Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,898)

Search Parameters:
Keywords = cost–benefit analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 4640 KB  
Article
Electric Strategy: Evolutionary Game Analysis of Pricing Strategies for Battery-Swapping Electric Logistics Vehicles
by Guohao Li and Mengjie Wei
Sustainability 2025, 17(17), 7666; https://doi.org/10.3390/su17177666 (registering DOI) - 25 Aug 2025
Abstract
Driven by the urgent need to decarbonize the logistics sector—where conventional vehicles exhibit high energy consumption and emissions, posing significant environmental sustainability challenges—electrification represents a pivotal strategy for reducing emissions and achieving sustainable urban freight transport. Despite rising global electric vehicle sales, the [...] Read more.
Driven by the urgent need to decarbonize the logistics sector—where conventional vehicles exhibit high energy consumption and emissions, posing significant environmental sustainability challenges—electrification represents a pivotal strategy for reducing emissions and achieving sustainable urban freight transport. Despite rising global electric vehicle sales, the penetration rate of electric logistics vehicles (ELVs) remains comparatively low, impeding progress toward sustainable logistics objectives. Battery-swapping mode (BSM) has emerged as a potential solution to enhance operational efficiency and economic viability, thereby accelerating sustainable adoption. This model improves ELV operational efficiency through rapid battery swaps at centralized stations. This study constructs a tripartite evolutionary game model involving government, consumers, and BSM-ELV manufacturers to analyze market dynamics under diverse strategies. Key considerations include market scale, government environmental benefits, battery leasing/purchasing costs, lifecycle cost analysis (via discount rates), and resource efficiency (reserve battery ratio λ). MATLAB-2021b-based simulations predict participant strategy evolution paths. Findings reveal that market size and manufacturer expectations significantly influence governmental and manufacturing strategies. Crucially, incorporating discount rates demonstrates that battery leasing reduces consumer enterprises’ initial investment, enhancing economic sustainability and cash flow while offering superior total cost of ownership. Furthermore, gradual reduction of government subsidies effectively stimulates market self-regulation, incentivizes leasing adoption, and bolsters long-term economic/operational sustainability. Market feedback can guide policy adjustments toward fiscally sustainable support mechanisms. This study proposes the following management implications for advancing sustainable logistics: 1. Governments should phase out subsidies systematically to foster market resilience; 2. Manufacturers must invest in BSM R&D to improve efficiency and resource circularity; 3. Consumer enterprises can achieve economic benefits and emission reductions by adopting BSM-ELVs. Full article
Show Figures

