Loading [MathJax]/jax/output/HTML-CSS/jax.js
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (104)

Search Parameters:
Keywords = contact twinning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 297 KiB  
Article
Twin Challenges in Türkiye: Exclusive Breastfeeding Rates and Predictors of Breastfeeding Duration in a Tertiary Care Center
by Ayça Kömürlüoğlu and Gökçe Çıplak
Children 2025, 12(6), 735; https://doi.org/10.3390/children12060735 - 6 Jun 2025
Abstract
Objectives: This study aimed to evaluate exclusive breastfeeding (EBF) rates and the duration of breastfeeding among mothers of twins and to identify the maternal, neonatal, and social factors associated with these outcomes. Methods: This retrospective cross-sectional study included 153 mothers of twin infants [...] Read more.
Objectives: This study aimed to evaluate exclusive breastfeeding (EBF) rates and the duration of breastfeeding among mothers of twins and to identify the maternal, neonatal, and social factors associated with these outcomes. Methods: This retrospective cross-sectional study included 153 mothers of twin infants who were delivered at a tertiary hospital. Data were obtained from medical records and postnatal telephone interviews. Univariate analyses were performed to assess associations with EBF and breastfeeding duration, while multiple linear regression was performed to identify the independent predictors of breastfeeding. Results: The EBF rate within the first six months was 15%, and the mean breastfeeding duration was 10.5 ± 8.3 months. Tandem breastfeeding was positively associated with breastfeeding duration (β = 5.80; 95% CI: 3.51 to 8.10; p < 0.001), whereas bottle feeding showed a strong negative association (β = −9.49; 95% CI: −12.88 to −6.10; p < 0.001). Infants born before 34 weeks had significantly shorter breastfeeding durations, higher rates of NICU admission and respiratory support, and received less skin-to-skin contact and breastfeeding counselling compared to term infants (p < 0.05). Conclusions: Exclusive breastfeeding rates among mothers of twins remain low. Encouraging tandem breastfeeding, reducing bottle use, and providing tailored lactation support—particularly for mothers of preterm infants—may improve breastfeeding outcomes. Breastfeeding support should be adapted according to gestational age in neonatal care. Full article
(This article belongs to the Section Pediatric Neonatology)
12 pages, 5852 KiB  
Article
Influence of Gel-Type Confinement for Laser Shock Peening of a Ni-Based Alloy
by Sebastian Balos, Milan Pecanac, Dragan Rajnovic, Petar Janjatovic, Miroslav Dramicanin, Sanja Kojic, Filip Cap, Lidija Krstanovic and Sanin Zulic
Materials 2025, 18(9), 2145; https://doi.org/10.3390/ma18092145 - 6 May 2025
Viewed by 297
Abstract
Laser shock peening (LSP) significantly enhances fatigue and corrosion resistance, especially in additively manufactured components. This effect is stronger when confinement is used; typically, it is water. However, water poses risks to sensitive electronics. As an alternative, this study explored gel-based confinement. A [...] Read more.
Laser shock peening (LSP) significantly enhances fatigue and corrosion resistance, especially in additively manufactured components. This effect is stronger when confinement is used; typically, it is water. However, water poses risks to sensitive electronics. As an alternative, this study explored gel-based confinement. A Ni-based alloy was LSP-treated using 532 nm and 1064 nm wavelengths, with three types of gel compared to water as a control. The results showed that gel confinement can induce compressive residual stresses and increase surface microhardness. However, gels were generally less effective than water in terms of residual stress magnitude and depth of hardening. Additionally, gel confinement required the use of a 1064 nm laser, whereas water confinement was more effective with 532 nm. Among the gels tested, one adhesive variant performed best due to improved surface contact and strong adhesion. The observed increase in microhardness and compressive stress was linked to surface grain refinement and twinning. Overall, adhesive gels offer potential benefits for LSP, particularly for additively manufactured parts, which often have high surface roughness and require non-conductive confinement solutions. Full article
(This article belongs to the Special Issue Current and Future Trends in Additive Manufacturing)
Show Figures

