literature-reported systems under similar or even more favorable conditions, the NH electrode and combined regulation approach achieved superior performance, with Cu2+ and Pb2+ removal efficiencies reaching 47.25% and 16.93%, respectively. These findings demonstrate that coupling electrode material innovation with spatial–temporal pH/flow field regulation can overcome key bottlenecks in EK remediation of heavy-metal-contaminated loess. Full article
(This article belongs to the Special Issue Advances in Heavy Metal Contaminated Soil and Water Remediation)
Show Figures

Figure 1

18 pages, 4791 KB  
Article
The Material Growth and Characteristics of Transition Metal Oxide Thin Films Based on Hot Wire Oxidation Sublimation Deposition Technology
by Fengchao Li, Qingguo Kang, Zhenwei Kang, Tengteng Li, Jiangang Yu, Haibing Qiu, Ting Liang and Cheng Lei
Materials 2025, 18(17), 4083; https://doi.org/10.3390/ma18174083 - 31 Aug 2025
Viewed by 630
Abstract
Transition-metal oxides (TMOs) possess pronounced optoelectronic properties and are widely exploited in photovoltaics and photocatalysis. Here, we introduce a hot wire oxidation sublimation deposition (HWOSD) that directly converts elemental Mo and W into amorphous MoOx and WOx films on various substrates. [...] Read more.
Transition-metal oxides (TMOs) possess pronounced optoelectronic properties and are widely exploited in photovoltaics and photocatalysis. Here, we introduce a hot wire oxidation sublimation deposition (HWOSD) that directly converts elemental Mo and W into amorphous MoOx and WOx films on various substrates. Scanning electron microscopy and atomic force microscopy reveal uniform thickness and conformal coverage over textured and planar surfaces. X-ray photoelectron spectroscopy indicates high oxygen contents with stoichiometric ratios of 2.94 (MoOx) and 2.91 (WOx). Optical measurements show transmittances > 94% across 400–1200 nm, yielding optical band gaps of 1.86 eV (MoOx) and 2.67 eV (WOx). The conductivities of MoOx and WOx were 2.58 × 10−6 S cm−1 and 5.14 × 10−7 S cm−1 at room temperature, and the TMO/Si surface potential differences are 200 mV and 114 mV, respectively. Minority-carrier-lifetime measurements indicate that MoOx films confer an additional passivation benefit to the i a-Si:H/c-Si/i a-Si:H stack. Annealing of MoOx and WOx realized their phase transition from an amorphous state to a polycrystalline state, with changes in their optical transmittance in the visible light region. Investigation of the photovoltaic performances of MoOx and WOx as HTLs deposited by HWOSD demonstrates their excellent electronic functionality in optoelectronics. These results establish HWOSD as a scalable, low-temperature method to fabricate high-quality TMO films and expand their potential in advanced optoelectronic devices. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

16 pages, 7431 KB  
Article
Effect of Synthesis Conditions on Graphene Directly Grown on SiO2: Structural Features and Charge Carrier Mobility
by Šarūnas Meškinis, Šarūnas Jankauskas, Lukas Kamarauskas, Andrius Vasiliauskas, Asta Guobienė, Algirdas Lazauskas and Rimantas Gudaitis
Nanomaterials 2025, 15(17), 1315; https://doi.org/10.3390/nano15171315 - 27 Aug 2025
Viewed by 672
Abstract
Graphene was directly grown on SiO2/Si substrates using microwave plasma-enhanced chemical vapor deposition (PECVD) to investigate how synthesis-driven variations in structure and doping influence carrier transport. The effects of synthesis temperature, plasma power, deposition time, gas flow, and pressure on graphene’s [...] Read more.
Graphene was directly grown on SiO2/Si substrates using microwave plasma-enhanced chemical vapor deposition (PECVD) to investigate how synthesis-driven variations in structure and doping influence carrier transport. The effects of synthesis temperature, plasma power, deposition time, gas flow, and pressure on graphene’s structure and electronic properties were systematically studied. Raman spectroscopy revealed non-monotonic changes in layer number, defect density, and doping levels, reflecting the complex interplay between growth, etching, and self-doping mechanisms. The surface morphology and conductivity were assessed by atomic force microscopy (AFM). Charge carrier mobility, extracted from graphene-based field-effect transistors, showed strong correlations with Raman features, including the intensity ratios and positions of the Two-dimension (2D) and G peaks. Importantly, mobility did not correlate with defect density but was linked to reduced self-doping and a weaker graphene–substrate interaction rather than intrinsic structural disorder. These findings suggest that charge transport in PECVD-grown graphene is predominantly limited by interfacial and doping effects. This study offers valuable insights into the synthesis–structure–property relationship, which is crucial for optimizing graphene for electronic and sensing applications. Full article
Show Figures