Figure 1

46 pages, 8034 KB  
Review
Nanoparticle-Enhanced Phase Change Materials (NPCMs) in Solar Thermal Energy Systems: A Review on Synthesis, Performance, and Future Prospects
by Wei Lu, Jay Wang, Meng Wang, Jian Yan, Ding Mao and Eric Hu
Energies 2025, 18(17), 4516; https://doi.org/10.3390/en18174516 (registering DOI) - 25 Aug 2025
Abstract
The environmental challenges posed by global warming have significantly increased the global pursuit of renewable and clean energy sources. Among these, solar energy stands out due to its abundance, renewability, low environmental impact, and favorable long-term economic viability. However, its intermittent nature and [...] Read more.
The environmental challenges posed by global warming have significantly increased the global pursuit of renewable and clean energy sources. Among these, solar energy stands out due to its abundance, renewability, low environmental impact, and favorable long-term economic viability. However, its intermittent nature and dependence on weather conditions hinder consistent and efficient utilization. To address these limitations, nanoparticle-enhanced phase change materials (NPCMs) have emerged as a promising solution for enhancing thermal energy storage in solar thermal systems. NPCMs incorporate superior-performance nanoparticles within traditional phase change material matrices, resulting in improved thermal conductivity, energy storage density, and phase change efficiency. This review systematically examines the recent advances in NPCMs for solar energy applications, covering their classification, structural characteristics, advantages, and limitations. It also explores in-depth analytical approaches, including mechanism-oriented analysis, simulation-based modelling, and algorithm-driven optimization, that explain the behavior of NPCMs at micro and macro scales. Furthermore, the techno-economic implications of NPCM integration are evaluated, with particular attention to cost-benefit analysis, policy incentives, and market growth potential, which collectively support broader adoption. Overall, the findings highlight NPCMs as a frontier in materials innovation and enabling technology for achieving low-carbon, environmentally responsible energy solutions, contributing significantly to global sustainable development goals. Full article
19 pages, 3847 KB  
Article
Bayesian Network-Driven Risk Assessment and Reinforcement Strategy for Shield Tunnel Construction Adjacent to Wall–Pile–Anchor-Supported Foundation Pit
by Yuran Lu, Bin Zhu and Hongsheng Qiu
Buildings 2025, 15(17), 3027; https://doi.org/10.3390/buildings15173027 (registering DOI) - 25 Aug 2025
Abstract
With the increasing demand for urban rail transit capacity, shield tunneling has become the predominant method for constructing underground metro systems in densely populated cities. However, the spatial interaction between shield tunnels and adjacent retaining structures poses significant engineering challenges, potentially leading to [...] Read more.
With the increasing demand for urban rail transit capacity, shield tunneling has become the predominant method for constructing underground metro systems in densely populated cities. However, the spatial interaction between shield tunnels and adjacent retaining structures poses significant engineering challenges, potentially leading to excessive ground settlement, structural deformation, and even stability failure. This study systematically investigates the deformation behavior and associated risks of retaining systems during adjacent shield tunnel construction. An orthogonal multi-factor analysis was conducted to evaluate the effects of grouting pressure, grout stiffness, and overlying soil properties on maximum surface settlement. Results show that soil cohesion and grouting pressure are the most influential parameters, jointly accounting for over 72% of the variance in settlement response. Based on the numerical findings, a Bayesian network model was developed to assess construction risk, integrating expert judgment and field monitoring data to quantify the conditional probability of deformation-induced failure. The model identifies key risk sources such as geological variability, groundwater instability, shield steering correction, segmental lining quality, and site construction management. Furthermore, the effectiveness and cost-efficiency of various grouting reinforcement strategies were evaluated. The results show that top grouting increases the reinforcement efficiency to 34.7%, offering the best performance in terms of both settlement control and economic benefit. Sidewall grouting yields an efficiency of approximately 30.2%, while invert grouting shows limited effectiveness, with an efficiency of only 11.6%, making it the least favorable option in terms of both technical and economic considerations. This research provides both practical guidance and theoretical insight for risk-informed shield tunneling design and management in complex urban environments. Full article
Show Figures