Figure 1

18 pages, 4781 KiB  
Article
Research on Robotic Peg-in-Hole Assembly Method Based on Variable Admittance
by Shenglun Zhang, Youchen Wang, Shuo Liang, Haobing Han, Zhouxiang Jiang and Meng Zhang
Appl. Sci. 2025, 15(4), 2143; https://doi.org/10.3390/app15042143 - 18 Feb 2025
Viewed by 658
Abstract
To address the complex challenge of identifying the contact state between a shaft and a hole and to improve the efficiency of robotic shaft-hole assembly tasks, a robotic shaft-hole assembly method based on variable admittance control is proposed. In this method, admittance control [...] Read more.
To address the complex challenge of identifying the contact state between a shaft and a hole and to improve the efficiency of robotic shaft-hole assembly tasks, a robotic shaft-hole assembly method based on variable admittance control is proposed. In this method, admittance control serves as the foundational force controller for shaft-hole assembly. On this basis, the Twin Delayed Deep Deterministic policy gradient (TD3) algorithm from deep reinforcement learning is utilized to optimize the parameters of the admittance controller. Additionally, a nonlinear reward function is designed, which not only prevents the assembly strategy from converging to local optima but also further accelerates the training speed of the assembly task. Experiments conducted with a collaborative robotic arm performing 15° inclined hole assembly demonstrated that the assembly efficiency of the variable admittance method was 9.6% higher than that of the fixed admittance parameter method, validating the feasibility and effectiveness of the proposed variable admittance shaft-hole assembly method. Full article
Show Figures

Figure 1

16 pages, 5421 KiB  
Article
Design and Development of Hugging Mechanism for Capturing Chest and Back Auscultatory Sounds
by Ryosuke Tsumura, Takuma Ogawa, Reina Umeno, Ryuta Baba, Yuko Morishima, Kiyoshi Yoshinaka and Hiroyasu Iwata
Appl. Sci. 2025, 15(3), 1669; https://doi.org/10.3390/app15031669 - 6 Feb 2025
Viewed by 738
Abstract
Robotic auscultation has the potential to solve problems associated with gender issues by allowing examinations that eliminate the need for physical contact between doctor and patient. Aiming toward a robotic auscultation device capable of safely acquiring chest and back auscultatory sounds simultaneously, this [...] Read more.
Robotic auscultation has the potential to solve problems associated with gender issues by allowing examinations that eliminate the need for physical contact between doctor and patient. Aiming toward a robotic auscultation device capable of safely acquiring chest and back auscultatory sounds simultaneously, this study aimed to develop a unique actuator-less hugging mechanism with a multi-acoustic sensor array that can be transformed to wrap around the chest and back to fit the patient’s body shape. The mechanism consists of a twin-articulated arm with multi-layer gear coupling and a cam mechanism for power transmissions. The hugging motion is generated by pushing the cam mechanism by the patient. The force applied to the cam mechanism acts as the driving force for the twin-articulated arm. The trajectory of the arm changes depending on the distance that the cam mechanism is pressed, and it was designed to fit typical body types (obese, standard, and slender). Our results demonstrated that the proposed mechanism was able to be transformed for each body type, and its positional error was less than 15 mm in all body types. This means that the proposed mechanism is capable of safely acquiring chest and back auscultatory sounds whilst simultaneously fitting to various body shapes. Full article
(This article belongs to the Special Issue Advanced Robotics, Mechatronics, and Automation)
Show Figures

