Recent Advances in Energy and Dynamical Systems

A special issue of Processes (ISSN 2227-9717). This special issue belongs to the section "Energy Systems".

Deadline for manuscript submissions: 15 February 2026 | Viewed by 1143

Special Issue Editor


E-Mail Website
Guest Editor
Instituto Tecnológico de Hermosillo, Tecnológico Nacional de México, Ave. Tecnológico y Periférico Poniente SN, Hermosillo 83170, Mexico
Interests: nonlinear control systems; time-delay systems; nonlinear observers; process control; autonomous aerial vehicles; mathematical biology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Energy studies and dynamical systems, with their recent applications in various disciplines, serve as a cornerstone of modern science. Such issues have been widely used to describe dynamical behaviors in almost all areas of science and engineering. In recent years, process control engineers have focused on optimizing the monitoring and control of process operations and implementing advanced process control and real-time optimization applications. In this respect, modeling and simulation of dynamical systems play a particularly important role in their development as cost-effective ways to make sound engineering judgements about new process concepts due to the massive scales involved.

This Special Issue on “Recent Advances in Energy and Dynamical Systems” aims to bring together cutting-edge research that explores recent advances at the intersection of energy and dynamical systems. We invite submissions that delve into the theoretical foundations, computational methodologies, and practical implications of energy and dynamical systems. Potential topics include, but are not limited to, the following:

  • Control of dynamical systems;
  • Data-driven dynamics;
  • Estimation of energy and dynamical systems;
  • Differential equations and their applications in energy, biology, and engineering;
  • Mathematical modeling and analysis of process control;
  • Simulation of dynamical systems;
  • Fault detection of energy systems;

Dr. Omar Hernández-González
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Processes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • dynamic systems
  • energy systems
  • estimation
  • control
  • simulation
  • data-driven
  • fault detection

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

29 pages, 3092 KB  
Article
A Lagrange-Based Multi-Objective Framework for Wind–Thermal Economic Emission Dispatch
by Litha Mbangeni and Senthil Krishnamurthy
Processes 2025, 13(9), 2814; https://doi.org/10.3390/pr13092814 - 2 Sep 2025
Viewed by 437
Abstract
Economic dispatch using wind power plants plays a role in reducing the price of electricity production by dispatching power among different generating units for thermal and wind power plants, and supplying load demand while meeting the power system equality and inequality constraints. Adding [...] Read more.
Economic dispatch using wind power plants plays a role in reducing the price of electricity production by dispatching power among different generating units for thermal and wind power plants, and supplying load demand while meeting the power system equality and inequality constraints. Adding wind power plants to the economic dispatch model can significantly reduce electricity production costs and reduce carbon dioxide emissions. In this paper, fuel cost and emission minimization are considered as the objective function of the economic dispatch problem, taking into account transmission loss using the B matrix. The quadratic model of the fuel cost and emission criterion functions is modeled without considering a valve-point loading effect. The real power generation limits for both wind and conventional generating units are considered. In addition, a closed-form expression based on the incomplete gamma function is provided to define the impact of wind power, which includes the cost of wind energy, including overestimation and underestimation of available wind power using a Weibull-based probability density function. In this research work, Lagrange’s algorithm is proposed to solve the Wind–Thermal Economic Emission Dispatch (WTEED) problem. The developed Lagrange classical optimization algorithm for the WTEED problem is validated using the IEEE test systems with 6-, 10-, and 40-generation unit systems. The proposed Lagrange optimization method for WTEED problem solutions demonstrates a notable improvement in both economic and environmental performance compared to other heuristic optimization methods reported in the literature. Specifically, the fuel cost was reduced by an average of 4.27% in the IEEE 6-unit system, indicating more economical power dispatch. Additionally, the emission cost was lowered by an average 22% in the IEEE 40-unit system, reflecting better environmental compliance and sustainability. These results highlight the effectiveness of the proposed approach in achieving a balanced trade-off between cost minimization and emission reduction, outperforming several existing heuristic techniques such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Differential Evolution (DE) under similar test conditions. The research findings report that the proposed Lagrange classical method is efficient and accurate for the convex wind–thermal economic emission dispatch problem. Full article
(This article belongs to the Special Issue Recent Advances in Energy and Dynamical Systems)
Show Figures

Figure 1

22 pages, 76473 KB  
Article
Modeling Renewable Energy Feed-In Dynamics in a German Metropolitan Region
by Sebastian Bottler and Christian Weindl
Processes 2025, 13(7), 2270; https://doi.org/10.3390/pr13072270 - 16 Jul 2025
Viewed by 438
Abstract
This study presents community-specific modeling approaches for simulating power injection from photovoltaic and wind energy systems in a German metropolitan region. Developed within the EMN_SIM project and based on openly accessible datasets, the methods are broadly transferable across Germany. For PV, a cluster-based [...] Read more.
This study presents community-specific modeling approaches for simulating power injection from photovoltaic and wind energy systems in a German metropolitan region. Developed within the EMN_SIM project and based on openly accessible datasets, the methods are broadly transferable across Germany. For PV, a cluster-based model groups systems by geographic and technical characteristics, using real weather data to reduce computational effort. Validation against measured specific yields shows strong agreement, confirming energetic accuracy. The wind model operates on a per-turbine basis, integrating technical specifications, land use, and high-resolution wind data. Energetic validation indicates good consistency with Bavarian reference values, while power-based comparisons with selected turbines show reasonable correlation, subject to expected limitations in wind data resolution. The resulting high-resolution generation profiles reveal spatial and temporal patterns valuable for grid planning and targeted policy design. While further validation with additional measurement data could enhance model precision, the current results already offer a robust foundation for urban energy system analyses and future grid integration studies. Full article
(This article belongs to the Special Issue Recent Advances in Energy and Dynamical Systems)
Show Figures

Figure 1

Back to TopTop