Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (117)

Search Parameters:
Keywords = cool pavement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
6 pages, 2980 KB  
Proceeding Paper
Cooling Urban Municipalities Through Sustainable Microclimate Interventions: The Case of Kallithea in the Greater Athens Area
by Thomas Stavropoulos, Elissavet Feloni, Chrysovalanti-Charikleia Prokopiadi, Maria Sklia, George Hloupis and Panagiotis T. Nastos
Environ. Earth Sci. Proc. 2025, 35(1), 45; https://doi.org/10.3390/eesp2025035045 - 25 Sep 2025
Viewed by 215
Abstract
Urbanization and intensified human activity have significantly impacted city climates, amplifying the urban heat island effect and increasing thermal stress on residents. This study focuses on the design of a pocket park in the Municipality of Kallithea as a targeted bioclimatic intervention. Through [...] Read more.
Urbanization and intensified human activity have significantly impacted city climates, amplifying the urban heat island effect and increasing thermal stress on residents. This study focuses on the design of a pocket park in the Municipality of Kallithea as a targeted bioclimatic intervention. Through the integration of on-site microclimate measurements, GIS mapping, and 2D design tools, the research evaluates key bioclimatic indicators to inform climate-responsive design strategies. Proposed solutions include the use of cool materials, reflective surfaces, permeable pavements, and water features to enhance natural ventilation and mitigate surface temperatures. The project demonstrates how small-scale green infrastructure can improve thermal comfort in dense urban areas while supporting sustainability goals. By highlighting the potential of localized interventions, the study contributes to the broader discourse on urban resilience and the role of bioclimatic planning in creating healthier, more livable cities. Full article
Show Figures

Figure 1

26 pages, 3297 KB  
Article
Exploring the Urban Heat Island Effect: A Bibliometric and Topic Modeling Analysis
by Murat Kilinc, Can Aydin, Gizem Erdogan Aydin and Damla Balci
Sustainability 2025, 17(17), 8072; https://doi.org/10.3390/su17178072 - 8 Sep 2025
Viewed by 1101
Abstract
The urban heat island (UHI) effect, intensified by urbanisation and climate change, leads to increased urban temperatures and poses a serious environmental challenge. Understanding its causes, impacts, and mitigation strategies is essential for sustainable urban planning. The aim of this study is to [...] Read more.
The urban heat island (UHI) effect, intensified by urbanisation and climate change, leads to increased urban temperatures and poses a serious environmental challenge. Understanding its causes, impacts, and mitigation strategies is essential for sustainable urban planning. The aim of this study is to systematically analyse how the Urban Heat Island (UHI) effect has been addressed in the scientific literature, to identify key research themes and their temporal evolution, and to critically highlight knowledge gaps in order to provide guidance for future research and urban planning policies. Using BERTopic, an advanced natural language processing (NLP) tool, the study extracts dominant themes from a large corpus of academic literature and tracks their evolution over time. A total of 9061 research articles from the Web of Science database were collected, pre-processed, and analysed. BERTopic clustered semantically related topics and revealed their temporal dynamics, offering insights into emerging and declining research areas. The results show that pavement materials and urban vegetation are among the most studied themes, highlighting the importance of surface materials and green infrastructure in mitigating UHI. In line with this aim, the study identifies a rising interest in urban cooling strategies, particularly reflective surfaces and ventilation corridors. Consistent with its aim, the study provides a comprehensive overview of UHI literature, critically identifies existing gaps, and proposes clear directions for future research. It provides supports for urban planners, policymakers, and researchers in developing data-driven strategies to mitigate UHI impacts and strengthen enhance urban climate resilience. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