Figure 1

15 pages, 4731 KiB  
Article
Pharmacological Targeting of the NMDAR/TRPM4 Death Signaling Complex with a TwinF Interface Inhibitor Prevents Excitotoxicity-Associated Dendritic Blebbing and Organelle Damage
by Omar A. Ramírez, Andrea Hellwig, Zihong Zhang and Hilmar Bading
Cells 2025, 14(3), 195; https://doi.org/10.3390/cells14030195 - 28 Jan 2025
Viewed by 1127
Abstract
Focal swellings of dendrites (“dendritic blebbing”) together with structural damage of mitochondria and the endoplasmic reticulum (ER) are morphological hallmarks of glutamate neurotoxicity, also known as excitotoxicity. These pathological alterations are generally thought to be caused by the so-called “overactivation” of N-methyl-D-aspartate receptors [...] Read more.
Focal swellings of dendrites (“dendritic blebbing”) together with structural damage of mitochondria and the endoplasmic reticulum (ER) are morphological hallmarks of glutamate neurotoxicity, also known as excitotoxicity. These pathological alterations are generally thought to be caused by the so-called “overactivation” of N-methyl-D-aspartate receptors (NMDARs). Here, we demonstrate that the activation of extrasynaptic NMDARs, specifically when forming a protein–protein complex with TRPM4, drives these pathological traits. In contrast, strong activation of synaptic NMDARs fails to induce cell damage despite evoking plateau-type calcium signals that are comparable to those generated by activation of the NMDAR/TRPM4 complex, indicating that high intracellular calcium levels per se are not toxic to neurons. Using confocal laser scanning microscopy and transmission electron microscopy, we show that disrupting the NMDAR/TRPM4 complex using the recently discovered small-molecule TwinF interface inhibitor FP802 inhibits the NMDA-induced neurotoxicity-associated dendritic blebbing and structural damage to mitochondria and the ER. It also prevents, at least in part, the disruption of ER–mitochondria contact sites. These findings establish the NMDAR/TRPM4 complex as the trigger for the structural damage of dendrites and intracellular organelles associated with excitotoxicity. They also suggest that activation of the NMDAR/TRPM4 complex, in addition to inducing high-amplitude, plateau-type calcium signals, generates a second signal required for glutamate neurotoxicity (“two-hit hypothesis”). As structural damage to organelles, particularly mitochondria, is a common feature of many human neurodegenerative diseases, including Alzheimer’s disease and amyotrophic lateral sclerosis (ALS), TwinF interface inhibitors have the potential to provide neuroprotection across a broad spectrum of these diseases. Full article
(This article belongs to the Collection Membrane Damage and Repair in Organelles)
Show Figures

Figure 1

15 pages, 4711 KiB  
Article
Biocompatible Heterogeneous Packaging and Laser-Assisted Fluid Interface Control for In Situ Sensor in Organ-on-a-Chip
by Yu-Hsuan Lin, Shing-Fung Lau, Yen-Pei Lu, Kuo-Cheng Huang, Chien-Fang Ding, Yu-Hsiang Tang and Hsin-Yi Tsai
Micromachines 2025, 16(1), 46; https://doi.org/10.3390/mi16010046 - 30 Dec 2024
Viewed by 1071
Abstract
The development of bionic organ-on-a-chip technology relies heavily on advancements in in situ sensors and biochip packaging. By integrating precise biological and fluid condition sensing with microfluidics and electronic components, long-term dynamic closed-loop culture systems can be achieved. This study aims to develop [...] Read more.
The development of bionic organ-on-a-chip technology relies heavily on advancements in in situ sensors and biochip packaging. By integrating precise biological and fluid condition sensing with microfluidics and electronic components, long-term dynamic closed-loop culture systems can be achieved. This study aims to develop biocompatible heterogeneous packaging and laser surface modification techniques to enable the encapsulation of electronic components while minimizing their impact on fluid dynamics. Using a kidney-on-a-chip as a case study, a non-toxic packaging process and fluid interface control methods have been successfully developed. Experimentally, miniature pressure sensors and control circuit boards were encapsulated using parylene-C, a biocompatible material, to isolate biochemical fluids from electronic components. Ultraviolet laser processing was employed to fabricate structures on parylene-C. The results demonstrate that through precise control of processing parameters, the wettability of the material can be tuned freely within a contact angle range of 60° to 110°. Morphological observations and MTT assays confirmed that the material and the processing methods do not induce cytotoxicity. This technology will facilitate the packaging of various miniature electronic components and biochips in the future. Furthermore, laser processing enables rapid and precise control of interface conditions across different regions within the chip, demonstrating a high potential for customized mass production of biochips. The proposed innovations provide a solution for in situ sensing in organ-on-a-chip systems and advanced biochip packaging. We believe that the development of this technology is a critical step toward realizing the concept of “organ twin”. Full article
Show Figures

