Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = crack depth estimation model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7726 KB  
Article
Digital Shearography for NDE of Crack Classification in Composite Materials
by Zhongfang Gao, Siyuan Fang, Riad Dandan and Lianxiang Yang
Appl. Sci. 2025, 15(19), 10317; https://doi.org/10.3390/app151910317 - 23 Sep 2025
Viewed by 152
Abstract
This paper presents a relevant and timely study on the application of thermal loaded digital shearography for crack classification in glass fiber reinforced plastic (GFRP) structures, particularly air-cooled condenser (ACC) fan blades. A thermal loaded digital shearography system was applied to measure strain [...] Read more.
This paper presents a relevant and timely study on the application of thermal loaded digital shearography for crack classification in glass fiber reinforced plastic (GFRP) structures, particularly air-cooled condenser (ACC) fan blades. A thermal loaded digital shearography system was applied to measure strain concentration caused by the cracks at different fatigue cycles. A thermomechanical model was introduced to estimate the heating temperature and the time to ensure heat can reach to the desired depth and that both shallow and deep cracks can be detected. In order to correlate the information of strain concentration in the shearograms to the different stages of cracks, fatigue testing with dynamic three-point bending was conducted. The fatigue tests demonstrated how the strain concentration evolved in the shearograms, while the crack developed from the early (no noticeable strain concentration), to the middle (strain concentration is forming), to the late stage (significant strain concentration is found). The relationships between the degrees of strain concentration in the shearograms and the different stages of cracks can be obtained from testing of the artificial cracks. Using the rules and experimental results obtained from artificial samples, digital shearography was applied to classify the crack stages in parts of ACC fan blades from industry. The combination of artificial crack testing, fatigue loading experiments, and validation with CT scans demonstrates a comprehensive approach and provides potential guidance for industry to determine criticality and maintenance criteria. Full article
Show Figures

Figure 1

33 pages, 9679 KB  
Article
Intelligent Defect Detection of Ancient City Walls Based on Computer Vision
by Gengpei Zhang, Xiaohan Dou and Leqi Li
Sensors 2025, 25(16), 5042; https://doi.org/10.3390/s25165042 - 14 Aug 2025
Viewed by 724
Abstract
As an important tangible carrier of historical and cultural heritage, ancient city walls embody the historical memory of urban development and serve as evidence of engineering evolution. However, due to prolonged exposure to complex natural environments and human activities, they are highly susceptible [...] Read more.
As an important tangible carrier of historical and cultural heritage, ancient city walls embody the historical memory of urban development and serve as evidence of engineering evolution. However, due to prolonged exposure to complex natural environments and human activities, they are highly susceptible to various types of defects, such as cracks, missing bricks, salt crystallization, and vegetation erosion. To enhance the capability of cultural heritage conservation, this paper focuses on the ancient city wall of Jingzhou and proposes a multi-stage defect-detection framework based on computer vision technology. The proposed system establishes a processing pipeline that includes image processing, 2D defect detection, depth estimation, and 3D reconstruction. On the processing end, the Restormer and SG-LLIE models are introduced for image deblurring and illumination enhancement, respectively, improving the quality of wall images. The system incorporates the LFS-GAN model to augment defect samples. On the detection end, YOLOv12 is used as the 2D recognition network to detect common defects based on the generated samples. A depth estimation module is employed to assist in the verification of ancient wall defects. Finally, a Gaussian Splatting point-cloud reconstruction method is used to achieve a 3D visual representation of the defects. Experimental results show that the proposed system effectively detects multiple types of defects in ancient city walls, providing both a theoretical foundation and technical support for the intelligent monitoring of cultural heritage. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