14 pages, 2594 KB  
Article
Low-Temperature Performance and Thermal Control of Asphalt Modified with Microencapsulated Phase-Change Materials
by Liming Zhang, Junmao Wang, Jinhua Wu, Ran Zhang, Yinchuan Guo, Hongbo Shen, Xinghua Liu and Kuncan Li
Coatings 2025, 15(8), 879; https://doi.org/10.3390/coatings15080879 - 26 Jul 2025
Viewed by 663
Abstract
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs [...] Read more.
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs were incorporated into asphalt through physical blending at various concentrations. The physical, thermal, and rheological properties of the asphalt were then systematically evaluated. Tests included penetration, softening point, ductility, thermogravimetric analysis (TGA), and dynamic shear rheometer (DSR). The addition of MPCMs increased penetration and ductility. It slightly reduced the softening point and viscosity. These changes suggest improved flexibility and workability at low temperatures. Rheological tests showed reductions in rutting and fatigue factors. This indicates better resistance to thermal and mechanical stresses. Bending Beam Rheometer (BBR) results further confirmed that MPCMs lowered creep stiffness and increased the m-value. These findings demonstrate improved crack resistance under cold conditions. Thermal cycling tests also showed that MPCMs delayed the cooling process and reduced temperature fluctuations. This highlights their potential to enhance both energy efficiency and the durability of asphalt pavements in cold regions. Full article
(This article belongs to the Special Issue Synthesis and Application of Functional Polymer Coatings)
Show Figures

Graphical abstract

16 pages, 2504 KB  
Article
Thermal Field and High-Temperature Performance of Epoxy Resin System Steel Bridge Deck Pavement
by Rui Mao, Xingyu Gu, Jiwang Jiang, Zhu Zhang and Kaiwen Lei
Materials 2025, 18(13), 3109; https://doi.org/10.3390/ma18133109 - 1 Jul 2025
Viewed by 487
Abstract
Epoxy Resin System (ERS) steel bridge pavement, which comprises a resin asphalt (RA) base layer and a modified asphalt wearing course, offers cost efficiency and rapid installation. However, the combined effects of traffic loads and environmental conditions pose significant challenges, requiring greater high-temperature [...] Read more.
Epoxy Resin System (ERS) steel bridge pavement, which comprises a resin asphalt (RA) base layer and a modified asphalt wearing course, offers cost efficiency and rapid installation. However, the combined effects of traffic loads and environmental conditions pose significant challenges, requiring greater high-temperature stability than conventional pavements. The thermal sensitivity of resin materials and the use of conventional asphalt mixtures may weaken deformation resistance under elevated temperature conditions. This study investigates the thermal field distribution and high-temperature performance of ERS pavements under extreme conditions and explores temperature reduction strategies. A three-dimensional thermal field model developed using finite element analysis software analyzes interactions between the steel box girder and pavement layers. Based on simulation results, wheel tracking and dynamic creep tests confirm the superior performance of the RA05 mixture, with dynamic stability reaching 23,318 cycles/mm at 70 °C and a 2.1-fold improvement in rutting resistance in Stone Mastic Asphalt (SMA)-13 + RA05 composites. Model-driven optimization identifies that enhancing internal airflow within the steel box girder is possible without compromising its structural integrity. The cooling effect is particularly significant when the internal airflow aligns with ambient wind speeds (open-girder configuration). Surface peak temperatures can be reduced by up to 20 °C and high-temperature durations can be shortened by 3–7 h. Full article
Show Figures

Figure 1

17 pages, 2995 KB  
Article
Environmental Influence on NbS (Nature-Based Solution) Mitigation of Diurnal Surface Urban Heat Islands (SUHI)
by Chih-chen Liu, Min-cheng Tu, Jen-yang Lin, Hongyuan Huo and Wei-jen Chen
Remote Sens. 2025, 17(10), 1802; https://doi.org/10.3390/rs17101802 - 21 May 2025
Cited by 1 | Viewed by 897
Abstract
Utilizing 58 Landsat-7 images taken over 10 years, the current study investigated the relationship between the mitigation of surface urban heat islands (SUHIs) by NbSs (Nature-based Solutions) and influential variables such as physical variables of NbSs, environmental variables of the streets, and meteorological [...] Read more.
Utilizing 58 Landsat-7 images taken over 10 years, the current study investigated the relationship between the mitigation of surface urban heat islands (SUHIs) by NbSs (Nature-based Solutions) and influential variables such as physical variables of NbSs, environmental variables of the streets, and meteorological variables. Parks and permeable pavements are the two types of NbS devices under examination. Reference (i.e., unaffected by any NbS) and experimental (i.e., affected by only one NbS) areas were selected to perform the analysis. Areas affected by large water bodies or more than one NbS device were excluded. The cooling effect caused by NbS was linked to the influential variables by multiple regression models. Key findings included the following: Firstly, the distance to an NbS is more important than the area of an individual NbS, implying that small and evenly distributed NbS devices might have better overall cooling effects than large but sparsely placed NbS devices. Secondly, NbSs do not significantly contribute to cooling in districts with grid-type streets, while exhibiting significant cooling for districts with complex street patterns. Older districts with complex street patterns should be the focus of NbS implementation, not newer, modern districts. However, NbS cooling is sensitive to several variables in districts with complex patterns. NbS installation in those districts requires careful planning to maximize engineering investment. Lastly, maintenance can be essential to sustain the cooling capacity of NbSs over time. Full article
Show Figures

