Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,841)

Search Parameters:
Keywords = criterion validity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1720 KB  
Article
Analytical Formulation of New Mode Selection Criteria in the Reconstruction of Static Deformation of Structures Through Modal Superposition
by Gabriele Liuzzo, Miriam Parisi and Pierluigi Fanelli
Appl. Mech. 2025, 6(3), 67; https://doi.org/10.3390/applmech6030067 - 5 Sep 2025
Abstract
The accuracy of modal superposition methods for determining displacement or strain field of structures largely depends on the selection of modes relevant to its deformation. Analytical methods for modal selection have been developed to minimise errors in reconstructing deformation through a linear combination [...] Read more.
The accuracy of modal superposition methods for determining displacement or strain field of structures largely depends on the selection of modes relevant to its deformation. Analytical methods for modal selection have been developed to minimise errors in reconstructing deformation through a linear combination of modal shapes. This study constitutes an initial step towards the development of structural health-monitoring algorithms for large engineering machines, where continuous monitoring of strain and stress, assuming a linear elastic field, is critical. The focus is on selecting modes that significantly contribute to the reconstruction of static deformation of structures. A detailed analytical approach, derived from established structural dynamics principles, leads to the formulation of modal selection criteria. These criteria are based on two fundamental quantities from dynamic and elastic theory: the modal participation factor and internal strain potential energy. Three criteria are introduced: the directional participation factor criterion (DPFC), the global participation factor criterion (GPFC), and the internal strain potential energy criterion (ISPEC). While DPFC and GPFC rely on displacements, ISPEC uses strains. The methods are validated through a case study involving a rectangular plate subjected to various loads, demonstrating their applicability to complex deformation scenarios, which require the combination of multiple modes to fully describe the static deformation. The proposed criteria are formulated for linear elastic systems and are therefore applicable, in principle, to plate-like components, machine casings, thin structural panels, and certain civil and aerospace panels, under the assumptions of small strains, linear constitutive behaviour, and validity of modal superposition. The approach also represents a first step towards the integration of modal selection with machine learning for structural health-monitoring applications and presents a computational cost significantly lower than that of full finite element analyses. Full article
Show Figures

Figure 1

33 pages, 11560 KB  
Article
Design and Kinematic Analysis of a Metamorphic Mechanism-Based Robot for Climbing Wind Turbine Blades
by Xiaohua Shi, Cuicui Yang, Mingyang Shao and Hao Lu
Machines 2025, 13(9), 808; https://doi.org/10.3390/machines13090808 - 3 Sep 2025
Viewed by 70
Abstract
Wind turbine blades feature complex geometries and operate under harsh conditions, including high curvature gradients, nonlinear deformations, elevated humidity, and particulate contamination. This study presents the design and kinematic analysis of a novel climbing robot based on a 10R folding metamorphic mechanism. The [...] Read more.
Wind turbine blades feature complex geometries and operate under harsh conditions, including high curvature gradients, nonlinear deformations, elevated humidity, and particulate contamination. This study presents the design and kinematic analysis of a novel climbing robot based on a 10R folding metamorphic mechanism. The robot employs a hybrid wheel-leg drive and adaptively reconfigures between rectangular and hexagonal topologies to ensure precise adhesion and efficient locomotion along blade leading edges and windward surfaces. A high-order kinematic model, derived from a modified Grubler–Kutzbach criterion augmented by rotor theory, captures the mechanism’s intricate motion characteristics. We analyze the degrees of freedom (DOF) and motion branch transitions for three representative singular configurations, elucidating their evolution and constraint conditions. A scaled-down prototype, integrating servo actuators, vacuum adhesion, and multi-modal sensing on an MDOF control platform, was fabricated and tested. Experimental results demonstrate a configuration switching time of 6.3 s, a single joint response time of 0.4 s, and a maximum crawling speed of 125 mm/s, thereby validating stable adhesion and surface tracking performance. This work provides both theoretical insights and practical validation for the intelligent maintenance of wind turbine blades. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