Graphical abstract

15 pages, 2391 KB  
Article
Human Serum Albumin-Based Nanoparticles for Targeted Intracellular Drug Delivery
by Claudia Gabriela Chilom, Sorina Iftimie, Adriana Elena Balan, Daniela Oprea, Monica Enculescu and Teodor Adrian Enache
Int. J. Mol. Sci. 2025, 26(17), 8297; https://doi.org/10.3390/ijms26178297 - 27 Aug 2025
Viewed by 705
Abstract
We report the synthesis and characterization of folic acid (FA)-conjugated human serum albumin nanoparticles, (HSA-FA):Ru NPs, as targeted carriers for rutin (Ru), a flavonoid with known anticancer activity. Nanoparticles were fabricated via a desolvation method, and their surface was functionalized with folic acid [...] Read more.
We report the synthesis and characterization of folic acid (FA)-conjugated human serum albumin nanoparticles, (HSA-FA):Ru NPs, as targeted carriers for rutin (Ru), a flavonoid with known anticancer activity. Nanoparticles were fabricated via a desolvation method, and their surface was functionalized with folic acid to promote selective uptake by cancer cells overexpressing folate receptors. Morphological and dimensional analyses performed by atomic force microscopy (AFM), scanning electron microscopy (SEM), and fluorescence microscopy confirmed that all nanoparticles were below 100 nm and exhibited good colloidal stability. Voltametric measurements confirmed the successful incorporation of both rutin and folic acid within the (HSA-FA):Ru nanoparticle formulation. Biological evaluation was conducted on healthy L929 fibroblasts and HT-29 colon adenocarcinoma cells. MTS colorimetric assays revealed that (HSA-FA):Ru NPs significantly reduced the viability of HT-29 cells, while maintaining higher compatibility with L929 cells. Fluorescence and electron microscopy further confirmed preferential nanoparticle uptake and surface accumulation in HT-29 cells, supporting the role of folic acid in enhancing targeted delivery. The study demonstrates that HSA-based nanoparticles functionalized with FA and loaded with Ru offer a biocompatible and efficient strategy for selective intracellular drug delivery in colorectal cancer. These findings support the use of albumin-based nanocarriers in the development of targeted therapeutic platforms for cancer treatment. Full article
(This article belongs to the Special Issue Omics-Driven Unveiling of the Structure and Function of Nanoparticles)
Show Figures

Figure 1

23 pages, 4352 KB  
Article
Nondestructive Mechanical and Electrical Characterization of Piezoelectric Zinc Oxide Nanowires for Energy Harvesting
by Frank Eric Boye Anang, Markys Cain, Min Xu, Zhi Li, Uwe Brand, Darshit Jangid, Sebastian Seibert, Chris Schwalb and Erwin Peiner
Micromachines 2025, 16(8), 927; https://doi.org/10.3390/mi16080927 - 12 Aug 2025
Viewed by 719
Abstract
In this study we report on the structural, mechanical, and electrical characterization of different structures of vertically aligned zinc oxide (ZnO) nanowires (NWs) synthesized using hydrothermal methods. By optimizing the growth conditions, scanning electron microscopy (SEM) micrographs show that the ZnO NWs could [...] Read more.
In this study we report on the structural, mechanical, and electrical characterization of different structures of vertically aligned zinc oxide (ZnO) nanowires (NWs) synthesized using hydrothermal methods. By optimizing the growth conditions, scanning electron microscopy (SEM) micrographs show that the ZnO NWs could reach an astounding 51.9 ± 0.82 µm in length, 0.7 ± 0.08 µm in diameter, and 3.3 ± 2.1 µm−2 density of the number of NWs per area within 24 h of growth time, compared with a reported value of ~26.8 µm in length for the same period. The indentation modulus of the as-grown ZnO NWs was determined using contact resonance (CR) measurements using atomic force microscopy (AFM). An indentation modulus of 122.2 ± 2.3 GPa for the NW array sample with an average diameter of ~690 nm was found to be close to the reference bulk ZnO value of 125 GPa. Furthermore, the measurement of the piezoelectric coefficient (d33) using the traceable ESPY33 tool under cyclic compressive stress gave a value of 1.6 ± 0.4 pC/N at 0.02 N with ZnO NWs of 100 ± 10 nm and 2.69 ± 0.05 µm in diameter and length, respectively, which were embedded in an S1818 polymer. Current–voltage (I-V) measurements of the ZnO NWs fabricated on an n-type silicon (Si) substrate utilizing a micromanipulator integrated with a tungsten (W) probe exhibits Ohmic behavior, revealing an important phenomenon which can be attributed to the generated electric field by the tungsten probe, dielectric residue, or conductive material. Full article
(This article belongs to the Special Issue Research Progress on Advanced Piezoelectric Energy Harvesters)
Show Figures

