Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = crocodilia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 19539 KB  
Article
Riverine Realities: Evaluating Climate Change Impacts on Habitat Dynamics of the Critically Endangered Gharial (Gavialis gangeticus) in the Indian Landscape
by Imon Abedin, Hilloljyoti Singha, Shailendra Singh, Tanoy Mukherjee, Hyun-Woo Kim and Shantanu Kundu
Animals 2025, 15(6), 896; https://doi.org/10.3390/ani15060896 - 20 Mar 2025
Cited by 1 | Viewed by 2471
Abstract
The endemic and critically endangered gharial, Gavialis gangeticus, experienced a severe population decline in its range. However, conservation efforts, notably through the implementation of “Project Crocodile” in India, have led to a significant recovery of its population. The present study employs an ensemble [...] Read more.
The endemic and critically endangered gharial, Gavialis gangeticus, experienced a severe population decline in its range. However, conservation efforts, notably through the implementation of “Project Crocodile” in India, have led to a significant recovery of its population. The present study employs an ensemble Species Distribution Model (SDM) to delineate suitable habitats for G. gangeticus under current and future climatic scenarios to understand the impact of climate change. The model estimates that 46.85% of the area of occupancy is suitable under the present scenario, with this suitable area projected to increase by 145.16% in future climatic conditions. States such as Madhya Pradesh, Uttar Pradesh, and Assam are projected to experience an increase in habitat suitability, whereas Odisha and Rajasthan are anticipated to face declines. The study recommends conducting ground-truthing ecological assessments using advanced technologies and genetic analyses to validate the viability of newly identified habitats in the Lower Ganges, Mahanadi, and Brahmaputra River systems. These areas should be prioritized within the Protected Area network for potential translocation sites allocation. Collaborative efforts between the IUCN-SSC Crocodile Specialist Group and stakeholders are vital for prioritizing conservation and implementing site-specific interventions to protect the highly threatened gharial population in the wild. Full article
Show Figures

Figure 1

10 pages, 3592 KB  
Article
Variation in the Diet of Hatchling Morelet’s Crocodile (Crocodylus moreletii) in the Wild
by Mariana González-Solórzano, Marco A. López-Luna, Laura T. Hernández-Salazar, Edgar Ahmed Bello-Sánchez and Jorge E. Morales-Mávil
Animals 2024, 14(17), 2610; https://doi.org/10.3390/ani14172610 - 8 Sep 2024
Viewed by 1524
Abstract
The relationship between diet and behavior is essential to understanding an animal’s strategies to obtain food, considering ontogenical changes. In reptiles, there is a relationship between the length of the individual and the size of the prey it consumes. Studies have focused on [...] Read more.
The relationship between diet and behavior is essential to understanding an animal’s strategies to obtain food, considering ontogenical changes. In reptiles, there is a relationship between the length of the individual and the size of the prey it consumes. Studies have focused on the ontogenetic changes in reptile diets from hatchling to adult, but only a few studies have focused on the transition from hatchling to juvenile. We aimed to describe and analyze the composition, variation, diversity, and overlap in the diet of hatchling Morelet’s crocodiles (Crocodylus moreletii) for three size intervals during the hatchling–juvenile transition. We captured 31 hatchling Morelet’s crocodiles in an urbanized lagoon in Tabasco. We performed stomach-flushing to determine the diet. Additionally, we estimated the volume, frequency of occurrence, and relative importance of diet items and analyzed the relationship between prey type and the total length of the individuals. The diversity of the hatchling prey suggests a generalist diet. We observed two items not previously described in the diet of hatchling crocodiles. In addition, we found differences in diet between the initial and final size intervals, as increases in the length of prey appeared that they did not consume when they were hatchlings. Our results contribute new information to the dietary changes that occur during the hatchling–juvenile transition. Full article
(This article belongs to the Special Issue Ecology and Conservation of Crocodiles)
Show Figures

Figure 1

10 pages, 2569 KB  
Article
Single Copies of the 5S rRNA Inserted into 45S rDNA Intergenic Spacers in the Genomes of Nototheniidae (Perciformes, Actinopterygii)
by Alexander Dyomin, Svetlana Galkina, Arina Ilina and Elena Gaginskaya
Int. J. Mol. Sci. 2023, 24(8), 7376; https://doi.org/10.3390/ijms24087376 - 17 Apr 2023
Cited by 3 | Viewed by 2019
Abstract
In the vast majority of Animalia genomes, the 5S rRNA gene repeats are located on chromosomes outside of the 45S rDNA arrays of the nucleolar organiser (NOR). We analysed the genomic databases available and found that a 5S rDNA sequence is inserted into [...] Read more.
In the vast majority of Animalia genomes, the 5S rRNA gene repeats are located on chromosomes outside of the 45S rDNA arrays of the nucleolar organiser (NOR). We analysed the genomic databases available and found that a 5S rDNA sequence is inserted into the intergenic spacer (IGS) between the 45S rDNA repeats in ten species of the family Nototheniidae (Perciformes, Actinopterigii). We call this sequence the NOR-5S rRNA gene. Along with Testudines and Crocodilia, this is the second case of a close association between four rRNA genes within one repetitive unit in deuterostomes. In both cases, NOR-5S is oriented opposite the 45S rDNA. None of the three nucleotide substitutions compared to the canonical 5S rRNA gene influenced the 5S rRNA secondary structure. In transcriptomes of the Patagonian toothfish, we only found NOR-5S rRNA reads in ovaries and early embryos, but not in testis or somatic tissues of adults. Thus, we consider the NOR-5S gene to be a maternal-type 5S rRNA template. The colocalization of the 5S and 45S ribosomal genes appears to be essential for the equimolar production of all four rRNAs in the species that show rDNA amplification during oogenesis. Most likely, the integration of 5S and NOR rRNA genes occurred prior to Nototheniidae lineage diversification. Full article
(This article belongs to the Special Issue Transcriptional Regulation of Late Oogenesis and Early Embryogenesis)
Show Figures

Figure 1

31 pages, 3517 KB  
Review
Antimicrobial Peptides in Reptiles
by Monique L. Van Hoek
Pharmaceuticals 2014, 7(6), 723-753; https://doi.org/10.3390/ph7060723 - 10 Jun 2014
Cited by 113 | Viewed by 20265
Abstract
Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in [...] Read more.
Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. Full article
Show Figures

Figure 1

Back to TopTop