29 pages, 3092 KB  
Article
A Lagrange-Based Multi-Objective Framework for Wind–Thermal Economic Emission Dispatch
by Litha Mbangeni and Senthil Krishnamurthy
Processes 2025, 13(9), 2814; https://doi.org/10.3390/pr13092814 - 2 Sep 2025
Viewed by 214
Abstract
Economic dispatch using wind power plants plays a role in reducing the price of electricity production by dispatching power among different generating units for thermal and wind power plants, and supplying load demand while meeting the power system equality and inequality constraints. Adding [...] Read more.
Economic dispatch using wind power plants plays a role in reducing the price of electricity production by dispatching power among different generating units for thermal and wind power plants, and supplying load demand while meeting the power system equality and inequality constraints. Adding wind power plants to the economic dispatch model can significantly reduce electricity production costs and reduce carbon dioxide emissions. In this paper, fuel cost and emission minimization are considered as the objective function of the economic dispatch problem, taking into account transmission loss using the B matrix. The quadratic model of the fuel cost and emission criterion functions is modeled without considering a valve-point loading effect. The real power generation limits for both wind and conventional generating units are considered. In addition, a closed-form expression based on the incomplete gamma function is provided to define the impact of wind power, which includes the cost of wind energy, including overestimation and underestimation of available wind power using a Weibull-based probability density function. In this research work, Lagrange’s algorithm is proposed to solve the Wind–Thermal Economic Emission Dispatch (WTEED) problem. The developed Lagrange classical optimization algorithm for the WTEED problem is validated using the IEEE test systems with 6-, 10-, and 40-generation unit systems. The proposed Lagrange optimization method for WTEED problem solutions demonstrates a notable improvement in both economic and environmental performance compared to other heuristic optimization methods reported in the literature. Specifically, the fuel cost was reduced by an average of 4.27% in the IEEE 6-unit system, indicating more economical power dispatch. Additionally, the emission cost was lowered by an average 22% in the IEEE 40-unit system, reflecting better environmental compliance and sustainability. These results highlight the effectiveness of the proposed approach in achieving a balanced trade-off between cost minimization and emission reduction, outperforming several existing heuristic techniques such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Differential Evolution (DE) under similar test conditions. The research findings report that the proposed Lagrange classical method is efficient and accurate for the convex wind–thermal economic emission dispatch problem. Full article
(This article belongs to the Special Issue Recent Advances in Energy and Dynamical Systems)
Show Figures