36 pages, 13404 KB  
Article
A Multi-Task Deep Learning Framework for Road Quality Analysis with Scene Mapping via Sim-to-Real Adaptation
by Rahul Soans, Ryuichi Masuda and Yohei Fukumizu
Appl. Sci. 2025, 15(16), 8849; https://doi.org/10.3390/app15168849 - 11 Aug 2025
Viewed by 559
Abstract
Robust perception of road surface conditions is a critical challenge for the safe deployment of autonomous vehicles and the efficient management of transportation infrastructure. This paper introduces a synthetic data-driven deep learning framework designed to address this challenge. We present a large-scale, procedurally [...] Read more.
Robust perception of road surface conditions is a critical challenge for the safe deployment of autonomous vehicles and the efficient management of transportation infrastructure. This paper introduces a synthetic data-driven deep learning framework designed to address this challenge. We present a large-scale, procedurally generated 3D synthetic dataset created in Blender, featuring a diverse range of road defects—including cracks, potholes, and puddles—alongside crucial road features like manhole covers and patches. Crucially, our dataset provides dense, pixel-perfect annotations for segmentation masks, depth maps, and camera parameters (intrinsic and extrinsic). Our proposed model leverages these rich annotations in a multi-task learning framework that jointly performs road defect segmentation and depth estimation, enabling a comprehensive geometric and semantic understanding of the road environment. A core contribution is a two-stage domain adaptation strategy to bridge the synthetic-to-real gap. First, we employ a modified CycleGAN with a segmentation-aware loss to translate synthetic images into a realistic domain while preserving defect fidelity. Second, during model training, we utilize a dual-discriminator adversarial approach, applying alignment at both the feature and output levels to minimize domain shift. Benchmarking experiments validate our approach, demonstrating high accuracy and computational efficiency. Our model excels in detecting subtle or occluded defects, attributed to an occlusion-aware loss formulation. The proposed system shows significant promise for real-time deployment in autonomous navigation, automated infrastructure assessment and Advanced Driver-Assistance Systems (ADAS). Full article
Show Figures

Figure 1

21 pages, 12673 KB  
Article
Research on the Effect of Geometric Parameters on the Stress Concentration Factor of Multi-Planar KK-Joints and Carbon Fiber-Reinforced Polymer Wrapping Rehabilitation with Numerical Simulation
by Yuhao Shi, Peng Deng, Shiqi Zhao, Yan Liu, Zhongyi Zhu and Yunkai Chen
Buildings 2025, 15(2), 157; https://doi.org/10.3390/buildings15020157 - 8 Jan 2025
Cited by 1 | Viewed by 836
Abstract
The focus of this paper is on estimating the stress concentration factor of circular hollow section KK-joints with different geometric parameters and subsequently assessing the effectiveness of carbon fiber-reinforced polymer (CFRP) wrapping for repairing joints with cracks. Different geometric parameters, such as θ [...] Read more.
The focus of this paper is on estimating the stress concentration factor of circular hollow section KK-joints with different geometric parameters and subsequently assessing the effectiveness of carbon fiber-reinforced polymer (CFRP) wrapping for repairing joints with cracks. Different geometric parameters, such as θ (brace inclination angle), γ (the ratio of the outer diameter to the wall thickness of the chord), and τ (the thickness ratio of the brace to the chord), were studied to investigate changes in stress concentration using numerical simulation. The results indicated that the stress concentration factor was most sensitive to changes in θ, followed by γ. Subsequently, the effect of crack length and depth was analyzed to simulate cracks in joints subjected to reciprocating load. The results showed that changing D from T/16 to T/2 (where T is the thickness of the chord) can cause more stress concentration, with an average of 8.37%. Next, damaged joints were wrapped in carbon fiber-reinforced polymer as a repair. Analysis of the effects of different layers and directions of polymer wrap revealed that even six layers of wrapping effectively reduced the stress concentration compared to the initial model. Finally, based on the results of parametric analysis and nonlinear fitting, a calculation formula for the stress concentration factor suitable for KK-joints under axial loads is proposed. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 19954 KB  
Article
Guidelines for Nonlinear Finite Element Analysis of Reinforced Concrete Columns with Various Types of Degradation Subjected to Seismic Loading
by Seyed Sasan Khedmatgozar Dolati, Adolfo Matamoros and Wassim Ghannoum
Infrastructures 2024, 9(12), 227; https://doi.org/10.3390/infrastructures9120227 - 10 Dec 2024
Cited by 1 | Viewed by 2723
Abstract
Concrete columns are considered critical elements with respect to the stability of buildings during earthquakes. To improve the accuracy of column damage and collapse risk estimates using numerical simulations, it is important to develop a methodology to quantify the effect of displacement history [...] Read more.
Concrete columns are considered critical elements with respect to the stability of buildings during earthquakes. To improve the accuracy of column damage and collapse risk estimates using numerical simulations, it is important to develop a methodology to quantify the effect of displacement history on column force–deformation modeling parameters. Addressing this knowledge gap systematically and comprehensively through experimentation is difficult due to the prohibitive cost. The primary objective of this study was to develop guidelines to simulate the lateral cyclic behavior and axial collapse of concrete columns with different modes of failure using continuum finite element (FE) models, such that wider parametric studies can be conducted numerically to improve the accuracy of assessment methodologies for critical columns. This study expands on existing FEM research by addressing the complex behavior of columns that experience multiple failure modes, including axial collapse following flexure–shear, shear, and flexure degradation, a topic which has been underexplored in previous works. Nonlinear FE models were constructed and calibrated to experimental tests for 21 columns that sustained flexure, flexure–shear, and shear failures, followed by axial failure, when subjected to cyclic and monotonic lateral displacement protocols. The selected columns represented a range of axial loads, shear stresses, transverse reinforcement ratios, longitudinal reinforcement ratios, and shear span-to-depth ratios. Recommendations on optimal material model parameters obtained from a parametric study are presented. Metrics used for optimization include crack widths, damage in concrete and reinforcement, drift at initiation of axial and lateral strength degradation, and peak lateral strength. The capacities of shear–critical columns calculated with the optimized numerical models are compared with experimental results and standard equations from ASCE 41-17 and ACI 318-19. The optimized finite element models were found to reliably predict peak strength and deformation at the onset of both lateral and axial strength failure, independent of the mode of lateral strength degradation. Also, current standard shear capacity provisions were found to be conservative in most cases, while the FE models estimated shear strength with greater accuracy. Full article
Show Figures