Figure 1

38 pages, 2041 KB  
Article
The Application of Blockchain Technology in Fresh Food Supply Chains: A Game-Theoretical Analysis Under Carbon Cap-And-Trade Policy and Consumer Dual Preferences
by Zheng Liu, Tianchen Yang, Bin Hu and Lihua Shi
Systems 2025, 13(9), 737; https://doi.org/10.3390/systems13090737 (registering DOI) - 25 Aug 2025
Abstract
Against the backdrop of the growing popularity of blockchain technology, this study investigates blockchain adoption strategies for the fresh food supply chain (FFSC) under a carbon cap-and-trade (CAT) policy. Taking a two-echelon supply chain consisting of a supplier and a retailer as an [...] Read more.
Against the backdrop of the growing popularity of blockchain technology, this study investigates blockchain adoption strategies for the fresh food supply chain (FFSC) under a carbon cap-and-trade (CAT) policy. Taking a two-echelon supply chain consisting of a supplier and a retailer as an example, we designed four blockchain adoption modes based on the supplier’s strategy (adopt or not) and the retailer’s strategy (adopt or not). Combining influencing factors such as consumers’ low-carbon preference, consumers’ freshness preference, and carbon trading price (CTP), we established four game-theoretic models. Using backward induction, we derived the equilibrium strategies for the supplier and retailer under different modes and analyzed the impact of key factors on these equilibrium strategies. The analysis yielded four key findings: (1) BB mode (both adopt blockchain) is the optimal adoption strategy for both FFSC parties when carbon prices are high, and consumers exhibit strong dual preferences. It most effectively mitigates the negative price impact of rising carbon prices by synergistically enhancing emission reduction efforts and freshness preservation efforts, thereby increasing overall profits and achieving a Pareto improvement in the benefits for both parties. (2) Consumers’ low-carbon preference and freshness preference exhibit an interaction effect. These two preferences mutually reinforce each other’s incentive effect on FFSC efforts (emission reduction/freshness preservation). Blockchain’s information transparency makes these efforts more perceptible to consumers, forming a synergistic “emission reduction-freshness preservation” cycle that further drives sales and profit growth. (3) The adoption of blockchain by either the supplier or the retailer significantly lowers the cost threshold for the other party to adopt blockchain, thereby increasing their willingness to adopt. (4) CAT and consumer preferences jointly influence the adoption strategies of suppliers and retailers. Additionally, the adoption strategies of FFSC participants are also affected by the other party’s blockchain adoption status. Drawing on the above conclusions, this study provides actionable guidance for suppliers and retailers in selecting optimal blockchain adoption strategies. Full article
(This article belongs to the Section Supply Chain Management)
16 pages, 2459 KB  
Article
Technoeconomic Assessment of Biogas Production from Organic Waste via Anaerobic Digestion in Subtropical Central Queensland, Australia
by H. M. Mahmudul, M. G. Rasul, R. Narayanan, D. Akbar and M. M. Hasan
Energies 2025, 18(17), 4505; https://doi.org/10.3390/en18174505 (registering DOI) - 25 Aug 2025
Abstract
This study evaluates biogas production through the anaerobic digestion of food waste (FW), cow dung (CD), and green waste (GW), with the primary objective of determining the efficacy of co-digesting these organic wastes commonly generated by households and small farms in Central Queensland, [...] Read more.
This study evaluates biogas production through the anaerobic digestion of food waste (FW), cow dung (CD), and green waste (GW), with the primary objective of determining the efficacy of co-digesting these organic wastes commonly generated by households and small farms in Central Queensland, Australia. The investigation focuses on both experimental and technoeconomic aspects to support the development of accessible and sustainable energy solutions. A batch anaerobic digestion process was employed using a 1 L jacketed glass digester, simulating small-scale conditions, while technoeconomic feasibility was projected onto a 500 L digester operated without temperature control, reflecting realistic constraints for decentralized rural or residential systems. Three feedstock mixtures (100% FW, 50:50 FW:CD, and 50:25:25 FW:CD:GW) were tested to determine their impact on biogas yield and methane concentration. Experiments were conducted over 14 days, during which biogas production and methane content were monitored. The results showed that FW alone produced the highest biogas volume, but with a low methane concentration of 25%. Co-digestion with CD and GW enhanced methane quality, achieving a methane yield of 48% while stabilizing the digestion process. A technoeconomic analysis was conducted based on the experimental results to estimate the viability of a 500 L biodigester for small-scale use. The evaluation considered costs, benefits, and financial metrics, including Net Present Value (NPV), Internal Rate of Return (IRR), and Dynamic Payback Period (DPP). The biodigester demonstrated strong economic potential, with an NPV of AUD 2834, an IRR of 13.5%, and a payback period of 3.2 years. This study highlights the significance of optimizing feedstock composition and integrating economic assessments with experimental findings to support the adoption of biogas systems as a sustainable energy solution for small-scale, off-grid, or rural applications. Full article
(This article belongs to the Special Issue Biomass and Bio-Energy—2nd Edition)
Show Figures

Figure 1

10 pages, 769 KB  
Proceeding Paper
Smart Irrigation Based on Soil Moisture Sensors with Photovoltaic Energy for Efficient Agricultural Water Management: A Systematic Literature Review
by Abdul Rasyid Sidik, Akbar Tawakal, Gumilar Surya Sumirat and Panji Narputro
Eng. Proc. 2025, 107(1), 17; https://doi.org/10.3390/engproc2025107017 (registering DOI) - 25 Aug 2025
Abstract
A smart irrigation system based on soil moisture sensors supported by photovoltaic energy is an innovation to address water use efficiency in the agricultural sector, especially in remote areas. This technology utilizes photovoltaic panels as a renewable energy source to operate water pumps, [...] Read more.
A smart irrigation system based on soil moisture sensors supported by photovoltaic energy is an innovation to address water use efficiency in the agricultural sector, especially in remote areas. This technology utilizes photovoltaic panels as a renewable energy source to operate water pumps, while soil moisture sensors provide real-time data that is used to automatically manage irrigation according to plant needs. This technology not only increases the efficiency of water and energy use but also supports environmental conservation by reducing dependence on fossil fuels. This research was conducted using a Systematic Literature Review (SLR) approach guided by the PRISMA framework to analyze trends, benefits, and challenges in implementing this technology. The analysis results show that this system offers various advantages, including energy efficiency, reduced carbon emissions, and ease of management through the integration of Internet of Things (IoT) technology. Several challenges remain, such as high initial investment costs, limited network access, and obstacles. Technical matters related to installation and maintenance. Various solutions have been proposed, including providing subsidies for small farmers, implementing radiofrequency modules, and using modular designs to simplify implementation. This study contributes to the development of a conceptual framework that can be adapted to various geographic and socio-economic conditions. Potential further developments include the integration of artificial intelligence and additional sensors to increase efficiency and support the sustainability of the agricultural sector globally. Full article
Show Figures