Figure 1

19 pages, 10254 KiB  
Article
Humidity Resistant Biodegradable Starch Foams Reinforced with Polyvinyl Butyral (PVB) and Chitosan
by Apoorva Kulkarni, Jakob Emrich and Ramani Narayan
Polymers 2024, 16(23), 3402; https://doi.org/10.3390/polym16233402 - 3 Dec 2024
Viewed by 1739
Abstract
In this study, water-insoluble, moisture-resistant starch foams were prepared using an optimized one-step extrusion-foaming process in a ZSK-30 twin screw extruder. The extrusion parameters, including temperature, screw configuration, die diameter, water content, and feeding rates, were optimized to achieve foams with the lowest [...] Read more.
In this study, water-insoluble, moisture-resistant starch foams were prepared using an optimized one-step extrusion-foaming process in a ZSK-30 twin screw extruder. The extrusion parameters, including temperature, screw configuration, die diameter, water content, and feeding rates, were optimized to achieve foams with the lowest density and controlled expansion. A screw configuration made up of three kneading sections was found to be the most effective for better mixing and foaming. Polyvinyl butyral (PVB) acted as a plasticizer, resulting in foams with a density of 21 kg/m3 and an expansion ratio of 38.7, while chitosan served as a nucleating agent, reducing cell size and promoting a uniform cell size distribution. The addition of PVB and chitosan reduced the moisture sensitivity of the foams, rendering them hydrophobic and water-insoluble. The contact angle increased from 0° for control foams to 101.5° for foams containing 10% chitosan and 10% PVB. Confocal laser scanning microscopy (CLSM) confirmed the migration of chitosan to the foam surface, enhancing hydrophobicity. Aqueous biodegradation tests, conducted at 30 °C in accordance with ISO 14852 standards, demonstrated that despite enhanced moisture resistance, the foams remained readily biodegradable, achieving approximately 80% biodegradation within 80 days. These modified starch foams present a sustainable solution for packaging and insulation applications that demand long-term humidity resistance. Full article
(This article belongs to the Collection Polymeric Foams)
Show Figures

Graphical abstract

15 pages, 6581 KiB  
Article
Antibacterial Properties of PCL@45s5 Composite Biomaterial Scaffolds Based on Additive Manufacturing
by Chen Zhang, Yixian Ru, Jinchao You, Runyi Lin, Shihao Chen, Yi Qi, Dejing Li, Cheng Zhang and Zhenli Qiu
Polymers 2024, 16(23), 3379; https://doi.org/10.3390/polym16233379 - 30 Nov 2024
Cited by 1 | Viewed by 1029
Abstract
This study focuses on the development of polymer–bioglass composite bone scaffolds for the treatment of bone defects. PCL particles and 45s5 bioglass powder were employed as raw materials to fabricate PCL/45s5 composite wires with mass fractions of 5 wt%, 10 wt%, and 20 [...] Read more.
This study focuses on the development of polymer–bioglass composite bone scaffolds for the treatment of bone defects. PCL particles and 45s5 bioglass powder were employed as raw materials to fabricate PCL/45s5 composite wires with mass fractions of 5 wt%, 10 wt%, and 20 wt% via the twin-screw extrusion method. A cylindrical porous model was established using 3D modeling software, and a porous composite scaffold was constructed through the melt deposition manufacturing process. The macroscopical characterization of composite stock and composite powder was analyzed. The melt flow rate, water contact angle, elastic modulus, in vitro degradation rate, and antibacterial property of composite scaffold were measured. The experimental results showed that the incorporation of 45s5 bioglass into PCL material gave the composite better antibacterial properties, effectively reduced the flow rate of the material, increased the hydrophobicity of the material, and improved the rigidity and biocompatibility of the PCL material. This study offers initial insights into the use of synthetic bone tissue engineering scaffolds for clinical bone repair treatments. Full article
(This article belongs to the Special Issue Development and Application of Polymer Scaffolds, 2nd Volume)
Show Figures

Figure 1

20 pages, 2991 KiB  
Article
Gypsum: From the Equilibrium to the Growth Shapes—Theory and Experiments
by Dino Aquilano, Marco Bruno and Stefano Ghignone
Minerals 2024, 14(11), 1175; https://doi.org/10.3390/min14111175 - 19 Nov 2024
Cited by 1 | Viewed by 1311
Abstract
The gypsum crystals (CaSO4·2H2O) crystallizes in a low symmetry system (monoclinic) and shows a marked layered structure along with a perfect cleavage parallel to the {010} faces. Owing to its widespread occurrence, as a single or twinned crystal, here [...] Read more.
The gypsum crystals (CaSO4·2H2O) crystallizes in a low symmetry system (monoclinic) and shows a marked layered structure along with a perfect cleavage parallel to the {010} faces. Owing to its widespread occurrence, as a single or twinned crystal, here the gypsum equilibrium (E.S.) and growth shapes (G.S.) have been re-visited. In making the distinction among E.S. and G.S., in the present work, the basic difference between epitaxy and homo-taxy is clearly evidenced. Gypsum has also been a fruitful occasion to recollect the general rules concerning either contact or penetration twins, for free growing and for twinned crystals nucleating onto pre-existing substrates. Both geometric and crystal growth aspects have been considered as well, by unifying theory and experiments of crystallography and crystal growth through the intervention of βadh, the physical quantity representing the specific adhesion energy between gypsum and other phases. Hence, the adhesion energy allowed us to systematically use the Dupré’s formula. In the final part of the paper, peculiar attention has been paid to sediments (or solution growth) where the crystal size is very small, in order to offer a new simple way to afford classical (CNT) and non-classical nucleation (NCNT) theories, both ruling two quantities commonly used in the industrial crystallization: the total induction times (ttotalind) and crystal size distribution (CSD). Full article
Show Figures