Figure 1

31 pages, 10630 KB  
Article
Fracture Toughness of Ordinary Plain Concrete Under Three-Point Bending Based on Double-K and Boundary Effect Fracture Models
by Huating Chen, Yifan Zhuo, Dewang Li and Yan Huang
Materials 2024, 17(21), 5387; https://doi.org/10.3390/ma17215387 - 4 Nov 2024
Cited by 2 | Viewed by 1567
Abstract
Fracture tests are a necessary means to obtain the fracture properties of concrete, which are crucial material parameters for the fracture analysis of concrete structures. This study aims to fill the gap of insufficient test results on the fracture toughness of widely used [...] Read more.
Fracture tests are a necessary means to obtain the fracture properties of concrete, which are crucial material parameters for the fracture analysis of concrete structures. This study aims to fill the gap of insufficient test results on the fracture toughness of widely used ordinary C40~C60 concrete. A three-point bending fracture test was conducted on 28 plain concrete and 6 reinforced concrete single-edge notched beam specimens with various depths of prefabricated notches. The results are reported, including the failure pattern, crack initiation load, peak load, and complete load versus crack mouth opening displacement curves. The cracking load showed significant variation due to differences in notch prefabrication and aggregate distribution, while the peak load decreased nonlinearly with an increase in the notch-to-height ratio. The reinforced concrete beams showed a significantly higher peak load than the plain concrete beams, attributed to the restraint of steel reinforcement, but the measured cracking load was comparable. A compliance versus notch-to-height ratio curve was derived for future applications, such as estimating crack length in crack growth rate tests. Finally, fracture toughness was determined based on the double-K fracture model and the boundary effect model. The average fracture toughness value for C50 concrete from this study was 2.0 MPa·m, slightly smaller than that of lower-strength concrete, indicating the strength and ductility dependency of concrete fracture toughness. The fracture toughness calculated from the two models is consistent, and both methods employ a closed-form solution and are practical to use. The derived fracture toughness was insensitive to the discrete parameters in the boundary effect model. The insights gained from this study significantly contribute to our understanding of the fracture toughness properties of ordinary structural concrete, highlighting its potential to shape future studies and applications in the field. Full article
(This article belongs to the Special Issue Mechanical Research of Reinforced Concrete Materials (2nd Edition))
Show Figures