Figure 1

18 pages, 3345 KB  
Article
Autonomous Public Transport: Evolution, Benefits, and Challenges in the Future of Urban Mobility
by Dalia Hafiz, Mariam AlKhafagy and Ismail Zohdy
World Electr. Veh. J. 2025, 16(9), 482; https://doi.org/10.3390/wevj16090482 - 25 Aug 2025
Abstract
Autonomous public transport (APT) is revolutionizing urban mobility by integrating advanced technologies, including electric autonomous buses and shared autonomous vehicles (SAVs). This paper examines the historical evolution of APT, from early automation efforts in the 1920s to the deployment of autonomous shuttles in [...] Read more.
Autonomous public transport (APT) is revolutionizing urban mobility by integrating advanced technologies, including electric autonomous buses and shared autonomous vehicles (SAVs). This paper examines the historical evolution of APT, from early automation efforts in the 1920s to the deployment of autonomous shuttles in contemporary cities. It highlights technological milestones, legislative developments, and shifts in public perception that have influenced the adoption of APT. The research identifies key benefits of APT, including enhanced road safety, reduced greenhouse gas emissions, and improved cost-efficiency in public transport operations. Additionally, the environmental potential of SAVs to reduce traffic congestion and emissions is explored, particularly when integrated with renewable energy sources and sustainable urban planning. However, the study also addresses significant challenges, such as handling emergencies without human intervention, rising cybersecurity threats, and employment displacement in the transportation sector. Social equity concerns are also discussed, especially regarding access and the risk of increasing urban inequality. This paper contributes to the broader discourse on sustainable mobility, transportation innovation, and the future of smart cities by providing a comprehensive analysis of both opportunities and obstacles. Effective policy frameworks and inclusive planning are essential for the successful implementation of APT systems worldwide. Full article
Show Figures