Figure 1

21 pages, 6781 KB  
Article
Tensile and Structural Properties of Antioxidant- and CaCO3-Modified Polyethylene Films
by Dmitry Myalenko, Olga Fedotova, Aleksandr Agarkov, Sergey Sirotin and Polina Poletaeva
Polymers 2025, 17(16), 2182; https://doi.org/10.3390/polym17162182 - 9 Aug 2025
Viewed by 549
Abstract
The demand for modified packaging materials increases annually. At the same time, there is growing interest in the development of functional packaging. The incorporation of modifiers, stabilizers, and fillers into polymer matrices can enhance the functionality of the material but may also negatively [...] Read more.
The demand for modified packaging materials increases annually. At the same time, there is growing interest in the development of functional packaging. The incorporation of modifiers, stabilizers, and fillers into polymer matrices can enhance the functionality of the material but may also negatively affect its safety. Polymers are susceptible to degradation, which negatively affects their strength and tensile properties under external factors (physical, chemical or environmental). Packaging containing antimicrobial and antioxidant agents is among the most promising, as it contributes to the product quality during storage. Films based on calcium carbonate (CaCO3) and dihydroquercetin (DHQ) remain insufficiently studied, despite their potential. Such materials are especially relevant for fatty products with a large contact surface area, including butter, cheese, and other solid high-fat foods. This study aimed to comprehensively investigate the structural and tensile properties of polyethylene films modified with varying contents of CaCO3 and DHQ. The films were produced via blown film extrusion using a laboratory extruder (SJ-28). Surface analysis was performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Fourier-transform infrared (FTIR) spectroscopy was used to examine the film’s composition. The results showed that the introduction of more than 40.0 wt.% of CaCO3 into the polymer base affected the strength properties. The conducted studies of the physical and mechanical properties of LDPE film samples filled with CaCO3 showed significant changes in the samples containing more than 50.0 wt.% of the filler, with an increase in strength of more than 40.0%. The relative elongation at break after 50.0 wt.% decreased by more than 75.0%. These results indicate that to achieve the best strength properties for packaging materials, it is recommended to fill them to a maximum of 40.0 wt.%. The introduction of the antioxidant DHQ had almost no effect on the strength of the modified films. SEM analysis of films with high CaCO3 content and DHQ revealed visible antioxidant particles on the film surface, suggesting enhanced antioxidant potential at the interface between the film and dairy products. AFM analysis confirmed that a CaCO3 40.0 wt.% content altered the surface roughness and heterogeneity of the films. FTIR spectroscopy revealed that the incorporation of CaCO3 influenced the overall spectral profile of polyethylene, resulting in decreased peak intensities depending on the concentration of the filler. Based on these results, the modified polyethylene-based film with CaCO3 and DHQ shows potential for use as food packaging with antioxidant properties. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

36 pages, 10414 KB  
Article
Forces During the Film Drainage and Detachment of NMC and Spherical Graphite in Particle–Bubble Interactions Quantified by CP-AFM and Modeling to Understand the Salt Flotation of Battery Black Mass
by Jan Nicklas, Claudia Heilmann, Lisa Ditscherlein and Urs A. Peuker
Minerals 2025, 15(8), 809; https://doi.org/10.3390/min15080809 - 30 Jul 2025
Viewed by 524
Abstract
The salt flotation of graphite in the presence of lithium nickel manganese cobalt oxide (NMC) was assessed by performing colloidal probe atomic force microscopy (CP-AFM) on sessile gas bubbles and conducting batch flotation tests with model lithium-ion-battery black mass. The modeling of film [...] Read more.
The salt flotation of graphite in the presence of lithium nickel manganese cobalt oxide (NMC) was assessed by performing colloidal probe atomic force microscopy (CP-AFM) on sessile gas bubbles and conducting batch flotation tests with model lithium-ion-battery black mass. The modeling of film drainage and detachment during particle–bubble interactions provides insight into the fundamental microprocesses during salt flotation, a special variant of froth flotation. The interfacial properties of particles and gas bubbles were tailored with salt solutions containing sodium chloride and sodium acetate buffer. Graphite particles can attach to gas bubbles under all tested conditions in the range pH 3 to pH 10. The attractive forces for spherical graphite are strongest at high salt concentrations and pH 3. The conditions for the attachment of NMC to gas bubbles were evaluated with simulations using the Stokes–Reynolds–Young–Laplace model for film drainage, under consideration of DLVO forces and a hydrodynamic slip to account for irregularities of the particle surface. CP-AFM measurements in the capillary force regime provide additional parameters for the modeling of salt flotation, such as the force and work of detachment. The contact angles of graphite and NMC particles during retraction and detachment from gas bubbles were obtained from a quasi-equilibrium model using CP-AFM data as input. All CP-AFM experiments and theoretical results suggest that pristine NMC particles do not attach to gas bubbles during flotation, which is confirmed by the low rate of NMC recovery in batch flotation tests. Full article
(This article belongs to the Special Issue Particle–Bubble Interactions in the Flotation Process)
Show Figures