Graphical abstract

20 pages, 23822 KB  
Article
Fatigue Life Assessment of Corroded AlSi10MgMn Specimens
by Markus Schönowitz, Stefan Fladischer, Peter Oberreiter, Bernd Maier, Florian Grün and Kathrin Bauer-Troßmann
Metals 2024, 14(10), 1135; https://doi.org/10.3390/met14101135 - 5 Oct 2024
Viewed by 1188
Abstract
This study investigates the influence of pre-corrosion damage on the fatigue behavior of AlSi10MgMn high-pressure die-cast specimens, using the statistical distribution of corrosion depths. The analysis is conducted on two different surface conditions: an unmachined rough surface (Ra=5.05 [...] Read more.
This study investigates the influence of pre-corrosion damage on the fatigue behavior of AlSi10MgMn high-pressure die-cast specimens, using the statistical distribution of corrosion depths. The analysis is conducted on two different surface conditions: an unmachined rough surface (Ra=5.05μm) and a machined, polished surface (Ra=0.25μm). For the unmachined specimens, the corrosive damage manifests as homogeneously spread localized corrosion, whereas the polished specimens exhibit less uniform but deeper corrosion. The average corrosion depth of the polished specimens is found to be slightly higher (313 μm compared to 267 μm) with a broader depth distribution. Specimens are tested under a constant bending load amplitude in laboratory conditions at a stress ratio of R=0 until fracture. A fracture mechanics-based methodology is developed to assess the remaining fatigue life of corroded specimens, utilizing short and long crack fracture mechanical parameters derived from SENB specimens. This model incorporates a thickness reduction of the critical specimen cross-section based on the corrosion depth distribution and combines it with a small initial crack of the intrinsic defect size (aeff=14μm). Regardless of the surface condition, using the most frequent corrosion depth for thickness reduction provides a good estimate of the long-life fatigue strength, while using the 90th percentile depth allows for a conservative assessment. Full article
(This article belongs to the Special Issue Fatigue Assessment of Metals)
Show Figures

Figure 1

25 pages, 9366 KB  
Article
Impact of Wellbore Cross-Sectional Elongation on the Hydraulic Fracturing Breakdown Pressure and Fracture Initiation Direction
by Somaie Jolfaei and Ali Lakirouhani
Processes 2024, 12(5), 848; https://doi.org/10.3390/pr12050848 - 23 Apr 2024
Cited by 2 | Viewed by 1206
Abstract
Investigation of breakdown pressure in wellbores in complex conditions is of great importance, both in fracture design and in wellbore log interpretation for in situ stress estimation. In this research, using a two-dimensional numerical model, the breakdown pressure is determined in ellipsoidal and [...] Read more.
Investigation of breakdown pressure in wellbores in complex conditions is of great importance, both in fracture design and in wellbore log interpretation for in situ stress estimation. In this research, using a two-dimensional numerical model, the breakdown pressure is determined in ellipsoidal and breakout wellbores. To find the breakdown pressure, the mixed criterion is used, in which the toughness and the tensile strength criteria must be satisfied concurrently. In breakout boreholes, the breakdown pressure is lower than the circular wellbores; indeed, the ratio of the breakdown pressure of the breakout wellbore to the breakdown pressure in the circular wellbore is between 1 and 0.04, depending on the deviatoric stress and the width and depth of the breakout zone. In breakout wellbores, the fracture initiation position depends on the deviatoric stress. In small deviatoric stresses, the fracture initiation position is aligned with the minimum in situ stress, unlike circular boreholes; and in large deviatoric stresses, the fracture initiates in the direction of the major principal stress. In large wellbores, the breakdown pressure is controlled by the tensile strength of the rock; and in small wellbores, the breakdown pressure is under the control of the energy spent to create new crack surfaces. Full article
Show Figures