Graphical abstract

25 pages, 800 KB  
Article
Multi-Criteria Evaluation of Smart Escape and Emergency Lighting Alternatives for Offshore Platforms: Case Study of BorWin5
by Luis García Rodríguez, Laura Castro-Santos, Juan José Cartelle Barros and María Isabel Lamas Galdo
J. Mar. Sci. Eng. 2025, 13(9), 1614; https://doi.org/10.3390/jmse13091614 - 23 Aug 2025
Abstract
This study evaluates the feasibility and benefits of adopting the IEC 62034:2012 standard for Automatic Testing Systems (ATS) for emergency and escape lighting on the BorWin5 High Voltage Direct Current (HVDC) offshore converter platform. The system comprises approximately 1800 luminaires from multiple manufacturers [...] Read more.
This study evaluates the feasibility and benefits of adopting the IEC 62034:2012 standard for Automatic Testing Systems (ATS) for emergency and escape lighting on the BorWin5 High Voltage Direct Current (HVDC) offshore converter platform. The system comprises approximately 1800 luminaires from multiple manufacturers that are integrated into an open-architecture 220 VDC emergency network. Life-cycle cost analysis (LCCA) and multi-criteria decision-making (MCDM) approaches were employed to evaluate four configurations, ranging from manual testing to fully automated, centrally powered systems, based on technical, economic, operational, and environmental criteria. The chosen solution, which combines centralized power with automated testing and real-time monitoring, represents a significant advancement in offshore safety infrastructure. Implementing this solution on BorWin5 enhances reliability and maintainability while ensuring compliance with international standards, supporting a projected service life of over 30 years for an emergency and escape lighting system in an extreme marine environment. The findings offer a scalable model for future offshore platforms operating in similarly challenging conditions. Full article
45 pages, 6665 KB  
Review
AI-Driven Digital Twins in Industrialized Offsite Construction: A Systematic Review
by Mohammadreza Najafzadeh and Armin Yeganeh
Buildings 2025, 15(17), 2997; https://doi.org/10.3390/buildings15172997 - 23 Aug 2025
Viewed by 178
Abstract
The increasing adoption of industrialized offsite construction (IOC) offers substantial benefits in efficiency, quality, and sustainability, yet presents persistent challenges related to data fragmentation, real-time monitoring, and coordination. This systematic review investigates the transformative role of artificial intelligence (AI)-enhanced digital twins (DTs) in [...] Read more.
The increasing adoption of industrialized offsite construction (IOC) offers substantial benefits in efficiency, quality, and sustainability, yet presents persistent challenges related to data fragmentation, real-time monitoring, and coordination. This systematic review investigates the transformative role of artificial intelligence (AI)-enhanced digital twins (DTs) in addressing these challenges within IOC. Employing a hybrid re-view methodology—combining scientometric mapping and qualitative content analysis—52 relevant studies were analyzed to identify technological trends, implementation barriers, and emerging research themes. The findings reveal that AI-driven DTs enable dynamic scheduling, predictive maintenance, real-time quality control, and sustainable lifecycle management across all IOC phases. Seven thematic application clusters are identified, including logistics optimization, safety management, and data interoperability, supported by a layered architectural framework and key enabling technologies. This study contributes to the literature by providing an early synthesis that integrates technical, organizational, and strategic dimensions of AI-driven DT implementation in IOC context. It distinguishes DT applications in IOC from those in onsite construction and expands AI’s role beyond conventional data analytics toward agentive, autonomous decision-making. The proposed future research agenda offers strategic directions such as the development of DT maturity models, lifecycle-spanning integration strategies, scalable AI agent systems, and cost-effective DT solutions for small and medium enterprises. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

27 pages, 905 KB  
Systematic Review
The Impact of Antibiotic Prophylaxis on Antibiotic Resistance, Clinical Outcomes, and Costs in Adult Hemato-Oncological and Surgical Patients: A Systematic Review and Meta-Analysis
by Marissa Rink, Beryl Primrose Gladstone, Lea Ann Nikolai, Michael Bitzer, Evelina Tacconelli and Siri Göpel
Antibiotics 2025, 14(9), 853; https://doi.org/10.3390/antibiotics14090853 - 22 Aug 2025
Viewed by 143
Abstract
Background/Objectives: While antibiotic prophylaxis is crucial for preventing infections, its impact on the development of antibiotic-resistant infections and clinical outcomes remains underexplored. We aimed to systematically assess the impact of medical and surgical antibiotic prophylaxis (SAP) on the development of antibiotic-resistant infections, clinical [...] Read more.
Background/Objectives: While antibiotic prophylaxis is crucial for preventing infections, its impact on the development of antibiotic-resistant infections and clinical outcomes remains underexplored. We aimed to systematically assess the impact of medical and surgical antibiotic prophylaxis (SAP) on the development of antibiotic-resistant infections, clinical outcomes, and costs. Methods: A systematic review and meta-analysis of the effect of antibiotic prophylaxis on antibiotic-resistant infections, mortality, length of hospital stay, and/or costs was conducted in hemato-oncological or surgical patient populations. Pooled estimates of the relative risk (RR) or weighted mean difference (WMD) were derived using random-effect meta-analysis. Results: Of 10,409 screened studies, 109 (30%) comprising 131,519 patients were included. In 55 hemato-oncological studies, prophylaxis significantly reduced Gram-negative infections (RR: 0.51; 95% CI: 0.45 to 0.59) without an effect on mortality (RR = 1.01; 95% CI: 0.89 to 1.15), while the risk of developing an infection resistant to prophylactic antibiotics during hospitalization was doubled (RR: 2.05; 95% CI: 1.88 to 2.23). The length of hospitalization was reduced by 1.85 days. Among 54 surgical studies, SAP lowered surgical-site infections (RR: 0.58; 95% CI: 0.49 to 0.69). Extending prophylaxis beyond the recommended duration did not improve infection rates (RR: 1.10; 95% CI: 0.98 to 1.24). No association was demonstrated between prophylaxis adjusted by colonization status and the development of resistant infections. Conclusion: Though proven beneficial, our results highlight the critical need for targeted antibiotic stewardship programs (ASPs) in both settings. A meticulous risk assessment balancing the benefits of preventing life-threatening infections against the risk of driving antimicrobial resistance, and a tailored ASP, is urgently needed for hemato-oncological patients. Full article
21 pages, 2643 KB  
Article
Economic and Environmental Analysis of Using Recycled Ceramic Demolition Materials in Construction Projects
by Marcin Gajzler, Piotr Nowotarski and Maria Ratajczak
Sustainability 2025, 17(16), 7560; https://doi.org/10.3390/su17167560 - 21 Aug 2025
Viewed by 242
Abstract
This paper presents a comprehensive economic and environmental analysis of the utilization of recycled ceramic demolition materials in the construction sector, considering three distinct applications: erecting vertical partitions, constructing road bases, and producing decorative finishes. The findings demonstrate significant economic advantages when using [...] Read more.
This paper presents a comprehensive economic and environmental analysis of the utilization of recycled ceramic demolition materials in the construction sector, considering three distinct applications: erecting vertical partitions, constructing road bases, and producing decorative finishes. The findings demonstrate significant economic advantages when using recycled ceramic materials in structural applications, specifically vertical partitions and road base layers, with cost reductions of approximately 14.1% and 23.9%, respectively, compared to new materials. Conversely, the economic viability of using recycled materials for decorative finishes (“old brick”) proved limited due to high labor intensity and significant waste generation during processing, resulting in higher costs than using new materials. From an environmental perspective, the recycling of construction ceramics provides substantial benefits, notably in reducing carbon footprints. The greatest environmental benefit observed was a reduction in carbon footprint by about 90% in vertical partition applications, and about 70% for decorative finishes. Despite these benefits, practical implementation faces substantial technological and regulatory barriers, including labor-intensive recovery processes and the absence of unified quality standards. Overcoming these challenges requires further development of advanced sorting and processing technologies, clear regulations, unified quality standards, and educational efforts targeted at the construction industry and investors. Full article
Show Figures