Figure 1

17 pages, 13829 KiB  
Article
Advanced Virtual Fit Technology for Precision Pressure Application in Medical Compression Waistbands
by Seonyoung Youn, Sheng Zhan and Kavita Mathur
Appl. Sci. 2024, 14(22), 10697; https://doi.org/10.3390/app142210697 - 19 Nov 2024
Viewed by 1221
Abstract
The design of medical-grade compression garments is essential for therapeutic efficacy, requiring precise pressure distribution on specific body areas. This study evaluates the effectiveness of virtual fit technology, focusing on CLO3D, in designing these garments. Simulated strain and pressure values from CLO3D were [...] Read more.
The design of medical-grade compression garments is essential for therapeutic efficacy, requiring precise pressure distribution on specific body areas. This study evaluates the effectiveness of virtual fit technology, focusing on CLO3D, in designing these garments. Simulated strain and pressure values from CLO3D were compared to experimental measurements, alongside the development of a CP model using CLO3D’s digitized stretch stiffness (Youn’s CP model). Using a 3D-scanned manikin, the mechanical behavior of eight knit fabrics, including composite structures, was assessed under strain of 5%, 10%, 15%, and 20%. The results showed that CLO3D’s built-in pressure simulation overestimated the pressure, especially in plaited fabrics such as SJP and INTP, with discrepancies of up to 10 kPa at strain levels above 15%. In contrast, the experimental pressure measurements using the Kikuhime and PPS sensors varied within 0.13 to 2.59 kPa. Youn’s CP model provided a closer fit to the experimental data, with deviations limited to within 1.9 kPa. This finding highlights the limitations of CLO3D for precision-required applications and underscores the need for more advanced, customized algorithms in virtual fit technology to ensure reliable compression garment design, particularly in medical contexts, where precise pressure control is critical for patient outcomes. Full article
(This article belongs to the Special Issue Innovative Functional Textiles and Their Applications)
Show Figures

Figure 1

18 pages, 4747 KiB  
Systematic Review
Optimizing Railway Tribology: A Systematic Review and Predictive Modeling of Twin-Disc Testing Parameters
by Nicola Zani, Candida Petrogalli and Davide Battini
Lubricants 2024, 12(11), 382; https://doi.org/10.3390/lubricants12110382 - 4 Nov 2024
Viewed by 1444
Abstract
Twin-disc testing is crucial for understanding wheel–rail interactions in railway systems, but the vast array of testing parameters and conditions makes data interpretation challenging. This review presents a comprehensive analysis of the twin-disc literature experimental data, focusing on how various parameters influence friction [...] Read more.
Twin-disc testing is crucial for understanding wheel–rail interactions in railway systems, but the vast array of testing parameters and conditions makes data interpretation challenging. This review presents a comprehensive analysis of the twin-disc literature experimental data, focusing on how various parameters influence friction and wear characteristics under stationary contaminant conditions. We systematically collected and analyzed data from numerous studies, considering factors such as contact pressure, speed, material hardness, sliding speeds, adhesion, and a range of contaminants. This research showed inconsistent data reporting across different studies and statistical analyses revealed significant correlations between testing parameters and wear rates. For sand-contaminated tests, a correlation between particle size and flow rate was also highlighted. Based on these findings, we developed a simple predictive model for forecasting wear rates under varying conditions. This model achieved an adjusted R2 of 0.650, demonstrating its potential for optimizing railway component design and maintenance strategies. Our study provides a valuable resource for researchers and practitioners in railway engineering, offering insights into the complex tribological interactions in wheel–rail systems and a tool for predicting wear behavior. Full article
(This article belongs to the Collection Rising Stars in Tribological Research)
Show Figures