Figure 1

15 pages, 4301 KB  
Article
Impact of Boundary Parameters Accuracy on Modeling of Directed Energy Deposition Thermal Field
by Calogero Gallo, Laurent Duchêne, Thinh Quy Duc Pham, Ruben Jardin, Víctor Tuninetti and Anne-Marie Habraken
Metals 2024, 14(2), 173; https://doi.org/10.3390/met14020173 - 30 Jan 2024
Cited by 2 | Viewed by 1623
Abstract
Within the large Additive Manufacturing (AM) process family, Directed Energy Deposition (DED) can be used to create low-cost prototypes and coatings, or to repair cracks. In the case of M4 HSS (High Speed Steel), a reliable computed temperature field during DED process allows [...] Read more.
Within the large Additive Manufacturing (AM) process family, Directed Energy Deposition (DED) can be used to create low-cost prototypes and coatings, or to repair cracks. In the case of M4 HSS (High Speed Steel), a reliable computed temperature field during DED process allows the optimization of the substrate preheating temperature value and other process parameters. Such optimization is required to avoid failure during the process, as well as high residual stresses. If 3D DED simulations provide accurate thermal fields, they also induce huge computation time, which motivates simplifications. This article uses a 2D Finite Element (FE) model that decreases the computation cost through dividing the CPU time by around 100 in our studied case, but it needs some calibrations. As described, the identification of a correct data set solely based on local temperature measurements can lead to various sets of parameters with variations of up to 100%. In this study, the melt pool depth was used as an additional experimental measurement to identify the input data set, and a sensitivity analysis was conducted to estimate the impact of each identified parameter on the cooling rate and the melt pool dimension. Full article
(This article belongs to the Special Issue Computational Plasticity)
Show Figures

Figure 1

12 pages, 4276 KB  
Article
The Sealing Performance of Cement Sheaths under Thermal Cycles for Low-Enthalpy Geothermal Wells
by Anisa Noor Corina and Al Moghadam
Energies 2024, 17(1), 239; https://doi.org/10.3390/en17010239 - 2 Jan 2024
Cited by 6 | Viewed by 1763
Abstract
The repetitive process of shut-in and production in geothermal wells promotes thermal stress on the wellbore components, including annular cement. A cement sheath at a relatively shallow depth undergoes the most significant stress change due to the high differential temperature between the geothermal [...] Read more.
The repetitive process of shut-in and production in geothermal wells promotes thermal stress on the wellbore components, including annular cement. A cement sheath at a relatively shallow depth undergoes the most significant stress change due to the high differential temperature between the geothermal gradient and the production fluid’s temperature. Understanding the impact of cyclical thermal stresses on cement is critical for assessing the barrier integrity at a shallow depth that serves as aquifer protection. A novel large-scale setup simulating a 1.5 m-long casing-cement-casing well section was built to study the changes in cement’s sealing performance of low-enthalpy geothermal wells during production. Using this setup, a cement sheath can be cured similarly to the in situ conditions, and the annular temperature can be cycled under realistic operating conditions. The change in flow rate through the cement sheath before and after cycling is quantified through leak tests. UV dye is injected at the end of the experiment to identify the location and type of damage in the cement sheath. A hydromechanically coupled finite element model was used to estimate the stress evolution in cement during the tests. The model incorporated the impact of cement hydration and strength development during curing. The numerical results were used as a guide to ensure the test design closely mimicked in situ conditions. The results show the presence of a small microannulus immediately after curing due to hydration shrinkage. Thermal cycles reduced the permeability of the microannulus. The size of the micro-annulus was observed to be sensitive to the backpressure applied to the cement sheath, indicating the need for pressure to maintain an open microannulus. Thirty-nine thermal cycles between 80 and 20 °C did not change the permeability of the cement sheath significantly. Tensile cracks in the cement sheath were not continuous and may not be a significant pathway. The new setup allows for measuring cement’s effectiveness in withstanding in situ stress conditions when exposed to thermal cycles such as geothermal and CCS wells. Full article
(This article belongs to the Topic Advances in Oil and Gas Wellbore Integrity)
Show Figures