Figure 1

32 pages, 1588 KB  
Review
Comprehensive Review of Hydrogen and Tyre Pyrolysis Oil as Sustainable Fuels for HCCI Engines
by Dilip S. Borkar, Sushant Satputaley, Santosh Alone and Magdalena Dudek
Energies 2025, 18(16), 4448; https://doi.org/10.3390/en18164448 - 21 Aug 2025
Viewed by 251
Abstract
This review article provides an overview of the use of hydrogen and tyre pyrolysis oil as fuels for homogeneous charge compression ignition (HCCI) engines. It discusses their properties, the ways they are produced and their sustainability, which is of particular importance in the [...] Read more.
This review article provides an overview of the use of hydrogen and tyre pyrolysis oil as fuels for homogeneous charge compression ignition (HCCI) engines. It discusses their properties, the ways they are produced and their sustainability, which is of particular importance in the present moment. Both fuels have certain advantages but also throw up many challenges, which complicate their application in HCCI engines. The paper scrutinises engine performance with hydrogen and tyre pyrolysis oil, respectively, and compares the fuels’ emissions, a crucial focus from an environmental perspective. It also surveys related technologies that have recently emerged, their effects and environmental impacts, and the rules and regulations that are starting to become established in these areas. Furthermore, it provides a comparative discussion of various engine performance data in terms of combustion behaviour, emission levels, fuel economy and potential costs or savings in real terms. The analysis reveals significant research gaps, and recommendations are provided as to areas for future study. The paper argues that hydrogen and tyre pyrolysis oil might sometimes be used together or in complementary ways to benefit HCCI engine performance. The importance of life-cycle assessment is noted, acknowledging also the requirements of the circular economy. The major findings are summarised with some comments on future perspectives for the use of sustainable fuels in HCCI engines. This review article provides a helpful reference for researchers working in this area and for policymakers concerned with establishing relevant legal frameworks, as well as for companies in the sustainable transport sector. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production and Hydrogen-Based Power Systems)
Show Figures