Figure 1

23 pages, 2218 KB  
Article
An Elastoplastic Constitutive Model for Steel Slag Aggregate Concrete Under Multiaxial Stress States Based on Non-Uniform Hardening Theory
by Zhijun Chen, Liang Huang, Yiwei Yang and Teng Dong
Materials 2025, 18(17), 4124; https://doi.org/10.3390/ma18174124 - 2 Sep 2025
Viewed by 145
Abstract
Steel slag aggregate concrete (SAC) is widely recognized as a high-performance and sustainable construction material. However, its broader structural application has been impeded by the limited development of reliable constitutive models. Building upon the well-established non-uniform hardening plasticity theory, this study proposes a [...] Read more.
Steel slag aggregate concrete (SAC) is widely recognized as a high-performance and sustainable construction material. However, its broader structural application has been impeded by the limited development of reliable constitutive models. Building upon the well-established non-uniform hardening plasticity theory, this study proposes a comprehensive theoretical framework to establish a stress–strain relationship model for SAC under complex stress states. To this end, a multiaxial elastoplastic constitutive model for SAC is developed through the following steps: (1) The Guo–Wang failure criterion is employed as the bounding surface, from which a yield criterion is formulated to capture the characteristic mechanical responses of SAC under multiaxial loading; (2) Based on fundamental plasticity theory, the stress–strain relationship is derived by integrating the proposed yield function with a non-associated flow rule using a Drucker–Prager-type plastic potential function, while ensuring consistency conditions are satisfied; (3) A parameter calibration methodology is introduced and applied using experimental data from uniaxial and multiaxial tests on SAC; (4) A numerical implementation scheme is developed in MATLAB 2024a, and the model is validated through computational simulations. The validation results confirm that the proposed model reliably captures the stress–strain behavior of SAC under complex loading conditions. Overall, this study not only delivers a robust multiaxial constitutive model for SAC, but also offers a systematic modeling approach that may serve as a reference for the further development of constitutive theories for steel slag-based concretes and their broader application in structural engineering. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 10954 KB  
Article
Settlement Characteristics and Control Parameters for the Integrated Construction of Large-Section Underground Structures and Airport Terminals: A Case Study
by Rongzhen Zhang, Wei Liu, Zekun Wei, Jianyong Han, Guangbiao Shao and Shenao Li
Buildings 2025, 15(17), 3139; https://doi.org/10.3390/buildings15173139 - 1 Sep 2025
Viewed by 163
Abstract
Settlement control for tunnel–terminal co-construction projects remains undefined, despite the growing trend of integrating multiple transportation modes within large-scale transport hubs. This study investigates a large underground structure passing beneath an airport terminal, combining field investigations, statistical analyses, and finite element simulations to [...] Read more.
Settlement control for tunnel–terminal co-construction projects remains undefined, despite the growing trend of integrating multiple transportation modes within large-scale transport hubs. This study investigates a large underground structure passing beneath an airport terminal, combining field investigations, statistical analyses, and finite element simulations to examine differential settlement behavior under non-uniform loading conditions. The key contribution of this work is the proposal of a differential settlement control standard, defined by the tangent of the rotation angle between adjacent column foundations, with a recommended value of 1/625. Case analysis at cross-section E–E shows that the measured maximum tangent rotation angle was 1/839, corresponding to base slab settlements of 40.5 mm and 33.1 mm for the high-speed railway and metro structures, respectively. Application of the proposed 1/625 criterion yields allowable maximum base slab settlements of 55.28 mm for the high-speed railway and 44.83 mm for the metro, with differential settlement limits of 7.5 mm and 3.13 mm. Numerical simulations confirm the validity of this standard, ensuring the structural integrity of co-constructed systems and providing practical guidance for future airport terminal–tunnel integration projects. Full article
Show Figures

Figure 1

19 pages, 3673 KB  
Article
Stability Analysis of Shield Tunnels Considering Spatial Nonhomogeneity and Anisotropy of Soils with Tensile Strength Cut-Off
by Biao Zhang, Yanbin Zhao, Daobing Zhang and Shunshun Zhang
Appl. Sci. 2025, 15(17), 9507; https://doi.org/10.3390/app15179507 - 29 Aug 2025
Viewed by 177
Abstract
The issue of working face stability in shield tunnels crossing inclined layered soil is addressed by a modified version of the Mohr–Coulomb strength criterion. This model considers spatial nonhomogeneity and anisotropy of the soil layer, and enables a 3D tunnel stability analysis. It [...] Read more.
The issue of working face stability in shield tunnels crossing inclined layered soil is addressed by a modified version of the Mohr–Coulomb strength criterion. This model considers spatial nonhomogeneity and anisotropy of the soil layer, and enables a 3D tunnel stability analysis. It derives the energy equation using virtual work, finds the ultimate support stress at the working face, and solves for its optimal upper bound using an algorithm. This research examined the impact of soil nonhomogeneity, anisotropy, and reduced tensile strength parameters on the stability of tunnel working faces. The results demonstrate the validity of the model, as the findings are consistent with existing research when only tensile strength is considered. The ultimate support force decreases with the nonhomogeneous coefficient and increases with the nonhomogeneously directional angle. The ultimate support force decreases first, and then increases with the soil layer’s inclined angle. Soil layers between 10° and 30° have the lowest ultimate support force. This ultimate support force gets stronger with an increasing anisotropic coefficient. Case studies show that using a method that accounts for soil tensile strength to calculate tunnel working face support force results in a relative error of only 1.92%, improving tunnel stability assessment accuracy. Full article
(This article belongs to the Special Issue Slope Stability and Earth Retaining Structures—2nd Edition)
Show Figures