Figure 1

12 pages, 2150 KB  
Article
Development of Maximum Residual Stress Prediction Technique for Shot-Peened Specimen Using Rayleigh Wave Dispersion Data Based on Convolutional Neural Network
by Yeong-Won Choi, Taek-Gyu Lee, Yun-Taek Yeom, Sung-Duk Kwon, Hun-Hee Kim, Kee-Young Lee, Hak-Joon Kim and Sung-Jin Song
Materials 2023, 16(23), 7406; https://doi.org/10.3390/ma16237406 - 28 Nov 2023
Cited by 5 | Viewed by 1568
Abstract
Shot peening is a surface treatment process that improves the fatigue life of a material and suppresses cracks by generating residual stress on the surface. The injected small shots create a compressive residual stress layer on the material’s surface. Maximum compressive residual stress [...] Read more.
Shot peening is a surface treatment process that improves the fatigue life of a material and suppresses cracks by generating residual stress on the surface. The injected small shots create a compressive residual stress layer on the material’s surface. Maximum compressive residual stress occurs at a certain depth, and tensile residual stress gradually occurs as the depth increases. This process is primarily used for nickel-based superalloy steel materials in certain environments, such as the aerospace industry and nuclear power fields. To prevent such a severe accident due to the high-temperature and high-pressure environment, evaluating the residual stress of shot-peened materials is essential in evaluating the soundness of the material. Representative methods for evaluating residual stress include perforation strain gauge analysis, X-ray diffraction (XRD), and ultrasonic testing. Among them, ultrasonic testing is a representative, non-destructive evaluation method, and residual stress can be estimated using a Rayleigh wave. Therefore, in this study, the maximum compressive residual stress value of the peened Inconel 718 specimen was predicted using a prediction convolutional neural network (CNN) based on the relationship between Rayleigh wave dispersion and stress distribution on the specimen. By analyzing the residual stress distribution in the depth direction generated in the model from various studies in the literature, 173 residual stress distributions were generated using the Gaussian function and factorial design approach. The distribution generated using the relationship was converted into 173 Rayleigh wave dispersion data to be used as a database for the CNN model. The CNN model was learned through this database, and performance was verified using validation data. The adopted Rayleigh wave dispersion and convolutional neural network procedures demonstrate the ability to predict the maximum compressive residual stress in the peened specimen. Full article
(This article belongs to the Special Issue Advances in Nondestructive Evaluation of Materials and Structures)
Show Figures