Figure 1

21 pages, 9127 KB  
Article
Evaluating District Indicators for Mitigating Urban Heat Island Effects and Enhancing Energy Savings
by Safa’ S. Hammoudeh and Hatice Sozer
Sustainability 2025, 17(9), 3997; https://doi.org/10.3390/su17093997 - 29 Apr 2025
Viewed by 960
Abstract
As climate change accelerates and urbanization intensifies, mitigating the Urban Heat Island (UHI) effect has become crucial for sustainable urban planning. This study evaluated the role of four key urban indicators—buildings, greenery, streets, and pedestrian paths—in reducing air temperature and improving energy efficiency [...] Read more.
As climate change accelerates and urbanization intensifies, mitigating the Urban Heat Island (UHI) effect has become crucial for sustainable urban planning. This study evaluated the role of four key urban indicators—buildings, greenery, streets, and pedestrian paths—in reducing air temperature and improving energy efficiency within the Kartal District of Istanbul. To ensure accurate and data-driven results, multiple advanced software tools were integrated throughout the research process. QGIS, Google Earth, and OpenStreetMap were used to generate high-resolution land use/land cover (LULC) maps, while Meteoblue climate data and the Global Heat Island Map provided essential climatic parameters. The InVEST Urban Cooling Model was employed to simulate temperature reduction effects, and eQuest energy simulation software assessed the impact of building modifications on energy consumption. The study tested multiple UHI mitigation scenarios, including green roofs, increased street tree cover, grass-covered pedestrian paths, and high-albedo pavement, comparing their individual and combined effects. The results indicated that integrating all strategies achieved the most significant cooling impact, reducing air temperatures by 1.14 °C and improving energy efficiency by 61%. Among the individual interventions, green roofs provided the highest building energy savings (28% reduction), while grass-covered pedestrian paths homogenized the district-wide temperature distribution. These findings underscore the importance of combining GIS-based spatial analysis, climate modeling, and energy simulation tools to develop reliable, scalable, and effective urban heat mitigation strategies. Future urban planning should prioritize a multi-software approach to enhance sustainability, optimize energy efficiency, and improve urban resilience. Full article
Show Figures

Figure 1

42 pages, 67550 KB  
Article
Impact of Environmental Factors on Summer Thermal Comfort of Ribbon Waterfront Park in Hot Summer and Cold Winter Regions: A Case Study of Hefei
by Hui Xi, Yating Li and Wanjun Hou
Sustainability 2025, 17(7), 3026; https://doi.org/10.3390/su17073026 - 28 Mar 2025
Cited by 1 | Viewed by 1536
Abstract
Ribbon waterfront parks in hot summer and cold winter regions play a crucial role in microclimate regulation and thermal comfort enhancement due to the combined effects of water bodies and vegetation. This study focuses on ribbon waterfront parks in Hefei. This study investigates [...] Read more.
Ribbon waterfront parks in hot summer and cold winter regions play a crucial role in microclimate regulation and thermal comfort enhancement due to the combined effects of water bodies and vegetation. This study focuses on ribbon waterfront parks in Hefei. This study investigates the influence of park environmental factors (e.g., plant community characteristics, spatial configuration of water bodies, and plaza layouts) on the summer thermal environment through field measurements and ENVI-met numerical simulations. Based on field studies and a literature review, five environmental factors were selected as test variables: water body direction (S), tree planting density and arrangement (A), square distribution form (B), square location (C), and pavement material (D). Using orthogonal testing, 64 different environmental scenarios under four distinct water body orientations were designed and simulated using ENVI-met (Version 5.6.1), followed by a quantitative analysis of the simulation results. The findings reveal that the interaction between water body orientation and prevailing wind direction significantly influences the cooling efficiency in both the upwind and downwind regions. In addition, through orthogonal testing, Range Analysis (RA), and analysis of variance (ANOVA), the order of magnitude of the effect of each experimental factor on the Universal Thermal Climate Index (UTCI) can be derived: density and form of tree planting (A) > pavement material (D) > location of the square in the park (C) > forms of distribution of squares in the park (B). Finally, this study suggests various environmental factor-setting schemes for ribbon waterfront parks that are tailored to distinct microclimatic requirements. It also provides design recommendations to improve thermal comfort in parks based on the orientation of different water bodies. Furthermore, it offers specific references and foundations for planning, designing, optimising, and renovating waterfront parks of similar scales. Full article
Show Figures