Figure 1

28 pages, 791 KB  
Article
Co-Application of Sheep Manure and Azotobacter Biofertilizer Enhances Growth, Yield, Essential Oil Profile, and Antioxidant Activity in Summer Savory
by Ugur Benli, Gulsum Yaldiz and Mahmut Camlica
Biology 2025, 14(8), 1096; https://doi.org/10.3390/biology14081096 - 21 Aug 2025
Viewed by 235
Abstract
Overuse of chemical fertilizers can threaten the agro-ecological balance, including an excessive accumulation of certain elements, such as nitrogen and phosphorus. On the other hand, organic fertilizers and biofertilizers, which are eco-friendly and cost-effective, increase biological nitrogen fixation and enhance the availability of [...] Read more.
Overuse of chemical fertilizers can threaten the agro-ecological balance, including an excessive accumulation of certain elements, such as nitrogen and phosphorus. On the other hand, organic fertilizers and biofertilizers, which are eco-friendly and cost-effective, increase biological nitrogen fixation and enhance the availability of nutrients to plants. The aim of this research was to study the possibility of using a full (22.50 t/ha) and 50% (11.25 t/ha) treatment of sheep manure with azotobacter (100 mL/20 L) instead of inorganic fertilizers for increasing savory (Satureja hortensis L.) growth production and yield value as well as improving chemical and biological properties. The results showed that the treatment with 50% sheep manure recorded the highest total dry herb (3.18 t/ha) yield. The inorganic fertilizer resulted in the highest essential oil content (1.43% v/w) and γ-terpinene (10.38% v/v), cymol (5.90% v/v), and α-bisabolene (5.28% v/v) values. The maximum carvacrol value (42.54% v/v) was recorded in the savory herb after applying no fertilization to the plants, while the highest concentration of thymol (16.09% v/v) was obtained by applying the full sheep manure treatment. The full sheep manure + azotobacter treatment had the highest mean α-terpinene value (7.22% v/v), and the 50% sheep manure + azotobacter treatment had the highest mean α-phellandrene value (6.44% v/v). The highest DPPH activity (60.86%) and FRAP value (69.64 mg TE/g DW) were observed with the azotobacter + full sheep manure treatment, while the highest total phenolic content (96.87 mg GAE/g DW) and total flavonoid content (45.97 mg QE/g DW) in the savory herb were obtained from the combination treatment of 50% sheep manure doses + azotobacter. Principal coordinate analysis (PCA) revealed distinct clustering of treatments, with PC1 and PC2 explaining >60% of the variance, highlighting the dominant role of sheep manure doses in morphological/yield properties. Heatmap analysis grouped the treatments (right) and examined properties (bottom) as two main groups. The full sheep manure + biofertilizer and inorganic fertilizer treatments were found in the first group, depending on the treatments. Moreover, the heatmap analysis revealed that the full and 50% sheep manure (SM) treatments played critical roles in separating the examined properties, and the DPPH and carvacrol properties were grouped together compared to other properties. Thus, the results suggest that treatment with azotobacter could be employed in combination with appropriate rates of sheep manure to obtain the maximum benefits regarding herb yield, biological activity, and essential oil components. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

28 pages, 4385 KB  
Review
Sustainable Recycling of Lithium-Ion Battery Cathodes: Life Cycle Assessment, Technologies, and Economic Insights
by Dongjie Pang, Haoyu Wang, Yimin Zeng, Xue Han and Ying Zheng
Nanomaterials 2025, 15(16), 1283; https://doi.org/10.3390/nano15161283 - 20 Aug 2025
Viewed by 496
Abstract
Rapid growth of electric vehicles has increased demand for lithium-ion batteries (LIBs), raising concerns regarding their end-of-life management. This study comprehensively evaluates the closed-loop recycling of cathode materials from spent LIBs by integrating life cycle assessment (LCA), technoeconomic analysis, and technological comparison. Typical [...] Read more.
Rapid growth of electric vehicles has increased demand for lithium-ion batteries (LIBs), raising concerns regarding their end-of-life management. This study comprehensively evaluates the closed-loop recycling of cathode materials from spent LIBs by integrating life cycle assessment (LCA), technoeconomic analysis, and technological comparison. Typical approaches—including pyrometallurgy, hydrometallurgy, and other processes such as organic acid leaching and in situ reduction roasting—are systematically reviewed. While pyrometallurgy offers scalability, it is hindered by high energy consumption and excessive greenhouse gas emissions. Hydrometallurgy achieves higher metal recovery rates with better environmental performance but requires complex chemical and wastewater management. Emerging methods and regeneration techniques such as co-precipitation and sol–gel synthesis demonstrate potential for high-purity material recovery and circular manufacturing. LCA results confirm that recycling significantly reduces GHG emissions, especially for high-nickel cathode chemistry. However, the environmental benefits are affected by upstream factors such as collection, disassembly, and logistics. Technoeconomic simulations show that profitability is strongly influenced by battery composition, regional cost structures, and collection rates. The study highlights the necessity of harmonized LCA boundaries, process optimization, and supportive policy frameworks to scale environmentally and economically sustainable LIB recycling, ensuring long-term supply security for critical battery materials. Full article
Show Figures