Figure 1

8 pages, 1837 KiB  
Article
Gypsum Crystals Formed by the Anhydrite–Gypsum Transformation at Low Temperatures: Implications for the Formation of the Geode of Pulpí
by Andrea Cotellucci, Juan-Manuel Garcia-Ruiz, Fermín Otálora, Àngels Canals, Marco Bruno, Quentin Wehrung, Luca Pellegrino, Dino Aquilano and Linda Pastero
Minerals 2024, 14(11), 1074; https://doi.org/10.3390/min14111074 - 25 Oct 2024
Viewed by 1389
Abstract
Determining the mechanisms of the formation of giant crystals is a challenging subject. Gypsum, calcium sulfate dihydrate (CaSO4·2H2O), is known to form crystals larger than one meter in several locations worldwide. These selenite crystals grow at different temperatures, either [...] Read more.
Determining the mechanisms of the formation of giant crystals is a challenging subject. Gypsum, calcium sulfate dihydrate (CaSO4·2H2O), is known to form crystals larger than one meter in several locations worldwide. These selenite crystals grow at different temperatures, either in sedimentary or hydrothermal systems. The famous selenite crystals of the geode of Pulpí (Almería, Spain) are known to have grown at a temperature T = 20 ± 5 °C and have been proposed to form in a subaqueous environment by a self-feeding mechanism triggered by anhydrite dissolution and the ripening of microcrystalline gypsum, enhanced by oscillations in temperature. This paper reports the monitored crystallization of gypsum crystals, from anhydrite powder dissolution, inside airtight evaporation-free reactors under oscillating low temperatures (15 °C < T < 25 °C). These crystals are clearly smaller than the ones in the Pulpí mine but exhibit similar habits (i.e., single blocky crystals and twins following the 100 twinning law). The growth rate of gypsum single crystals has been measured to be between 3.8 and 35.3 µm/day. Noteworthy, we document the occurrence of the 100 contact twinning law of gypsum, which is the most widespread twinning law in natural environments but never univocally reported in laboratory experiments. The selection of the 100 contact twinning law has been correlated to the low supersaturation values obtained in the experiment, where the concentration in these long-duration experiments can be safely assumed to be the equilibrium concentration, i.e., 0.3 (at 25 °C) ≤ SI ≤ 0.4 (at 15 °C). We discuss the relevance of our experiment for forming the gypsum crystals of Pulpí in the framework of the geological history of Pulpí mineralization. These laboratory model experiments contribute to a deeper understanding of mineral nucleation and growth processes in natural environments. Full article
Show Figures

Figure 1

20 pages, 3340 KiB  
Article
Implementing Autonomous Control in the Digital-Twins-Based Internet of Robotic Things for Remote Patient Monitoring
by Sangeen Khan, Sehat Ullah, Khalil Ullah, Sulaiman Almutairi and Sulaiman Aftan
Sensors 2024, 24(17), 5840; https://doi.org/10.3390/s24175840 - 9 Sep 2024
Cited by 1 | Viewed by 2319
Abstract
Conventional patient monitoring methods require skin-to-skin contact, continuous observation, and long working shifts, causing physical and mental stress for medical professionals. Remote patient monitoring (RPM) assists healthcare workers in monitoring patients distantly using various wearable sensors, reducing stress and infection risk. RPM can [...] Read more.
Conventional patient monitoring methods require skin-to-skin contact, continuous observation, and long working shifts, causing physical and mental stress for medical professionals. Remote patient monitoring (RPM) assists healthcare workers in monitoring patients distantly using various wearable sensors, reducing stress and infection risk. RPM can be enabled by using the Digital Twins (DTs)-based Internet of Robotic Things (IoRT) that merges robotics with the Internet of Things (IoT) and creates a virtual twin (VT) that acquires sensor data from the physical twin (PT) during operation to reflect its behavior. However, manual navigation of PT causes cognitive fatigue for the operator, affecting trust dynamics, satisfaction, and task performance. Also, operating manual systems requires proper training and long-term experience. This research implements autonomous control in the DTs-based IoRT to remotely monitor patients with chronic or contagious diseases. This work extends our previous paper that required the user to manually operate the PT using its VT to collect patient data for medical inspection. The proposed decision-making algorithm enables the PT to autonomously navigate towards the patient’s room, collect and transmit health data, and return to the base station while avoiding various obstacles. Rather than manually navigating, the medical personnel direct the PT to a specific target position using the Menu buttons. The medical staff can monitor the PT and the received sensor information in the pre-built virtual environment (VE). Based on the operator’s preference, manual control of the PT is also achievable. The experimental outcomes and comparative analysis verify the efficiency of the proposed system. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