Figure 1

20 pages, 2700 KB  
Review
A Review of Near-Infrared Reflective Nanopigments: Aesthetic and Cooling Properties
by Shehab A. Mansour and Ashraf H. Farha
Crystals 2025, 15(3), 271; https://doi.org/10.3390/cryst15030271 - 14 Mar 2025
Cited by 5 | Viewed by 4322
Abstract
Excessive use of conventional cooling devices, such as air conditioners, produces an increase in the urban heat island phenomenon, which causes exacerbating climate change and environmental degradation. In response, this review focuses on the potential of near-infrared nanopigments and specifically cool nanopigments as [...] Read more.
Excessive use of conventional cooling devices, such as air conditioners, produces an increase in the urban heat island phenomenon, which causes exacerbating climate change and environmental degradation. In response, this review focuses on the potential of near-infrared nanopigments and specifically cool nanopigments as a sustainable alternative for cooling. These innovative materials have been shown to effectively reflect solar near-infrared radiation, reducing the urban heat island effect and mitigating the environmental impacts associated with conventional cooling methods. This comprehensive review explores the aesthetic and cooling aspects of near-infrared nanopigments, highlighting their properties, applications, and benefits as a promising solution for mitigating the urban heat island phenomenon and promoting a more sustainable future. Recent breakthroughs in the use of nanopigment materials are also explored. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

24 pages, 13351 KB  
Article
Enhancing Microclimate Sustainability: The Impact of Blue–Green–Gray Underlying Surfaces in Stormwater Parks Under Subtropical Monsoon Climates
by Ziyan Lu, Tongxin Zhong, Yue Qiao, Guiyi Wu and Haishun Xu
Sustainability 2025, 17(5), 2155; https://doi.org/10.3390/su17052155 - 2 Mar 2025
Cited by 1 | Viewed by 1176
Abstract
As a type of green stormwater infrastructure (GSI), stormwater parks play a crucial role in mitigating urban heat and managing stormwater, especially in subtropical monsoon climates where high temperatures and rainfall coincide. The benefits of microclimate improvement are associated with the specific surface [...] Read more.
As a type of green stormwater infrastructure (GSI), stormwater parks play a crucial role in mitigating urban heat and managing stormwater, especially in subtropical monsoon climates where high temperatures and rainfall coincide. The benefits of microclimate improvement are associated with the specific surface types of stormwater parks. However, research on how different surfaces affect the microclimates of stormwater parks remains limited. This study utilized an unmanned aerial vehicle to investigate the surface temperature characteristics of blue–green–gray underlying surfaces within a stormwater park and employed multiple linear regression to analyze their impact on the microclimate. The results indicated that (1) blue underlying surfaces functioned as a stable cold source in dry periods but warmed quickly after rainfall. (2) Green surfaces consistently provided a cooling effect on the microclimate, with cooling intensity intricately related to vegetation structure. Specifically, the cooling effects of arbor–shrub–grass and arbor–shrub combinations were greater than those of other plant configurations. (3) The warming effect of gray underlying surfaces was affected by weather conditions and permeability, with pervious concrete exhibiting lower surface temperatures than impervious pavements during dry spells, although this difference diminished significantly after rain. These findings provide scientific evidence and design guidance for enhancing the sustainability of microclimates. Full article
Show Figures