Figure 1

24 pages, 1222 KB  
Article
Integrating Circular Economy (CE) Principles into Construction Waste Management (CWM) Through Multiple Criteria Decision-Making (MCDM)
by Thilina Ganganath Weerakoon, Janis Zvirgzdins, Sanda Lapuke, Sulaksha Wimalasena and Peteris Drukis
Sustainability 2025, 17(17), 7770; https://doi.org/10.3390/su17177770 - 29 Aug 2025
Viewed by 429
Abstract
The construction sector is a major contributor to global waste output, with construction and demolition waste (CDW) producing substantial environmental, economic, and logistical challenges. Traditional methods for handling waste in developing countries have failed to implement sustainability concepts successfully, resulting in inefficient resource [...] Read more.
The construction sector is a major contributor to global waste output, with construction and demolition waste (CDW) producing substantial environmental, economic, and logistical challenges. Traditional methods for handling waste in developing countries have failed to implement sustainability concepts successfully, resulting in inefficient resource consumption and increasing landfill reliance. This study develops an Analytic Hierarchy Process (AHP) framework to integrate circular economy (CE) principles into construction waste management (CWM). The framework evaluates four criteria under economic, environmental, social, and technological categorization and applies expert-based pairwise comparisons to prioritize alternative strategies. To ensure reliability, the results were further validated through sensitivity analysis and cross-validation using complementary MCDM methods, including the TOPSIS, WSM, and WPM. The research attempted to determine the most successful waste management approach by examining critical economic, social, technical, and environmental issues in the setting of Sri Lanka as a case study. A hierarchical model was built, and expert views were gathered using pairwise comparisons to assess the relative importance of each criterion. The results showed that environmental considerations had the greatest relative importance (41.6%), followed by economic (38.4%), technical (12.6%), and social aspects (7.4%). On-site waste segregation appeared as the most suitable method owing to its immediate contribution to sustainability, while off-site treatment, prefabrication, modular construction, and waste-to-energy conversion followed. The research underlines the significance of organized decision-making in waste management and advises incorporating real-time data analytics and artificial intelligence to boost adaptable and sustainable construction practices. Full article
Show Figures

Figure 1

14 pages, 3281 KB  
Article
Research on the Johnson–Cook Constitutive Model and Failure Behavior of TC4 Alloy
by Jiaxuan Zhu, Huidong Zhi, Tong Huang, Ning Ding and Zhaoming Yan
Metals 2025, 15(9), 951; https://doi.org/10.3390/met15090951 - 27 Aug 2025
Viewed by 249
Abstract
This study investigates the mechanical response characteristics and damage evolution behavior of TC4 alloy through quasi-static/dynamic coupled experimental methods. Quasi-static tensile tests at varying temperatures (293 K, 423 K, and 623 K) were conducted using a universal testing machine, while room-temperature dynamic tensile [...] Read more.
This study investigates the mechanical response characteristics and damage evolution behavior of TC4 alloy through quasi-static/dynamic coupled experimental methods. Quasi-static tensile tests at varying temperatures (293 K, 423 K, and 623 K) were conducted using a universal testing machine, while room-temperature dynamic tensile tests (strain rate 1000–3000 s−1) were performed with a Split Hopkinson Tensile Bar (SHTB). Key findings include the following: (1) Significant temperature-softening effect was observed, with flow stress decreasing markedly as temperature increased; (2) Notch size effect influenced mechanical properties, showing 50% enhancement in post-fracture elongation when notch radius increased from 3 mm to 6 mm; and (3) Strain-hardening effect exhibited rate dependence under dynamic loading, with reduced hardening index within the tested strain rate range. The Johnson–Cook constitutive model and failure criterion were modified and parameterized based on experimental data. A 3D tensile simulation model developed in ABAQUS demonstrated strong agreement with experimental results, achieving a 0.97 correlation coefficient for load–displacement curves, thereby validating the modified models. Scanning electron microscopy (SEM) analysis of fracture surfaces revealed temperature- and strain rate-dependent microstructural characteristics, dominated by ductile fracture mechanisms involving microvoid nucleation, growth, and coalescence. This research provides theoretical foundations for analyzing Ti alloy structures under impact loading through established temperature–rate-coupled constitutive models. Full article
(This article belongs to the Special Issue Structure and Mechanical Properties of Titanium Alloys)
Show Figures