Figure 1

19 pages, 8432 KB  
Article
Source and Migration of Fluids in a Meso-Tethyan Subduction Zone: Fluid Inclusion Study of Syn-Mélange Veins from the Mugagangri Accretionary Complex
by Xinyu Liu, Min Zeng, Chenwei Li, Si Chen and Tianyuan Li
Minerals 2023, 13(9), 1196; https://doi.org/10.3390/min13091196 - 12 Sep 2023
Viewed by 1484
Abstract
The Mugagangri Group (MG), located at the southern margin of the Qiangtang terrane in Tibet, is a crucial research target for understanding the subduction and accretion history of the Meso-Tethys Ocean. Extensional crack-seal veins restricted within sandstone blocks from the broken formation in [...] Read more.
The Mugagangri Group (MG), located at the southern margin of the Qiangtang terrane in Tibet, is a crucial research target for understanding the subduction and accretion history of the Meso-Tethys Ocean. Extensional crack-seal veins restricted within sandstone blocks from the broken formation in the MG (Gaize) formed synchronously in the mélange formation. The primary inclusions trapped in the veins recorded multiple pieces of information during the formation of the accretionary wedge. To precisely constrain the MG subduction–accretion processes, we investigated the trapping temperature, salinity, density, and composition of the fluid inclusions within the crack-seal veins derived from the broken formation in the MG (Gaize). The primary inclusions indicate that the crack was sealed at ~151–178 °C. The salinity of the primary inclusions exhibited a well-defined average of 3.3 ± 0.7 wt% NaCl equivalent, slightly lower than the average of seawater (3.5 wt%). There were no nonpolar gases, and only H2O (low salinity) was detectable in the primary inclusions. These characteristics suggest that the syn-mélange fluids were a type of pore fluid in the shallow subduction zone, with the principal source being pore water from sediments overlying the oceanic crust. Because of mineral dehydration and compaction, the pore fluids became more diluted with H2O and fluid overpressure owing to a pore fluid pressure that was greater than the hydrostatic pressure. Subsequently, the creation of cracks through hydraulic fracturing provided a novel pathway for the flow of fluids which, in turn, contributed to the décollement step-down and underthrusting processes. These fractures acted as conduits for fluid movement and played a crucial role in facilitating these peculiar occurrences of quartz veins. The depth (~5 km) and temperature estimates of the fluid expulsion align with the conditions of the décollement step-down, thereby leading to the trapping of fluids within the sandstone blocks and their subsequent underplating to the accretionary complex. In our preferred model, such syn-mélange fluids have the potential to provide valuable constraints on the subduction–accretion processes occurring in other accretionary complexes. Full article
Show Figures

Graphical abstract

20 pages, 8662 KB  
Article
Investigation on Flexural Fracture Behaviour of Bolted Spherical Joints with Crack Propagation in Screw Threads
by Qinghong Shi, Wenfeng Zhou, Xiang You, Yinggai Liu, Zhiyu Wang and Qunyi Huang
Materials 2023, 16(10), 3781; https://doi.org/10.3390/ma16103781 - 17 May 2023
Cited by 2 | Viewed by 1636
Abstract
Bolted spherical joints, due to their prominent merits in installation, have been widely used in modern spatial structures. Despite significant research, there is a lack of understanding of their flexural fracture behaviour, which is important for the catastrophe prevention of the whole structure. [...] Read more.
Bolted spherical joints, due to their prominent merits in installation, have been widely used in modern spatial structures. Despite significant research, there is a lack of understanding of their flexural fracture behaviour, which is important for the catastrophe prevention of the whole structure. Given the recent development to fill this knowledge gap, it is the objective of this paper to experimentally investigate the flexural bending capacity of the overall fracture section featured by a heightened neutral axis and fracture behaviour related to variable crack depth in screw threads. Accordingly, two full-scale bolted spherical joints with different bolt diameters were evaluated under three-point bending. The fracture behaviour of bolted spherical joints is first revealed with respect to typical stress distribution and fracture mode. A new theoretical flexural bending capacity expression for the fracture section with a heightened neutral axis is proposed and validated. A numerical model is then developed to estimate the stress amplification and stress intensity factors related to the crack opening (mode-I) fracture for the screw threads of these joints. The model is validated against the theoretical solutions of the thread-tooth-root model. The maximum stress of the screw thread is shown to take place at the same location as the test bolted sphere, while its magnitude can be greatly reduced with an increased thread root radius and flank angle. Finally, different design variants related to threads that have influences on the SIFs are compared, and the moderate steepness of the flank thread has been found to be efficient in reducing the joint fracture. The research findings could thus be beneficial for further improving the fracture resistance of bolted spherical joints. Full article
Show Figures