Figure 1

25 pages, 2121 KB  
Article
Urban Sustainability Through Pavement Technologies: Reducing Urban Heat Islands with Cool Pavements
by Mohammad Javad Amani, Rashid Tanzadeh, Fereidoon Moghadas Nejad, Mohammad Mohsen Kabiri Nasrabad, Jafar Chalabii and Majid Movahedi Rad
Buildings 2025, 15(3), 504; https://doi.org/10.3390/buildings15030504 - 6 Feb 2025
Cited by 4 | Viewed by 7501
Abstract
Urban development driven by population growth and technological advancements has intensified urban heat islands (UHIs), contributing to environmental damage and health risks. This study explores the potential of cool pavements as a critical strategy for mitigating UHIs, focusing on reflective, evaporative, and energy-storing [...] Read more.
Urban development driven by population growth and technological advancements has intensified urban heat islands (UHIs), contributing to environmental damage and health risks. This study explores the potential of cool pavements as a critical strategy for mitigating UHIs, focusing on reflective, evaporative, and energy-storing technologies. Over 400 reputable scientific articles were reviewed to analyze UHI causes; measurement methods, including remote sensing and laboratory techniques; and the effectiveness of various pavement solutions. Reflective pavements demonstrated a capacity to lower surface temperatures by 5–20 °C depending on reflectivity changes, while evaporative pavements reduced temperatures by 5–35 °C based on type and design. Advanced energy-storing pavements not only achieved a 3–5 °C temperature reduction but also generated renewable energy. This research provides a comprehensive classification of pavement cooling systems and evaluates their quantitative and qualitative benefits, emphasizing the transformative role of cool pavements in enhancing urban sustainability and reducing UHI effects. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 2363 KB  
Article
Harnessing Nature-Based Solutions for a Green and Sustainable Built Environment in South Africa
by John Aliu and Douglas Aghimien
Sustainability 2025, 17(3), 1131; https://doi.org/10.3390/su17031131 - 30 Jan 2025
Cited by 1 | Viewed by 2213
Abstract
The increasing pressure on urban systems and buildings in South Africa caused by rapid urbanization and climate change necessitates innovative approaches, including Nature-based Solutions (NbSs), to address environmental and societal challenges. As such, this study aimed to determine the dynamic role of NbSs [...] Read more.
The increasing pressure on urban systems and buildings in South Africa caused by rapid urbanization and climate change necessitates innovative approaches, including Nature-based Solutions (NbSs), to address environmental and societal challenges. As such, this study aimed to determine the dynamic role of NbSs in shaping the sustainability of South Africa’s built environment. Using a quantitative approach, the data were collected via a questionnaire survey, which targeted built environment professionals. Data analysis involved reliability testing, confirmatory factor analysis, and Spearman rank order correlation. The survey showed that green roofs, rainwater harvesting, cool roofing and pavements, as well as living walls, have received above-average attention in the country, while agricultural byproducts from concrete construction, bioswales, rain gardens, and algae-based materials are yet to be explored in the delivery of green buildings and sustainable urban areas. Overall, deploying NbSs promises positive environmental, societal, and economic impacts. The findings emphasize the need for stronger policies and regulations that promote the adoption of underutilized NbSs within the South African built environment. Theoretically, this study contributes to the existing discourse on sustainable development in South Africa. As the nation grapples with diverse environmental and social issues, this study becomes timely, as it provides crucial insights into how NbSs can address some of these challenges. Full article
Show Figures