Figure 1

21 pages, 3340 KB  
Article
Simulation and Experimental Investigation on the Performance of Co-, Bi-, and La-Doped AgSnO2 Contact Interface Models
by Yihong Lv, Jingqin Wang, Yuxuan Wang, Yancai Zhu and Ying Zhang
Coatings 2025, 15(8), 885; https://doi.org/10.3390/coatings15080885 - 29 Jul 2025
Viewed by 428
Abstract
The inferior electrical conductivity and elevated hardness of AgSnO2 electrical contact materials have impeded their development. To investigate the effects of Co, Bi, and La doping on the stability and electrical properties of AgSnO2, this study established interfacial models of [...] Read more.
The inferior electrical conductivity and elevated hardness of AgSnO2 electrical contact materials have impeded their development. To investigate the effects of Co, Bi, and La doping on the stability and electrical properties of AgSnO2, this study established interfacial models of doped AgSnO2 based on first-principles calculations initiated from the atomic structures of constituent materials, subsequently computing electronic structure parameters. The results indicate that doping effectively enhances the interfacial stability and bonding strength of AgSnO2 and thereby predicted improved electrical contact performance. Doped SnO2 powders were prepared experimentally using the sol–gel method, and AgSnO2 contacts were fabricated using high-energy ball milling and powder metallurgy. Testing of wettability and electrical contact properties revealed reductions in arc energy, arcing time, contact resistance, and welding force post-doping. Three-dimensional profilometry and scanning electron microscopy (SEM) were employed to characterize electrical contact surfaces, elucidating the arc erosion mechanism of AgSnO2 contact materials. Among the doped variants, La-doped electrical contact materials exhibited optimal performance (the lowest interfacial energy was 1.383 eV/Å2 and wetting angle was 75.6°). The mutual validation of experiments and simulations confirms the feasibility of the theoretical calculation method. This study provides a novel theoretical method for enhancing the performance of AgSnO2 electrical contact materials. Full article
Show Figures

Figure 1

16 pages, 4562 KB  
Article
Preparation and Properties of Flexible Multilayered Transparent Conductive Films on Substrate with High Surface Roughness
by Mengfan Li, Kai Tao, Jinghan Lu, Shenyue Xu, Yuanyuan Sun, Yaman Chen and Zhiyong Liu
Materials 2025, 18(14), 3389; https://doi.org/10.3390/ma18143389 - 19 Jul 2025
Viewed by 476
Abstract
The flexible transparent conductive films (TCFs) of a ZnS/Cu/Ag/TiO2 multilayered structure were deposited on a flexible PET substrate with high surface roughness using magnetic sputtering, and the effects of structural characteristics on the performance of the films were analyzed. The TCFs with [...] Read more.
The flexible transparent conductive films (TCFs) of a ZnS/Cu/Ag/TiO2 multilayered structure were deposited on a flexible PET substrate with high surface roughness using magnetic sputtering, and the effects of structural characteristics on the performance of the films were analyzed. The TCFs with TiO2/Cu/Ag/TiO2 and ZnS/Cu/Ag/ZnS symmetric structures were also prepared for comparison. The TCF samples were deposited using ZnS, TiO2, Cu and Ag targets, and they were analyzed using scanning electronic microscopy, atomic force microscopy, grazing incidence X-ray diffraction, spectrophotometry and a four-probe tester. The TCFs exhibit generally uniform surface morphology, excellent light transmittance and electrical conductivity with optimized structure. The optimal values are 84.40%, 5.52 Ω/sq and 33.19 × 10−3 Ω−1 for the transmittance, sheet resistance and figure of merit, respectively, in the visible spectrum. The satisfactory properties of the asymmetric multilayered TCF deposited on a rough-surface substrate should be mainly attributed to the optimized structure parameters and reasonable interfacial compatibilities. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