Figure 1

20 pages, 1235 KB  
Article
Variable-Speed UAV Path Optimization Based on the CRLB Criterion for Passive Target Localization
by Lijia Chen, Chengfeng You, Yixin Wang and Xueting Li
Sensors 2025, 25(17), 5297; https://doi.org/10.3390/s25175297 - 26 Aug 2025
Viewed by 515
Abstract
The performance of passive target localization is significantly influenced by the positions of unmanned aerial vehicle swarms (UAVs). In this paper, we investigate the problem of UAV path optimization to enhance the localization accuracy. Firstly, a passive target localization signal model based on [...] Read more.
The performance of passive target localization is significantly influenced by the positions of unmanned aerial vehicle swarms (UAVs). In this paper, we investigate the problem of UAV path optimization to enhance the localization accuracy. Firstly, a passive target localization signal model based on the time difference of arrival (TDOA) algorithm, which is then improved by the Chan method and Taylor series expansion, is established. Secondly, the Cramer–Rao lower bound (CRLB) of the modified TDOA algorithm is derived and adopted as the evaluation criterion to optimize the UAVs’ positions at each time step. Different from the existing works, in this paper, we consider the UAVs to have variable speed; therefore, the feasible region of the UAVs’ positions is changed from a circle into an annular region, which will extend the feasible region, enhancing the localization accuracy while increasing the computation complexity. Thirdly, to improve the efficiency of the UAV path optimization algorithm, the particle swarm optimization (PSO) algorithm is applied to search for the optimal positions of the UAVs for the next time step. Finally, numerical simulations are conducted to verify the validity and effectiveness of the proposals in this paper. Full article
(This article belongs to the Special Issue Radar Target Detection, Imaging and Recognition)
Show Figures

Figure 1

24 pages, 7258 KB  
Article
Experimental Validation of a Rule-Based Energy Management Strategy for Low-Altitude Hybrid Power Aircraft
by Yunfeng She, Kunkun Fu, Bo Diao and Maosheng Sun
Aerospace 2025, 12(9), 758; https://doi.org/10.3390/aerospace12090758 - 24 Aug 2025
Viewed by 462
Abstract
In the electrification of low-altitude aircraft, aviation hybrid power systems have become one of the core research areas in this field due to their significant advantages of low emissions and long endurance. The energy management strategy is an important part of the design [...] Read more.
In the electrification of low-altitude aircraft, aviation hybrid power systems have become one of the core research areas in this field due to their significant advantages of low emissions and long endurance. The energy management strategy is an important part of the design of aviation hybrid power systems and has a significant impact on the performance and safety.This paper first develops a 200 kW dual DC-bus series hybrid power system prototype for low-altitude aircraft and its Simulink simulation model; then, it proposes a rule-based energy management strategy that uses the smoothness of the state of charge (SOC) of energy storage batteries as a coordination criterion. The strategy is validated via ground tests, where the battery SOC remains above 30%, the system response time is within 5 s, and the DC-bus voltage fluctuation is within 1%. These results demonstrate the strategy’s feasibility, providing a reference for designing and implementing series hybrid power systems. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

25 pages, 8543 KB  
Article
Effect of Pitch Angle on the Strength of a TC4/Helicoidal Composite Double-Bolt Scarf Joint: A Numerical Study
by Chunhua Wan, Xin Du, Guofan Zhang, Zhefeng Yu and Xin Lian
Materials 2025, 18(17), 3956; https://doi.org/10.3390/ma18173956 - 24 Aug 2025
Viewed by 436
Abstract
A progressive damage model was developed to study the damage and failure behavior of CFRP/Ti double-bolt scarf joints under quasi-static loading. The three-dimensional Hashin failure criterion was integrated into a finite element model via the ABAQUS user-defined material subroutine. Quasi-static tensile tests were [...] Read more.
A progressive damage model was developed to study the damage and failure behavior of CFRP/Ti double-bolt scarf joints under quasi-static loading. The three-dimensional Hashin failure criterion was integrated into a finite element model via the ABAQUS user-defined material subroutine. Quasi-static tensile tests were conducted to investigate failure mechanisms and validate the model. The predicted failure modes match the experimental results with an error of 11.8% in the prediction of ultimate load. The effect of helicoidal layup on the composite joint was studied for the application of a helicoidal composite. The results show that the helicoidal layup configuration with a 45/−45 layup on the surface had the highest failure load, and the helicoidal layup introduced more tensile damage in the matrix. This study offers practical failure prediction methods and comprehensive failure mode analysis for composite bolted scarf joints. Full article
Show Figures