Figure 1

21 pages, 6773 KB  
Article
Effects of Physical Cooling on the Temperature and Performance of Newly Laid Porous Asphalt Mixtures
by Jun Li, Mingliang Li, Yi Zhang, Wanyan Ren and Renfei Li
Coatings 2024, 14(12), 1523; https://doi.org/10.3390/coatings14121523 - 2 Dec 2024
Viewed by 1436
Abstract
Porous asphalt pavements need to be cured for 24 h~48 h before they can be opened to traffic. In an emergency, physical cooling methods, such as water sprinkling and air blowing, can be used to accelerate cooling, but the effects of the two [...] Read more.
Porous asphalt pavements need to be cured for 24 h~48 h before they can be opened to traffic. In an emergency, physical cooling methods, such as water sprinkling and air blowing, can be used to accelerate cooling, but the effects of the two methods on the mechanical properties and durability of porous asphalt mixtures are still unclear. In this research, firstly, the dropping and rising temperatures of the pavement surface during the water sprinkling process of newly laid porous asphalt mixtures in real projects were analyzed. The effects of the two conditions of water immersion and water sprinkling on the mechanical properties of porous asphalt mixtures were clarified, and water sprinkling technology for porous asphalt mixtures was proposed. Secondly, the effects of air blowing on the temperature reduction and strength loss of porous asphalt mixtures was analyzed, and the pavement surface temperature control standard that was suitable for air blowing was proposed. Finally, a seven-year observation was carried out on the water sprinkling cooling test section in the actual project. The research results show that water immersion or the sprinkling of water repeatedly during the curing period of porous asphalt pavements reduces the strength of the mixture. It is recommended to use a water amount of 0.3 kg/m2 once and sprinkling four times before painting road markings and two times after painting road markings; this was the best water sprinkling cooling process for porous asphalt pavements. The use of air blowing can accelerate the temperature reduction of porous asphalt mixtures, but the mechanical properties of the mixtures are attenuated after air blowing. Air blowing can be carried out when the pavement surface temperature is lower than 70 °C. Compared with the road section without water sprinkling for cooling, the use of the determined process to cool the newly laid porous asphalt mixtures by water sprinkling does not have a significant adverse effect on their durability. There is also no significant difference in the performances of the two road surfaces within a seven-year service. In an emergency, physical cooling methods, such as water sprinkling or air blowing, can be used to accelerate the temperature reduction of the newly laid porous asphalt mixtures, so as to achieve the purpose of quickly opening to traffic. Full article
Show Figures

Figure 1

22 pages, 6125 KB  
Article
Temperature Gradient Characteristics of Rubber-Modified Asphalt Pavement Under Dramatic Cooling–Heating Cycles
by Meiyan Huang, Jianguo Wei, Ping Li, Yuming Zhou, Yiliang Li, Wenju Peng and Xuan Xiao
Materials 2024, 17(23), 5754; https://doi.org/10.3390/ma17235754 - 24 Nov 2024
Cited by 2 | Viewed by 1123
Abstract
The periodic changes in climatic factors cause the pavement temperature field to change significantly, resulting in fatigue damage to the pavement caused by temperature stress, and the influence depth has a critical value. To reveal the influence range and variation pattern of the [...] Read more.
The periodic changes in climatic factors cause the pavement temperature field to change significantly, resulting in fatigue damage to the pavement caused by temperature stress, and the influence depth has a critical value. To reveal the influence range and variation pattern of the rubber-modified pavement temperature field under frequent rainfall and high temperatures, based on indoor tests and the finite element model, the evolution law of different influencing factors and pavement temperature fields was determined by a single factor sensitivity analysis method. The degree of influence of each influencing factor on the pavement temperature field was analyzed using the Pearson correlation. The results showed that with different asphalt mixture initial temperatures, the road surface temperature decreased from 20 °C to 40 °C under sudden rainfall. Repeated rainfall following high temperatures induces cyclic temperature changes 30 mm below the road surface. The pavement temperature difference increased linearly with the dramatic temperature difference, and the changes in the pavement temperature field were small when the number of cycles exceeded 30. The number of cycles and cycle temperature difference were the main factors affecting the changes in the pavement temperature field under dramatic cooling–heating cycles. Full article
Show Figures