Figure 1

17 pages, 3416 KB  
Article
Sustainability of Using Steel Fibers in Reinforced Concrete Deep Beams without Stirrups
by Ghassan Almasabha, Yasmin Murad, Abdullah Alghossoon, Eman Saleh and Ahmad Tarawneh
Sustainability 2023, 15(6), 4721; https://doi.org/10.3390/su15064721 - 7 Mar 2023
Cited by 16 | Viewed by 2782
Abstract
Reinforced Concrete (RC) deep beams perform better structurally when steel fibers are added, as this reduces the need for web steel reinforcements, boosts shear strength, and helps to bridge cracks. The current ACI 318-19 code does not include predicting shear strength models to [...] Read more.
Reinforced Concrete (RC) deep beams perform better structurally when steel fibers are added, as this reduces the need for web steel reinforcements, boosts shear strength, and helps to bridge cracks. The current ACI 318-19 code does not include predicting shear strength models to account for the added steel fibers in Steel Fibers Reinforced Concrete (SFRC) deep beams without stirrups; therefore, structural engineers are less motivated to use them. To fill this gap, the databases of 281 RC and 172 SFRC deep beams were compiled, and the preliminary investigation of the collected databases revealed that (1) Longitudinal steel reinforcement significantly increases the shear strength of SFRC specimens, as the steel fibers make deep beams better at carrying loads by assisting them in bridging cracks; and (2) Although shear stress and span-to-depth ratio are inversely related, SFRC deep beams encounter larger shear loads than RC deep beams because when the span-to-depth ratio of beams increases, the failure mode switches from crushing struts to diagonal shear failure. To help structural engineers adopt SFRC deep beams, a nonlinear regression-based model was developed to estimate the shear strength of SFRC deep beams using the experimental database of SFRC beams. Three factors—feature selection, data preprocessing, and model development—were considered. Additionally, the model’s effectiveness was evaluated and compared with other models found in the literature. The proposed shear strength model of SFRC performed better than the other models in the literature, providing the lowest Root Mean Square Error (RMSE) of 1.58 MPa. The results of this study give practitioners a strong platform for establishing precise and useful estimations of shear strength in SFRC deep beams without stirrups. Full article
Show Figures

Figure 1

10 pages, 1971 KB  
Article
Three Visual–Diagnostic Methods for the Detection of Enamel Cracks: An In Vitro Study
by Tim Hausdörfer, Lisa Harms, Philipp Kanzow and Michael Hülsmann
J. Clin. Med. 2023, 12(3), 973; https://doi.org/10.3390/jcm12030973 - 27 Jan 2023
Cited by 9 | Viewed by 3617
Abstract
Tooth fractures are a common cause of tooth loss, frequently starting as enamel cracks. However, methods for the detection of enamel cracks are poorly investigated. The aim of the study was the validation of three clinical methods for the detection of enamel cracks: [...] Read more.
Tooth fractures are a common cause of tooth loss, frequently starting as enamel cracks. However, methods for the detection of enamel cracks are poorly investigated. The aim of the study was the validation of three clinical methods for the detection of enamel cracks: dental operating microscope (DOM), near-infrared transillumination (NIR), and fiber-optic transillumination (FOTI), with hard-tissue slices serving as controls. A total of 89 extracted teeth, set up as diagnostic models, were investigated, and the maximum crack depth was scored by two examiners. The actual crack depth was determined microscopically (25×) using horizontal sections. The accuracy of each method was analyzed using receiver operating characteristic (ROC) curves. Across all tooth surfaces, the area under the curve (AUC) amounted to 0.57 (DOM), 0.70 (FOTI), and 0.67 (NIR). For crack detection on vestibular/oral surfaces, the AUC was 0.61 (DOM), 0.78 (FOTI), and 0.74 (NIR); for proximal surfaces, it was 0.59 (DOM), 0.65 (FOTI), and 0.67 (NIR). However, the actual crack depth was underestimated with each method (p < 0.001). Under in vitro conditions, FOTI and NIR are suitable for detection of enamel cracks, especially on vestibular and oral tooth surfaces. However, an exact estimation of crack depth is not possible. Therefore, FOTI and NIR seem to be helpful for the clinical detection of enamel cracks. Full article
(This article belongs to the Special Issue New Diagnostic, Pharmacological and Therapeutic Trends in Dentistry)
Show Figures

Figure 1

Back to TopTop