Figure 1

33 pages, 22259 KB  
Article
Open-Pit Slope Stability Analysis Integrating Empirical Models and Multi-Source Monitoring Data
by Yuyin Cheng and Kepeng Hou
Appl. Sci. 2025, 15(17), 9278; https://doi.org/10.3390/app15179278 - 23 Aug 2025
Viewed by 505
Abstract
Slope stability monitoring in open-pit mining remains a critical challenge for geological hazard prevention, where conventional qualitative methods often fail to address dynamic risks. This study proposes an integrated framework combining empirical modeling (slope classification, hazard assessment, and safety ratings) with multi-source real-time [...] Read more.
Slope stability monitoring in open-pit mining remains a critical challenge for geological hazard prevention, where conventional qualitative methods often fail to address dynamic risks. This study proposes an integrated framework combining empirical modeling (slope classification, hazard assessment, and safety ratings) with multi-source real-time monitoring (synthetic aperture radar, machine vision, and Global Navigation Satellite System) to achieve quantitative stability analysis. The method establishes an initial stability baseline through mechanical modeling (Bishop/Morgenstern–Price methods, safety factors: 1.35–1.75 across five mine zones) and dynamically refines it via 3D terrain displacement tracking (0.02 m to 0.16 m average cumulative displacement, 1 h sampling). Key innovations include the following: (1) a convex hull-displacement dual-criterion algorithm for automated sensitive zone identification, reducing computational costs by ~40%; (2) Ku-band synthetic aperture radar subsurface imaging coupled with a Global Navigation Satellite System and vision for centimeter-scale 3D modeling; and (3) a closed-loop feedback mechanism between empirical and real-time data. Field validation at a 140 m high phosphate mine slope demonstrated robust performance under extreme conditions. The framework advances slope risk management by enabling proactive, data-driven decision-making while maintaining compliance with safety standards. Full article
(This article belongs to the Special Issue Novel Technologies in Intelligent Coal Mining)
Show Figures

Figure 1

29 pages, 592 KB  
Article
Stability Analysis and Finite Difference Approximations for a Damped Wave Equation with Distributed Delay
by Manal Alotaibi
Mathematics 2025, 13(17), 2714; https://doi.org/10.3390/math13172714 - 23 Aug 2025
Viewed by 286
Abstract
This paper presents a fully implicit finite difference scheme for the numerical approximation of a wave equation featuring strong damping and a distributed delay term. The discretization employs second-order accurate approximations in both time and space. Although implicit, the scheme does not ensure [...] Read more.
This paper presents a fully implicit finite difference scheme for the numerical approximation of a wave equation featuring strong damping and a distributed delay term. The discretization employs second-order accurate approximations in both time and space. Although implicit, the scheme does not ensure unconditional stability due to the nonlocal nature of the delayed damping. To address this, we perform a stability analysis based on Rouché’s theorem from complex analysis and derive a sufficient condition for asymptotic stability of the discrete system. The resulting criterion highlights the interplay among the discretization parameters, the damping coefficient, and the delay kernel. Two quadrature techniques, the composite trapezoidal rule (CTR) and the Gaussian quadrature rule (GQR), are employed to approximate the convolution integral. Numerical experiments validate the theoretical predictions and illustrate both stable and unstable dynamics across different parameter regimes. Full article
(This article belongs to the Special Issue Advances in Numerical Analysis of Partial Differential Equations)
Show Figures