Graphical abstract

23 pages, 853 KB  
Study Protocol
Effects of a Multidimensional Exercise and Mindfulness Approach Targeting Physical, Psychological, and Functional Outcomes: Protocol for the BACKFIT Randomized Controlled Trial with an Active Control Group
by Belén Donoso, Gavriella Tsiarleston, Yolanda Castellote-Caballero, Alba Villegas-Fuentes, Yolanda María Gil-Gutiérrez, José Enrique Fernández-Álvarez, Santiago Montes, Manuel Delgado-Fernández, Antonio Manuel Mesa-Ruíz, Pablo Molina-García, Rocío Pozuelo-Calvo, Miguel David Membrilla-Mesa and Víctor Segura-Jiménez
Healthcare 2025, 13(16), 2065; https://doi.org/10.3390/healthcare13162065 - 20 Aug 2025
Viewed by 154
Abstract
Introduction: Chronic primary low back pain (CPLBP) is a prevalent condition in primary care and a leading cause of disability and absenteeism worldwide. Multidimensional approaches may be necessary to achieve physical and mental health benefits in individuals with CPLBP. Objective: The BACKFIT randomized [...] Read more.
Introduction: Chronic primary low back pain (CPLBP) is a prevalent condition in primary care and a leading cause of disability and absenteeism worldwide. Multidimensional approaches may be necessary to achieve physical and mental health benefits in individuals with CPLBP. Objective: The BACKFIT randomized controlled trial aims to evaluate the effectiveness of a multidimensional intervention—combining supervised exercise and mindfulness—on pain, physical fitness, mental health, and functional outcomes in individuals with CPLBP. Hypothesis: Both the supervised exercise program focused on motor control and trunk muscle strength (IG1) and the multidimensional intervention combining supervised exercise with mindfulness training (IG2) are expected to produce significant health improvements in individuals with CPLBP. It is further hypothesized that IG2 will yield greater improvements compared to IG1, both immediately post-intervention and at the two-month follow-up. Design: Randomized controlled trial. Setting: Virgen de las Nieves University Hospital, Granada (Spain). Participants: 105 individuals. Inclusion criteria: Previously diagnosed with CPLBP, aged ≥18 and ≤65 years, able to read and understand the informed consent, and able to walk, move, and communicate without external assistance. Exclusion criteria: serious lumbar structural disorders, acute or terminal illness, physical injury, mental illness, and medical prescriptions that prevent participation in the study. Intervention: Individuals will be randomly assigned to a supervised physical exercise group (2 days per week, 45 min per session), a multidimensional intervention group (same as supervised physical exercise group, and mindfulness 1 day per week, 2.5 h per session) or an active control group (usual care, 2 days per week, 45 min per session). The intervention will last 8 weeks. Main Outcome Measures: Primary outcome: pain threshold, perceived acute pain, and disability due to pain. Secondary measures: body composition, muscular fitness, gait parameters, device-measured physical activity and sedentary behavior, self-reported sedentary behavior, quality of life, pain catastrophizing, mental health, sleep duration and quality, and central sensitization. The groups will undergo pre-intervention, post-intervention, and a 2-month follow-up after a detraining period. Statistical Analysis: Both per-protocol and intention-to-treat approaches (≥70% attendance) will be used. Program effects will be assessed via one-way ANCOVA for between-group changes in primary and secondary outcomes. Conclusions: Given the complex nature of CPLBP, multidimensional approaches are recommended. If effective, this intervention may provide low-cost alternatives for health professionals. Full article
Show Figures

Figure 1

Back to TopTop