Graphical abstract

17 pages, 19977 KB  
Article
Feasibility of Using Ferronickel Slag as a Sustainable Alternative Aggregate in Hot Mix Asphalt
by Lisley Madeira Coelho, Antônio Carlos Rodrigues Guimarães, Claudio Rafael Cicuto Landim Alves Moreira, Graziella Pereira Pires dos Santos, Sergio Neves Monteiro and Pedro Henrique Poubel Mendonça da Silveira
Sustainability 2024, 16(19), 8642; https://doi.org/10.3390/su16198642 - 6 Oct 2024
Cited by 8 | Viewed by 2486
Abstract
Ferronickel slag (FNS) is a byproduct produced during ferronickel alloy manufacturing, primarily used in the manufacturing of stainless steel and iron alloys. This material is produced by cooling molten slag with water or air, posing significant disposal challenges, as improper storage in industrial [...] Read more.
Ferronickel slag (FNS) is a byproduct produced during ferronickel alloy manufacturing, primarily used in the manufacturing of stainless steel and iron alloys. This material is produced by cooling molten slag with water or air, posing significant disposal challenges, as improper storage in industrial yards can lead to environmental contamination. This study investigates the chemical and mineralogical characteristics of reduction ferronickel slag (RFNS) and its potential use as an alternative aggregate in hot mix asphalt (HMA). The research is based on the practical application of HMA containing RFNS in an experimental area, specifically the parking lot used by buses transporting employees of Anglo American, located at the Codemin Industrial Unit in Niquelândia, Goiás, Central Brazil. Chemical analysis revealed that RFNS primarily consists of MgO, Fe2O3, and SiO2, which are elements with minimal environmental impact. The lack of significant calcium content minimizes concerns about expansion issues commonly associated with calcium-rich slags. The X-ray diffractogram indicates a predominantly crystalline structure with minerals like Laihunite and Magnetite, which enhances wear and abrasion resistance. HMA containing 40% RFNS was tested using the Marshall methodology, and a small experimental area was subsequently constructed. The HMA containing RFNS met regulatory specifications and technological controls, achieving an average resilient modulus value of 6323 MPa. Visual inspections conducted four years later confirmed that the pavement remained in excellent condition, validating RFNS as a durable and effective alternative aggregate for asphalt mixtures. The successful application of RFNS not only demonstrates its potential for local road paving near industrial areas but also underscores the importance of sustainable waste management solutions. This research highlights the value of academia–industry collaboration in advancing environmentally responsible practices and reinforces the contribution of RFNS to enhancing local infrastructure and promoting a more sustainable future. Full article
Show Figures

Figure 1

18 pages, 6279 KB  
Article
An Experimental Validation-Based Study of Airport Pavement Icing Mechanisms in Saline Environments and the Development of a Simplified Prediction Model
by Jianming Ling, Xinyuan Xing, Jie Zhang and Shifu Liu
Appl. Sci. 2024, 14(19), 8867; https://doi.org/10.3390/app14198867 - 2 Oct 2024
Viewed by 1029
Abstract
Runway icing presents a significant challenge to aviation safety, especially in saline environments, where comprehending the icing mechanisms and predicting the icing onset are crucial for efficient airport operations. This study developed a specialized experimental apparatus to examine the mechanisms of airport pavement [...] Read more.
Runway icing presents a significant challenge to aviation safety, especially in saline environments, where comprehending the icing mechanisms and predicting the icing onset are crucial for efficient airport operations. This study developed a specialized experimental apparatus to examine the mechanisms of airport pavement icing under controlled conditions. The apparatus, comprising an environmental chamber, a data acquisition system, and a scaled pavement structure, allowed for detailed simulations of various environmental factors. The experiments specifically examined the effects of the air temperature (−3 °C to −20 °C), wind speed (2 m/s to 6 m/s), and deicing salt concentration (0% to 80%) on the icing process. The results demonstrated that higher wind speeds and lower temperatures significantly accelerated the pavement surface cooling, leading to earlier icing onset. Under the most extreme conditions, the pavement reached critical icing temperatures within 15 min. In contrast, higher deicing salt concentrations delayed the icing onset by up to 67 min and 33 s at an 80% concentration, effectively lowering the pavement surface temperature. A comparison of the experimental data with the theoretical predictions showed initial consistency, although the discrepancies increased over time. This study culminated in the development of a simplified prediction model, which was validated against the experimental results, offering a practical tool for airport operators to manage runway safety during winter conditions. Full article
Show Figures

Figure 1

Back to TopTop