Figure 1

14 pages, 513 KB  
Article
Psychometric Properties and Rasch Validation of the Herth Hope Index in a Sample of Portuguese Higher Education Students During a Pandemic
by Carlos Laranjeira, Ana Querido, Tânia Lourenço, Zaida Charepe, Amira Mohammed Ali, Feten Fekih-Romdhane, Murat Yıldırım and Maria Anjos Dixe
Educ. Sci. 2025, 15(9), 1087; https://doi.org/10.3390/educsci15091087 - 22 Aug 2025
Viewed by 424
Abstract
A greater understanding of health-promoting factors, such as hope, is crucial for preventing and enhancing the mental health of higher education students. The Herth Hope Index (HHI) is a 12-item tool that has been widely used to assess a comprehensive, non-temporal perception of [...] Read more.
A greater understanding of health-promoting factors, such as hope, is crucial for preventing and enhancing the mental health of higher education students. The Herth Hope Index (HHI) is a 12-item tool that has been widely used to assess a comprehensive, non-temporal perception of hope. While this instrument has been used extensively in adult populations, most studies focus on clinical populations. Additionally, the HHI reveals inconsistencies in terms of scale dimensionality and items to be retained. Therefore, this study sought to assess the HHI’s psychometric characteristics in a sample of Portuguese Higher Education students. The person response validity, internal scale validity, unidimensionality, and uniform differential item functioning were assessed using a Rasch rating scale model. A total of 2227 higher education students participated during the e-survey activation period (spring semester of 2020). The mean age of the sample was 22.5 ± 6.2 years (range 18–59 years). Three of the twelve items (#3, #5, and #6) failed to satisfy the established criterion for goodness of fit. Following the elimination of these three items, the resultant nine-item scale exhibited satisfactory item fit to the model, appropriate unidimensionality (52.4% of the variance explained), enough person goodness of fit, sufficient separation, and the absence of differential item functioning. The 9-item version of the HHI had psychometric properties comparable to the original 12-item version. This study also underscores the importance of validated instruments for assessing hope-based interventions in academic contexts. Further research is necessary to explore the potential dimensions inherent to the hope concept and to identify variations in hope profiles among items influenced by cultural attributes. Full article
Show Figures

Figure 1

12 pages, 1033 KB  
Article
A Time-Series Approach for Machine Learning-Based Patient-Specific Quality Assurance of Radiosurgery Plans
by Simone Buzzi, Pietro Mancosu, Andrea Bresolin, Pasqualina Gallo, Francesco La Fauci, Francesca Lobefalo, Lucia Paganini, Marco Pelizzoli, Giacomo Reggiori, Ciro Franzese, Stefano Tomatis, Marta Scorsetti, Cristina Lenardi and Nicola Lambri
Bioengineering 2025, 12(8), 897; https://doi.org/10.3390/bioengineering12080897 - 21 Aug 2025
Viewed by 408
Abstract
Stereotactic radiosurgery (SRS) for multiple brain metastases can be delivered with a single isocenter and non-coplanar arcs, achieving highly conformal dose distributions at the cost of extreme modulation of treatment machine parameters. As a result, SRS plans are at a higher risk of [...] Read more.
Stereotactic radiosurgery (SRS) for multiple brain metastases can be delivered with a single isocenter and non-coplanar arcs, achieving highly conformal dose distributions at the cost of extreme modulation of treatment machine parameters. As a result, SRS plans are at a higher risk of patient-specific quality assurance (PSQA) failure compared to standard treatments. This study aimed to develop a machine-learning (ML) model to predict the PSQA outcome (gamma passing rate, GPR) of SRS plans. Five hundred and ninety-two consecutive patients treated between 2020 and 2024 were selected. GPR analyses were performed using a 3%/1 mm criterion and a 95% action limit for each arc. Fifteen plan complexity metrics were used as input features to predict the GPR of an arc. A stratified and a time-series approach were employed to split the data into training (1555 arcs), validation (389 arcs), and test (486 arcs) sets. The ML model achieved a mean absolute error of 2.6% on the test set, with a 0.83% median residual value (measured/predicted). Lower values of the measured GPR tended to be overestimated. Sensitivity and specificity were 93% and 56%, respectively. ML models for virtual QA of SRS can be integrated into clinical practice, facilitating more efficient PSQA approaches. Full article
(This article belongs to the Special Issue Radiation Imaging and Therapy for Biomedical Engineering)
Show Figures

Figure 1

Back to TopTop