14 pages, 2983 KiB  
Article
Design of an Innovative Twin-Disc Device for the Evaluation of Wheel and Rail Profile Wear
by Matteo Magelli, Rosario Pagano and Nicolò Zampieri
Designs 2024, 8(4), 73; https://doi.org/10.3390/designs8040073 - 26 Jul 2024
Cited by 2 | Viewed by 1586
Abstract
The tribological properties of steels used to realise railway wheels play a fundamental role in the performances of both vehicle and infrastructure. In particular, the wear process, caused by the wheel–rail interaction, modifies the shape of wheel and rail profiles, changing the performances [...] Read more.
The tribological properties of steels used to realise railway wheels play a fundamental role in the performances of both vehicle and infrastructure. In particular, the wear process, caused by the wheel–rail interaction, modifies the shape of wheel and rail profiles, changing the performances of the vehicle. For this reason, research institutes and vehicle manufacturers have worked hard to develop predictive tools able to estimate the evolution of the wheel and rail profiles. The efficiency of these tools is strongly influenced by the tribological properties of the materials, i.e., the wear coefficients, which are used as input data. The characterisation of these properties requires specific tools and long-lasting experimental campaigns, which are usually performed under controlled operating conditions, using twin-disc test benches. These devices usually do not consider the real contact conditions in terms of normal load, contact geometry, and slip velocity, since they are equipped with small-size rollers. The paper proposes an innovative 1:5 scaled twin-disc, which allows the reproduction of the real wheel–rail contact conditions, thanks to Pascal’s scaling technique. The testing device allows the reproduction of a wide range of typical operating conditions of railway vehicles, thanks to high-power independent brushless motors, used to actuate the rollers, and an innovative loading system. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

37 pages, 32174 KiB  
Article
Improved Operating Behavior of Self-Lubricating Rolling-Sliding Contacts under High Load with Oil-Impregnated Porous Sinter Material
by Nicolai Sprogies, Thomas Lohner and Karsten Stahl
Lubricants 2024, 12(7), 259; https://doi.org/10.3390/lubricants12070259 - 21 Jul 2024
Cited by 1 | Viewed by 1825
Abstract
Resource and energy efficiency are of high importance in gearbox applications. To reduce friction and wear, an external lubricant supply like dip or injection lubrication is used to lubricate tribosystems in machine elements. This leads to the need for large lubricant volumes and [...] Read more.
Resource and energy efficiency are of high importance in gearbox applications. To reduce friction and wear, an external lubricant supply like dip or injection lubrication is used to lubricate tribosystems in machine elements. This leads to the need for large lubricant volumes and elaborate sealing requirements. One potential method of minimizing the amount of lubricant and simplifying sealing in gearboxes is the self-lubrication of tribosystems using oil-impregnation of porous materials. Although well established in low-loaded journal bearings, self-lubrication of rolling-sliding contacts in gears is poorly understood. This study presents the self-lubrication method using oil-impregnated porous sinter material variants. For this, the tribosystem of gear contacts is transferred to model contacts, which are analyzed for friction and temperature behavior using a twin-disk tribometer. High-resolution surface images are used to record the surface changes. The test results show a significant increase in self-lubrication functionality of tribosystems by oil-impregnated porous sinter material and a tribo-performance comparable to injection-lubricated tribosystems of a sinter material with additionally solid lubricant added to the sinter material powder before sintering. Furthermore, the analyses highlight a significant influence of the surface finish, and in particular the surface porosity, on the overall tribosystem behavior through significantly improved friction and wear behavior transferable to gear applications. Full article
(This article belongs to the Special Issue Tribology in Germany: Latest Research and Development)
Show Figures

Figure 1

Back to TopTop