22 pages, 10488 KB  
Article
Morphological and Functional Evolution of Amorphous AlN Thin Films Deposited by RF-Magnetron Sputtering
by Maria-Iulia Zai, Ioana Lalau, Marina Manica, Lucia Chiriacescu, Vlad-Andrei Antohe, Cristina C. Gheorghiu, Sorina Iftimie, Ovidiu Toma, Mirela Petruta Suchea and Ștefan Antohe
Surfaces 2025, 8(3), 51; https://doi.org/10.3390/surfaces8030051 - 17 Jul 2025
Viewed by 2725
Abstract
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron [...] Read more.
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical profilometry, spectroscopic ellipsometry (SE), and electrical measurements—was performed to explore the physical structure, morphology, and optical and electrical properties of the films. The analysis of the film structure by XRR revealed that increasing sputtering power resulted in thicker, denser AlN layers, while thermal treatment promoted densification by reducing density gradients but also induced surface roughening and the formation of island-like morphologies. Optical studies confirmed excellent transparency (>80% transmittance in the near-infrared region) and demonstrated the tunability of the refractive index with sputtering power, critical for optoelectronic applications. The electrical characterization of Au/AlN/Al sandwich structures revealed a transition from Ohmic to trap-controlled space charge limited current (SCLC) behavior under forward bias—a transport mechanism frequently present in a material with very low mobility, such as AlN—while Schottky conduction dominated under reverse bias. The systematic correlation between deposition parameters, thermal treatment, and the resulting physical properties offers valuable pathways to engineer AlN thin films for next-generation optoelectronic and high-frequency device applications. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

20 pages, 24228 KB  
Article
Surface Treatments on Cobalt–Chromium Alloys for Layering Ceramic Paint Coatings in Dental Prosthetics
by Willi-Andrei Uriciuc, Maria Suciu, Lucian Barbu-Tudoran, Adrian-Ioan Botean, Horea Florin Chicinaș, Miruna-Andreea Anghel, Cătălin Ovidiu Popa and Aranka Ilea
Coatings 2025, 15(7), 833; https://doi.org/10.3390/coatings15070833 - 17 Jul 2025
Viewed by 1093
Abstract
Ceramic dental prosthetics with internal metal structures are made from a cobalt–chromium alloy that is coated with ceramic. This study aims to validate surface treatments for the metal that enhance the adhesion of the ceramic coating under masticatory forces. Surface conditioning is performed [...] Read more.
Ceramic dental prosthetics with internal metal structures are made from a cobalt–chromium alloy that is coated with ceramic. This study aims to validate surface treatments for the metal that enhance the adhesion of the ceramic coating under masticatory forces. Surface conditioning is performed using mechanical methods, like sandblasting (SB), and thermal methods, such as oxidation (O). The ceramic coating is applied to the metal component following the conditioning process, which can be conducted using either a single method or a combination of methods. Each conditioned sample undergoes characterization through various techniques, including drop shape analysis (DSA), scanning electron microscopy (SEM), X-ray diffraction (EDX), and atomic force microscopy (AFM). After the ceramic coating is applied and subjected to thermal sintering, the metal–ceramic samples are mechanically tested to assess the adhesion of the ceramic layer. The research findings, illustrated by scanning electron microscopy (SEM) images of the metal structures’ surfaces, indicate that alloy powder particles ranging from 10 to 50 µm were either adhered to the surfaces or present as discrete dots. Particles that exceed the initial design specifications of the structure can be smoothed out using sandblasting or mechanical finishing techniques. The energy-dispersive spectroscopy (EDS) results show that, after sandblasting, fragments of aluminum oxide remain trapped on the surface of the metal structures. These remnants are considered impurities, which can negatively impact the adhesion of the ceramic to the metal substrate. The analysis focuses on the exfoliation of the ceramic material from the deformed metal surfaces. The results emphasize the significant role of the sandblasting method and the micro-topography it creates, as well as the importance of the oxidation temperature in the treatment process. Drawing on 25 years of experience in dental prosthetics and the findings from this study, this publication aims to serve as a guide for applying the ceramic bonding layer to metal surfaces and for conditioning methods. These practices are essential for enhancing the adhesion of ceramic materials to metal substrates. Full article
(This article belongs to the Special Issue Corrosion and Corrosion Prevention in Extreme Environments)
Show Figures

Figure 1

Back to TopTop